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Abstract

‘l’his paper performs a detailed evaluation of a fault-
tolerant distributed broadcasting algorithm for cube
connected networks. The main areas of evaluation
are the following: (1) Algorithm effectiveness in the
presence of multiple faults, (2) Establishing the
maximum number of link faults allowed, before the
algorithm fails to guarantee 10OOAeffectiveness, The
evaluation was done to networks connected in 3-, 4-,
5-, and 6-cube configurations, The results of the sim-
ulationwere analyzedto establishalgorithmcharacter-
istics under multiple faults,

Introduction

As [he popularity and use of on-line computer
systems has increased in recent years, so has the
demand for greater system performance, and greater
reliability of these systems. The demand for greater
performance has led the computer community to the
area of distributed and parallel systems architectures.
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in the mid 70’s, ‘1’andcm was exploring the uscs of
parallel systems as a way of providing fault tolerance.
Since that time, a number of parallel systems architec-
tures have been proposed (hypcrcube, tree, tonls, and
mesh) [1] that fulfill the demand for greater perform-
anceand faulttolcrancc.

1Iypcrcubeisonc of many paral!cl systems architec-
tures that have been proposed over the years [5]. As
in all other parallel systems, it supports three basic
types of interproccssor communication: one-to-one
(unicast), one-to-many (multicast), and one-to-all
(broadcast) [2]. 1lypercubcs arc Ic>osclycoupled par-
allel processors based on the binary n-cube nctwc~rk
and introduced under differentnames (cosmic cube,
o-cube, binary n-cube, etc.). An n-cube parallel
pmccssor consists of 2“ identical pmccssors, each pro-
vided with its own mcmor-y, and intcrconncctcd with
n neighbors. A node address can bc reprcscntcd as:

I = I(n-l)...I(i+l),I(i),I(i-l)...I(l),1(0)

with I(i) =Oor 1

‘1’hcaddressof itsucighboring nodes (n in all) can be
rcprcscntcd as

I’= I(n-l)...I(ill),I(i),I(i-l)...I(l),1(0)

Communication in hypcrcubcs is achicvcxl by message
passing, whereby dsta ancl/’or code are transferred
from processor A to pr(}ccssor f? by traveling across a
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sequence of nearest neighbor nodes starting at
processor A and ending in processor B.

Architecturally hypcrcubes exhibh many advantages,
such as: simplicity of design, low cost, excellent
mapping capabilities, and a unique ability to exploit
particular topologies of problems or algorithms in
order to minimize communication costs. Hypercubes
also provide the ability to generate fault tolerant
systems by simply shutting down failing nodes or by
system recontlguration [6].
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Figure 1. 3-Dview of a 3 dimensional hypcrcube.

Pault-tolerant routing is one important issue in the
design of a hypercuti system. This paper will dhcuss
the area of broadcasting in hypercubes, specifically
fault-tolerant broadcasting. With few exceptions [7]
[8], the area of fault-tolerant broadcasting in distrib-
uted systems has been neglected, mainly due to its
complexity and cost (record keeping). Wu and
Fernandez proposed an algorithm that uses the
topological properties of hypercubes to guarantee
rerouting with minimum additional tral%c and without
the need for a table of global information [3].

[n this paper we intend to evaluate the fault coverage
of Wu and Fernandez’ algorithm, especially in cases of
multiple faults. The evaluation considers hypercubes
with dimensions range from 4 to 6 (8 -64 nodes).

This paper is organized as follows: Section 2 of the
paper provides a brief introduction of the algorithm.
Section 3 presents a description of the software model
written to simulate the algorithm. The results of the
simulation are presented and analyzed in Section 4.
Finally, Section 5 contains a summary of the results
of the evaluation.

Algorithm Description

The algorithm is based on the concept of a binomial
tree [3], [4]. A binomial tree is a tree which is in
class B(k) for some k; the integer k is called the index
of such a binomial tree. A class B(k) is recursively
defined as follows:

1. Any tree consisting of a single node, a D(O) tree.

2. Suppose that Y and Z are disjoint B(k- 1) trees
for K>= 1. Then the tree obtained by adding
an edge to make the root of Y become the left-
most offspring of the root of Z is a B(k) tree.

The algorithm states that it can regenerate a faulty
subtrce, induced by a faulty node, through one of the
leaves in the binomial tree with minimum regener-
ation tratlic, and without node duplication. The type
of faults considered were limited to fail-stop; a link
either works pmpcdy or stops completely.

