Evaluation of a Fault Tolerant Distributed
Broadcast Algorithm in Hypercube Multicomputers

Jace W. Krull
IBM Corporation
Boca Raton, F1. 33431

Jie Wu
Department of Computer Scicnee and Engincering
Florida Atlantic University

Andres M. Molina
IBM Corporation
Boca Raton, FL 33431

Boca Raton, F1. 33431

Abstract

This paper performs a detailed evaluation of a fault-
tolerant distributed broadcasting algorithm for cube
connected networks. The main areas of evaluation
are the following: (1) Algorithm effectiveness in the
presence of multiple faults, (2) Establishing the
maximum number of link faults allowed, before the
algorithm fails to guarantee 100% cffectiveness. The
evaluation was done to networks connected in 3-, 4-
5-, and 6-cube configurations. The results of the sim-
ulation were analyzed to establish algorithm character-
istics under multiple faults.

Introduction

As the popularity and use of on-line computer
systems has increased in recent years, so has the
demand for greater system performance, and greater
reliability of these systems. The demand for greater
performance has led the computer community to the
area of distributed and parallel systcins architectures.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 089791-472-4/92/0002/0459 $1.50

In the mid 70’s, Tandem was exploring the uses of
parallel systems as a way of providing fault tolerance.
Since that time, a number of parallel systems architec-
turcs have been proposed (hypercube, tree, torus, and
mesh) [1] that fulfill the demand for greater perform-
ance and fault tolerance.

Iypercube is once of many parallel systems architec-
turcs that have been proposed over the years {5]. As
in all other parallel systems, it supports three basic
types of interprocessor communication: one-to-one
(unicast), onc-to-many (multicast), and one-to-all
(broadcast) [2]. Hypercubes are loosely coupled par-
allel processors based on the binary n-cube nctwork
and introduced under different names (cosmic cube,
n-cube, binary n-cube, etc.). An n-cube parallel
processor consists of 2" identical processors, each pro-
vided with its own mcmory, and interconnccted with
n neighbors. A node address can be represented as:

I = I(n-1)...1(i+1), 1(i), I(i-1)...1(1), 1(9)

with I(i) =06or 1

The address of its neighboring nodes (n in all) can be
represented as

i
I = I(n-1)...1(¢i+1), I(3), I(i-1)...1(1), 1(0)

Communication in hypercubes is achieved by message
passing, whereby data andjor code are transferred
from processor A 10 processor B by travelling across a

sequence of nearest neighbor podes starting at

processor A and ending in processor B.

Architecturally hypercubes exhibit many advantages,
such as: simplicity of design, low cost, excellent
mapping capabilities, and a unique ability to exploit
particular topologies of problems or algorithms in
order to minimize communication costs. Hypercubes
also provide the ability to generate fault tolerant
systems by simply shutting down failing nodes or by
system reconfiguration [6].

1o

n

L]4}

01

Figure 1. 3-D view of a 3 dimensional hypercube.

Fault-tolerant routing is one important issue in the
design of a hypercube system. This paper will discuss
the area of broadcasting in hypercubes, specifically
fault-tolerant broadcasting. With few exceptions [7]
[8], the area of fault-tolerant broadcasting in distrib-
uted systems has been neglected, mainly due to its
complexity and cost (record keeping). Wu and
Fernandez proposed an algorithm that uses the
topological properties of hypercubes to guarantce
rerouting with minimum additional traffic and without
the need for a table of global information [3].

In this paper we intend to evaluate the fault coverage
of Wu and Fernandez’ algorithm, especially in cascs of
multiple faults. The evaluation considers hypercubes
with dimensions range from 4 to 6 (8 - 64 nodes).

This paper is organized as follows: Section 2 of the
paper provides a brief introduction of the algorithm.
Section 3 presents a description of the software model
written to simulate the algorithm. The results of the
simulation are presented and analyzed in Section 4.
Finally, Section 5 contains a summary of the results
of the evalualion.