For simplicity, Ict us assume that distributed fault
detection is achieved (for possible implementation of
distributed fault detection scc [3]). Once a fault is
detected, the fault handler (node detecting the fault)
disconnects the faulty subtrec making it impossible to
broadcast messages to the nodes in the faulty subtree.
A faulty subtree is dcfmed as the fault handler’s
descendants through the fault y link. The fault handler
will then send a regeneration message that has the fol-
lowing format:

{ Broadcast 14essage, PCS, t )

I’hc Path Coordinate Scqucncc (PCS) is defuled
I;igure 2

Where direction is dctincd as the bh position that is
different between two adjacent nodes in a binomial
tree. I:or example, in Figure 4, the direction between
node 000 and node 100 is 2.

The l(PCS) is called the regeneration path defined by
PCS with a starting address 1. l(PCS) is recursively
dclincd as shown in 1~igurc 3.
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Path Coordinate Sequence

= {S,t) fors>t&d-=s

= {S, t,s} fors<tord=s

Where:

s = set of link directions leaving

the fault handler excluding t

t = direction entering the faulty

subtree (link at fault)

d = direction entering the fault handler

.~
Figure 2. Path Coordinate Sequence definition

I(PCS)

=1

F(PCS) R(PCS)
=1. ->1 --> I

F(PCS)
=1..> I

Where: F(PCS) = first (PCS)
L(PCS) = length(PCS)

R(PCS) = rest(PCS)

If L(PCS) =0

If L(PCS) -=0

& R(PCS) -=0

If L(PCS) -=0
& R(PCS) =0

— I
‘igure 3. I<egcncration Path I)eftnition

‘I”hree operations: First, Rest, 1,c.ngth on PCS =
{(:( 1), C(2), .. C(n )} are defined as follows:

First (PCS) = C(l)

Rest (PCS) = {C(2),c(3),.

Length (PCS) = 1 + Length(Res
with Length ((

C(n’

(PM)
)=~

l;or instance if we have a binomial tree with a fault
between nocleool” andoll as shownin Figure 4,thc
fault handler is node 001ancl the corresponding values
for s, t, and d are as follows:

s = { 0,2 ) t= 1 d=o
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Figure 4. Dinary Ircr wilt) hull bc[wccn node 001 and 011

and the two choices for Pa(h Coordinate Sequence
(PCS)arc

{ 2,1 )
Pcs=

( 0,1,0)

In this example the rcgcncratiorr path (starting from
tllcfault llandlcr)is{)Ol +0012 = 101 -+ 101’ =111
before the rcgcncratitm of the faulty subtrcc,

‘1’hc fault handler will then scml lhc rcgcncration
message along the firsl link dircciion given in PG. III
our example Ict the PCS bc ( 2,1 ), then the fault
handler will send the rcgcncration message through
link direction 2. 1lath node rccciving a rcgcncration
message will pms it along through tl]c direction given
by the rust mcrnbcr of the 1’(:S.and it will also dclctc
that member from Ihe l’[~S. If that link CIOCSnot
exist as it is in the case t~f our example (node 5 link 1
or node 5 link to node 7 dots not exist). then the ncw
link is gcncratcd. [f a nmlc rcccivcs’ ~ rcgcncration
message with the 1’[;S equaling the empty set, then
that node and suhscqucnt n{x!cs will rcgcncratc the
faulty subtrcc based on the following rules:
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FORi>tandi<n
Generate a node in

END

Where n equals the dimension
(3 for our example)

Figure 5 is the resultant tree
ation algorithm.

direction i

of the hypercube

based orI the regcncr-
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Figure 5. Regenerated tree

Normally the PCS = (s,t} has ahigher priority than
the PCS = {s,t,s} beeause of shorter regeneration
paths. The PCS = {s,t,s} will be selected only when
there are faults on the regeneration path(s) defined by
Pcs = {S,t}.

Simulation Model

In order to evaluate the algorithm a software model
was written in REXX, a high-level language similar to
Pascal, and available under the VM/SPTM and OS/2m
operating systems. The model was divided into three
modules. The fust module (MAIN PROGRAM)
dealt with fault generation, checking, and record
keeping. The second module (BACKTRACE SUB-
ROUTINE) deaIt with the generation of the Path
Coordinate Sequence, backtracking through that
sequence, and updating the tree to reflect new paths
to those nodes already in existence. The third module
(GENTREE SUBROUTINE) handled the generation
of new links to nodes deleted due to faults, as well as
the updating of the tree to reflect the modifications.

Main Program Module

The main program generates random faults, checks to
see if the faults are present in the tree, and collects
resultant data (faults detected, number of faults
applied, etc.). The inputs to this module are two: the
dimension of the hypercubc, and the number of faults
that could be present in the system at the same time.
For example, in the case of a 3-dimensirmal
hypercube with number of faults equal to two, the
main module will generate two links faults at random.

In order to simplify the program, it was decided to
consider one fault at a time. For instance, if
“down_tinks” = {1.3 0.4) indicating faults on the
links connecting nodes 1-3 and nodes O-4, the
program will correct the fault 1.3 fust. Correcting a
fault means selecting the PCS, backtracking , modifying
the tree for the existing nodes, and calling
GENTRIHI. Once the first fault has been dealt with,
then the two faults will be presented to the new tree.
The module is best described by using pseudocode, as
shown in l~igurc 6.

It has been proved [3] that following the above path
coordinate sequence the rerouting requires minimum
additional trafiic (or minimum number of communic-
ation links which are used to deliver the broadcasted
message)
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GET Difnension and “f” = number of faults
INITIALIZE tree

--

DO UNTIL “stop_signal” = 1
GENERATE“down_links”
DO UNTIL all members of “down links”

have been applied OR-Loop_count
is less than (2*”dimension”)

GET fault = nth_member of “down links”
IF fault is present in tree -

THEN
CALL BACKTRACE with “fault” as

parameter
IF returns from BACKTRACE = error

THEN
EXIT with BACKTRACE error

ELSE
ITERATE

END IF
END IF

END DO
IF exit with error

THEN
INCREMENT appropriate error counters
INCREMENT attempts counter

ELSE
INCREMENT attempts counter

END IF
END DO
OUTPUT statistics

Figure 6. Pseudocode for the Main Program Module

Bacldrace Module

‘[’he BACK”l’RACE module selects the PCS based on
the “Fault” generated in the MAIN Program. It also
performs the backtracking for the PCS, and the mod-
ifications to the tree to reflect the new path to those
nodes in existence. This becomes clear by following
the pseudocode for this module, described in
Figure 7.

Gentree Module

‘[’heGEN’[’RLW module receives the value of the last
node reached by the PCS, and thevalueof”t”. It will
then proceed to generate ncw links based on the rules
previously described in the Algorithm Description
section. ‘1’he pseudocode for this module is in
Figure 8.

GET “fault”
PRUNE tree based on “fault”
GENERATE PCS
IF PCS generates parallel path to

existing node
THEN

RETURN with BACKTRACE error
ELSE

MODIFY tree to reflect PCS
CALL GENTREE with last node reached

by the PCS and “t”
IF GENTREE returns with error

THEN
RETURN with GENTREE error

ELSE
RETURN with no error

END IF
END IF

Note: In the case of multiple values of “s”
BACKTRACE will select a random “s”
value from the given set. Note that
s = d only if no other choice of “s”
is available. This note applies to
the third statement of the module
‘GENERATE PCS’.

Ngure 7. Pscudocod eforthct?ackt.race Module

Results/Analysis

Table 1 shows the coverage resulting when we apply
multiple faults to a 3-, 4-, 5-, and 6-dimensirmal
hypercube.

As we can sec from the table, covcragc falls below the
100?4. any time wc have mulliple faults. l:ailurcs of
the algorithm were classified into four catcgorics:
loops, incomplete trees, duplicate nmlcs generated by
BACKTRACI1, and duplicate nodes generated by
G1iN’1’R131i.

Loops arc gcncratcd when the algorithm is unable to
resolve a set of faults. l:or example if we have a
3-dimensional hypcrcubc with “down_links” = {1.3,
3.7}. The algorithm will handle fault 1.3 first, with a
Pm = {2,1}. ‘I”hc tree gcncratcd is shown in
Figure 5. Exccutingthc algorithm, wc then test the
ncw tree to scc if any member of “&)wn_iinks” is
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GET “last_node” and t
IF t = Dimension - 1

THEN
Do nothing and RETURN

ELSE
DO WHILE t < Dimension - 1

IF “last_node” link t+l Does not exist
THEN

GENERATE “son_node” from “last_node”
thru link t+l
MOOIFY tree
CALL GENTREE with “son_node” and t+l

ELSE
RETURN with GENTREE error

END IF
ENO DO

END IF

Figure 8. Pseudocode for the Gentree Module

present. We fmd that fault 3.7 is present, so we apply
the algorithm one more time. The PCS for this fault
is {1,2,1}, and the resulting tree is shown in Figure 9.

Again we apply the two faults {1.3 3.7] to the tree,
and we fmd that fault 1.3 has reappeared. If we
handle fault 1.3 the algorithm witi give the same PCS
as before {2,1}, which will cause fault 3.7 to reappear,
hence a LOOP condition. Note--That the algorithm
does not specify which “s” value to select, for the
model we choose “s”atrandom.