ARN

Algorithm Description

The algorithm is based on the concept of a binomial
tree [3], [4]. A binomial tree is a tree which is in
class B(k) for some k; the intcger k is called the index
of such a binomial tree. A class B(k) is recursively
defined as follows:

1. Any tree consisting of a single node, a B(0) tree.

2. Suppose that Y and Z are disjoint B(k-1) trees
for K > = 1. Then the tree obtained by adding
an edge to make the root of Y become the left-
most offspring of the root of Z is a B(k) trce.

The algorithm statcs that it can regenerate a faulty
subtree, induced by a faulty node, through one of the
leaves in the binomial tree with minimum regener-
ation traffic, and without node duplication. The type
of faults considered were limited to fail-stop; a link
either works properly or stops completely.

For simplicity, lct us assume that distributed fault
detection is achieved (for possible implementation of
distributed fault detection see [3]). Once a fault is
detected, the fault handler (node detecting the fault)
disconnects the faulty subtree making it impossible to
broadcast messages to the nodes in the faulty subtree.
A faulty subtree is dcfined as the fault handler’s
descendants through the faulty link. The fault handler
will then send a regeneration message that has the fol-
lowing format:

{ Broadcast Message, PCS, t }

The Path Coordinate Sequence (PCS) is defined
I'igure 2

Where direction is defined as the bit position that is
differcnt between two adjacent nodes in a binomial
trce. For example, in Figure 4, the direction between
node 000 and nodc 100 is 2.

The I(PCS) is called the regencration path defined by
PCS with a starting address 1. I(PCS) is recursively
defined as shown in Figure 3.

Path Coordinate Seguence

= {s,t} for s >t &d =5
= {s,t,s} fors <tord=s
Where:

wn
]

set of link directions leaving

the fault handler excluding t

t = direction entering the faulty
subtree (1ink at fault)

direction entering the fault handler

o
)

Figure 2. Path Coordinate Sequence definition

0 2
elel
1
1

l———— 001 016 100
X 2 2
011 [101 l 110
2
111

[{PCS)
= 1 If L(PCS) =0
F(PCS) R(PCS)
= [-->1 - 1 If L(PCS) -=0
& R(PCS) -=0
F(PCS)
= 1 o> 1 If L(PCS) ~=0
& R(PCS) =0
Where: F(PCS) = first(PCS)
L(PCS) = length(PCS)
R(PCS) = rest(PCS)

ligure 3. Regeneration Path Definition

Three operations: First, Rest, Tength on PCS =
{C(1), C(2), ... C(n)} are defined as follows:

First (PCS) = C(1)
{€(2), €(3), ... ¢(n)}

1 + Length(Rest(PCS)),
with Length ({})=0

1}

Rest (PCS)

Length (PCS)

T'or instance if we have a binomial tree with a fault
between node 001 and 011 as shown in Figure 4, the
fault handler is node 001 and the corresponding values
for s, t, and d are as follows:

s={0,2) t=1 d=0

461

Figure 4. Binary tree with fault between node 001 and 01

and the two choices for Path Coordinate Sequence
(PCS) arc

{2,1)
PCS =
{0,1,0}

In this example the regeneration path (starting from
the fault handler) is 001 — 001? = 101 — 101" =111
before the regeneration of the faulty subtrec,

The fault handler will then send the regencration
message along the first link direction given in PCS. In
our example lct the PCS be { 2,1 }, then the fault
handler will send the regencration message through
link direction 2. ach node recciving a regeneration
message will pass it along through the dircction given
by the first member of the PPCS. and it will also delcete
that member from the PCS. If that link docs not
cxist as it is in the case of our example (node 5 link |
or node S link to node 7 doces not exist), then the new
link is gencrated. If a node receives a regencration
message with the PCS equaling the empty sct, then
that node and subscquent nodes will regencrate the
faulty subtree based on the following rules:

FOR i >t and i <n
Generate a node in direction i
END

Where n equals the dimension of the hypercube
(3 for our example)

Figure 5 is the resultant tree based on the regener-
ation algorithm.