The second category of algorithm failures is incom-
plete trees. This is the case when the final tree does
not contain all nodes. An example of this case is
when a node is completely isolated (all links to that
node are faulty). Iiowever, there are other examples
where all Iinksto agivcn node are not faulty, yet the
resultant tree is incomplete. Such is the case if we
consider a 3-&lmension,al cube with “down_links” =
{o. 1, 0.4}.

o

1

1

I

001 010 100

x 2 2

ill,lll011 101 110

A
1

111

[;igure 9. Llxample of tree where algorithm causes a loop.

Applying the algorithm to the first fault results in PCS
= (2,0}, and the resulting tree is shown in Figure 10.

Applying the two faults {O.1 0.4) wc find that 0.1 was
handled correctly but tl,4rcmains, sothc algorithm is
used once more. ‘[”his time PCS = {1,2,1} with t =
2. The resulting tree is shown in Figure 11.

The next catcgoryof failure is 13ACKTRACE gener-
ating a duplicate node, An example of this condkion
occurs with faults in {0.4 2.6). Fault 0.4 is handled
first with PCS = {0,2,0};that will put node 4 under
node 5 as shown in Figure 12.

The second fault (2.6) is then handled, with PCS =
{1,2,1}. Thcsccond mcmbcrof the PCSregencratcsa
nmie that is ahead y in cxistcncc (node 4). Following
the PCS results in a link bctwccn nmlc O and node 4,
but node 4 could also bc acccsscd via node I and

Table 1. Number of faults present i.md corresponding covcrages
—

Faults 3-[)imcnsional 4-Dimensional 5-Dimensional 6-Ilimcnsional

1 100’% 1000/0 100% 100”/0

2 I 79.370 I 94.3V0 I gfl.J~o I 99,3% I

3 47.9% 83.2% 94.3% 98.0’!4

4
.——— -

19.6?’o 68.0?’0 89.5% 96.6!4.—— —
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Figure 10, ‘Iree resulting from handling fault between
nodes (1 and 1

node 5. This violates the nonrcdundant clause of
broadcast communication.

‘1’helast category of failures is GI~NTR1i[ generating
a duplicate node. This category is very similar to cat-
egory 3 (BACKTRACE). An example of this condi-
tion is faults {0.2 2.3). ‘[’he problem is demonstrated
by using the following PCS: {0, 1,0} for the first fault
(0.2), an(i {2,()} for the second fault (2.3). Again,

node 4 gets duplicated this time under node 6.

The software model was modified in order to get an
accurate breakdown of the types of failures. Table 2
shows the breakdown by failure types.

As we can sce from the table, half of the algorithm
failures were caused by GiIN”I”R1;.l! creating a dupli-

cate node. This is directly related to the vahrc of “t”
used in the rcgrmeration message. The other three
types of algorithm failure arc related more to the “s”
value used. The case of Incomplctc trees is the only
one where failures could not bc totally eliminated.
This occurs when the number of faults is greater than
or equal to the dimension of the hypercube, creating
the possibility of a node being completely isolated.

000
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110

1

010

igure 11. Example of tree where algorithm generates an
incomplete tree.
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I;igurc 12. ‘rrcc rcsuhing from handling faull be[wecn
nodes O and 4. The handling of tic fault 2.6
will result in node 4 being duptica[cd.
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Table 2. Failure type breakdown.

Failure 3-llimensional Cube 4-l)imcnsional Cube
‘ry~ 2 Faults 3 Faults 4 Faults 2 Faults 3 Faults 4 Faults

Incomplete 26.5% 24.5?40 25,7!!40 27.6% 26.5% 27.2?4.
tree

Loops in 15.3% 17.1% 16.4?40 13.10/o 15.5~o 15.4%
tree

Backtrace 4.1’340 8.0% 8.2% 7.470 6.9’% 5.7?40
Dup

Gentree 54.2?40 50.4?fo 49.7~o 51.9~o 51.170 51.6”L0
Dup

Summary

In this paper we have evaluated Wu and Fernandez’
fault-tolerant broadcasting algorithm on hypercubc
multicomputers. We have shown that the algorithm
behaves as expected, with 100% coverage and
tninimum regeneration traffic, when one fault is
present. When multiple faults are present coverage
falls below 100%. As expected there is a relationship
between the dimension of the hypercube and the algo-
rithm coverage. The larger the dimension the higher
the coverage for multiple faults. For instance, a
6-dimensional cube with four faults still gets coverage
of greater than 96°/0. If we then consider the fact that
the probabdity of a system having more than one
fault present is very small, we can say that Wu and
Fernandez’ algorithm provides excellent coverage,
while still keeping regeneration tralllc to a minimum.

Analysis of the resuks indicates that the areas of tree
regeneration and selection of “s” to generate the PCS
are the most promising as far as improvements to the
algorithm is concerned.
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