] 2
000
1
0o1 010 100
2 2
101 110
1
111
2
011

Figure 5. Regenerated tree

Normally the PCS = {s,t} has a higher priority than
the PCS = {st,s} because of shorter regeneration
paths. The PCS = {st,s} will be selected only when
there are faults on the regeneration path(s) defined by
PCS = {s}.

It has been proved [3] that following the above path
coordinate sequence the rerouting requires minimum
additional traffic (or minimum number of communi-
cation links which are used to deliver the broadcasted
message)

462

Simulation Model

In order to evaluate the algorithm a software model
was written in REXX, a high-level language similar to
Pascal, and available under the VM/SP™ and OS§/2™
operating systems. The model was divided into three
modules. The first module (MAIN PROGRAM)
dealt with fault generation, checking, and record
keeping. The second module (BACKTRACE SUB-
ROUTINE) dealt with the generation of the Path
Coordinate Sequence, backtracing through that
sequence, and updating the tree to reflect new paths
to those nodes already in existence. The third module
(GENTREE SUBROUTINE) handled the generation
of new links to nodes deleted due to faults, as well as
the updating of the tree to reflect the modifications.

Main Program Module

The main program generates random faults, checks to
see if the faults are present in the tree, and collects
resultant data (faults detected, number of faults
applied, etc.). The inputs to this module are two: the
dimension of the hypercube, and the number of faults
that could be present in the system at the same time.
For example, in the case of a 3-dimensional
hypercube with number of faults equal to two, the
main module will generate two links faults at random.

In order to simplify the program, it was decided to
consider one fault at a time. For instance, if
“down_links” {1.3 0.4) indicating faults on the
links connecting nodes [-3 and nodes 0-4, the
program will corrcct the fault 1.3 first. Correcting a
fault means sclecting the PCS, bactracking , modifying
the tree for the existing nodes, and calling
GENTREE. Once the first fault has becn dealt with,
then the two faults will be presented to the new tree.
The module is best described by using pseudocode, as
shown in Figure 6.

GET Dimension and "f" = number of faults
INITIALIZE tree
DO UNTIL "stop_signal" =1
GENERATE "down_links"
DO UNTIL all members of "down 1inks™®
have been applied OR Loop_count
is less than (2*"dimension*®)

GET fault = nth_member of "down_links"
IF fault is present in tree
THEN
CALL BACKTRACE with "fault" as
parameter
IF returns fram BACKTRACE = error
THEN
EXIT with BACKTRACE error
ELSE
ITERATE
END IF
END IF
END DO
IF exit with error
THEN
INCREMENT appropriate error counters
INCREMENT attempts counter
ELSE
INCREMENT attempts counter
END IF
END DO
QUTPUT statistics

Figure 6. Pseudocode for the Main Program Module

Backtrace Module

The BACKTRACE module sclects the PCS based on
the “fault” generated in the MAIN Program. It also
performs the backtracking for the PCS, and the mod-
ifications to the tree to reflect the new path to those
nodcs in existence. This becomes clear by following
the psecudocode for this module, described in
Figure 7.

Gentree Module

The GENTREE module receives the value of the last
node reached by the PCS, and the value of "t”. It will
then proceed to generate ncw links based on the rules
previously described in the Algorithm Description
section. The pseudocode for this module is in
Figure 8.

463

GET "fault"
PRUNE tree based on "fault"
GENERATE PCS
IF PCS generates parallel path to
existing node
THEN
RETURN with BACKTRACE error
ELSE
MODIFY tree to reflect PCS
CALL GENTREE with last node reached
by the PCS and "t*
IF GENTREE returns with error
THEN
RETURN with GENTREE error
ELSE
RETURN with no error
END IF
END IF

Note: In the case of multiple values of "s”
BACKTRACE will select a random *s*
value from the given set. Note that
s = d only if no other choice of "s"
is available. This note applies to
the third statement of the module
'GENERATE PCS'.

T'igure 7. Pscudocode for the Backirace Module

Results/Analysis

Table 1 shows the coverage resulting when we apply
multiple faults to a 3-, 4-, S-, and 6-dimensional
hypercube.

As we can scc from the table, coverage [alls below the
100% any time we have mulliple faults. Failures of
the algorithm werc classified into four categorics:
loops, incomplete trees, duplicate nodes generated by
BACKTRACE, and duplicate nodes generated by
GENTREL.

Loops arc generated when the algorithm is unable to
resolve a set of faults. For example if we have a
3-dimensional hypercube with “down_links” = (1.3,
3.7}, The algorithm will handle fault 1.3 first, with a
PCS = (2,1}. TThe trec generated is shown in
Figure 5. Exccuting the algorithm, we then test the
new tree to sce if any member of “down_links” is

GET "last_node" and t
IF t = Dimension - 1
THEN
Do nothing and RETURN
ELSE
DO WHILE t < Dimension - 1
IF "last_node” 1ink t+1 Does not exist
THEN
GENERATE "son_node” from "last_node”
thru link t+1
MODIFY tree
CALL GENTREE with “son_node® and t+1
ELSE
RETURN with GENTREE error
END IF
END DO
END IF

Figure 8. Pseudocode for the Gentree Module

present. We find that fault 3.7 is present, so we apply
the algorithm one more time. The PCS for this fault
is {1,2,1}, and the resulting tree is shown in Figure 9.

Again we apply the two faults {1.3 3.7} to the tree,
and we find that fault 1.3 has reappeared. If we
handle fault 1.3 the algorithm will give the same PCS
as before {2,1}, which will cause fault 3.7 to reappear,
hence a LOOP condition. Note--That the algorithm
does not specify which “s” value to select, for the
model we choose “s” at random.

The second category of algorithm failures is incom-
plete trees. This is the case when the final tree does
not contain all nodes. An example of this case is
when a node is completely isolated (all links to that
node arc faulty). However, there are other examples
where all links to a given node are not faulty, yet the
resultant tree is incomplete. Such is the case if we
consider a 3-dimensional cube with “down_links” =
{0.1, 0.4}.

000
1
1
[-———— 001 010 100
T 2 2
01! 101 110
1
11

Figure 9. Example of tree where algorithm causes a loop.

Applying the algorithm to the fisst fault results in PCS
= {2,0}, and the resulting tree is shown in Figure 10.

Applying the two faults {0.1 0.4} we find that 0.1 was
handled correctly but 0.4 remains, so the algorithm 1is
used once more. ‘This time PCS = {1,2,1} with t =
2. The resulting tree is shown in Figure 11.

The next category of failurc is BACKTRACE gener-
ating a duplicate nodc. An cxample of this condition
occurs with faults in {0.4 2.6}. T‘ault 0.4 is handled
first with PCS = (0,2,0}; that will put node 4 under
node 5 as shown in [Figure 12.

The second fault (2.6) is then handled, with PCS =
{1,2,1}. The second member of the PCS regencrates a
node that is alrcady in existence (node 4). Following
the PCS results in a link between node 0 and node 4,
but node 4 could also bc accessed via node 1 and

Table 1. Number of faulls present and corresponding coverages
Faults 3-Dimensional 4-Dimensional 5-Dimensional 6-Dimensional
1 100% 100% 100% 100%
2 79.3% 94.3% 98.2% 99.3%
3 47.9% 83.2% 94.3% 98.0%
4 19.6% 68.0% 89.5% 96.6%

A&

.
2
000 -———]
1 X
010 190
2 0
2
110 101
1
111 001
2
011

Figure 10. Tree resulting from handling fault between
nodes 0 and 1

node 5. This violates the nonrecdundant clause of
broadcast communication.

The last category of failures is GENTREE generating
a duplicate node. This category is very similar to cat-
egory 3 (BACKTRACE). An cxample of this condi-
tion is faults {0.2 2.3}. The problem is demonstrated
by using the following PCS: {0,1,0} for the first fault
(0.2), and {2,0} for the sccond fault (2.3). Again,
node 4 gets duplicated this time under nodc 6.

The software model was modified in order to get an
accurate breakdown of the types of failures. Table 2
shows the breakdown by failure types.

As we can sce from the table, half of the algorithm
failures were caused by GIINTRII creating a dupli-
cate node. This is directly related to the value of 1"
used in the regeneration message. The other three
types of algorithm failure are related more to the “s”
value used. The case of Incomplete trees is the only
one where failures could not be totally climinated.
This occurs when the number of faults is greater than
or cqual to the dimension of the hypercube, creating
the possibility of a node being completely isolated.

ALK

000

010

Figure 11. Example of trec where algorithm generates an
incomplete tree.

0
000
1
1
001 010
2 2|
X
1
011 101 110
2]
111 100

Iigure 12. Tree resulting from handling fault between
nodes 0 and 4. The handling of the fault 2.6
will result in node 4 being duplicated.

Table 2. Failure type breakdown,
Failure 3-Dimensional Cube 4-Dimensional Cube
Types 2 Faults 3 Faults 4 Faults 2 Faults 3 Faults 4 Faults
Incomplete 26.5% 24.5% 25.7% 27.6% 26.5% 27.2%
tree
Loops in 15.3% 17.1% 16.4% 13.1% 15.5% 15.4%
tree
Backtrace 4.1% 8.0% 8.2% 7.4% 6.9% 5.7%
Dup
Gentree 54.2% 50.4% 49.7% 51.9% SL1% 51.6%
Dup
Conference on FElectrical and Computer Engi-
Summary neering, Scpt. 1990, Pgs. 51.4.1-51.4.4.
g

In this paper we have evaluated Wu and Fernandez’
fault-tolerant broadcasting algorithm on hypercube
multicomputers. We have shown that the algorithm
behaves as expected, with 100% coverage and
minimum regeneration traffic, when one fault is
present. When multiple faults are present coverage
falls below 100%. As expected there is a relationship
between the dimension of the hypercube and the algo-
rithm coverage. The larger the dimension the higher
the coverage for multiple faults. For instance, a
6-dimensional cube with four faults still gets coverage
of greater than 96%. If we then consider the fact that
the probability of a system having more than one
fault present is very small, we can say that Wu and
Fernandez’ algorithm provides excellent coverage,
while still keeping regeneration traffic to a minimum,

Analysis of the results indicates that the areas of trec
regeneration and selection of “s” to generate the PCS
are the most promising as far as improvements to the
algorithm is concerned.

References

1. Reed, D. A. and R. M. Fujimoto, Multicomputer
Networks: Message-Based Parallel Processing ,
The MIT Press, 1987.

2. Lan, Y. A, I1. Esfahanian, and L. M. Ni, "Multi-
cast in Hypercube Multiprocessors,” Journal of
Parallel and Distributed Computing 8 , Jan 1,
1990, Pgs. 30-41.

3. Wy, J. and Edvardo B. Fernandez, A Fault Tol-
erant Distributed Broadcast Algorithm for Cube-
Connected Cycles,” Proc. of 1990 Canadian

466

4. Brown, M. R,, “Implementation and Analysis of
Binomial Queuc Algorithm,” SIAM J. Computing
7, Aug 1978, Pgs. 298-319.

5. Saad. Y. and Schultz M. I1., "Topological Proper-
tics of Hypercubes,” IEEE Transactions on Com-
puters, Vol 37, No. 7, July 1988, Pgs. 867-872.

6. Banerjee, P., “Strategics for Reconfiguring
Hypercubes Undcr Faults,” Proc. of the 20th
International Symposium on Fault-Tolerant Com-
puting, 1990, Pgs. 210-217.

7. Al-Dheloan, A. and B. Bose, “Efficient Fault-
Tolerant Broadcasting Algorithm for the
Hypercube,” Proc. of the 4th Conference on
Hpypercubes Concurrent Computing and Applica-
tions , 1989, Pgs. 123-128.

8. Ramanathan, I’. and K. G. Shin, "Reliable
Broadcast in Ilypercube Multicomputers,” TEEE
Transactions en Cemputers, Vol 37, No. 12, Dec.
1988, PPgs. 1554-1657.

Trademark Acknoledgements -- VM/SP and OS/2 are
Trademarks of IBM Corp.

