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Abstract

Two shortest paths P (u, v) and P ′(v, u) are called converging paths if path P (u, v) is exactly

the reversal of path P ′(v, u). Independently finding two converging paths from node u and node

v, so that a message from u to v is bound to meet a message from v to u, is not trivial even if

both nodes have the correct and complete network link state information. This paper presents

three different converging path algorithms. The first one is a simple extension to Dijkstra’s

shortest path algorithm. The rest two make use of the routing information existing in each

node. Both theoretical complexity and simulated performance results for these algorithms are

given and discussed.

Key words: Converging paths, Dijkstra’s algorithm, Internet routing protocol, shortest

paths.

∗This work was supported in part by NSF grant CCR 9900646 and grant ANI 0073736.

1



1 Introduction

Link-state routing protocols, such as OSPF and IS-IS, are widely used in the Internet nowadays. In

link-state routing protocols, global network topology is first collected at each node. A shortest path

tree (SPT) is then constructed by applying the Dijkstra’s shortest path algorithm at each node.

Link-state protocols normally require the flooding of new information to the entire (sub)network

after changes in any link state (including link faults).

Narvaez et al.[5] proposed a fault-tolerant link-state routing protocol without flooding. The idea

is to construct a shortest restoration path for each unidirectional faulty link uv (as shown in Figure 1

(a)). This is done when the shortest path to a destination contains uv. Faulty link information is

distributed only to nodes in the restoration path and only one restoration path is constructed. Wu

et al.[6] recently extended the Narvaez’ protocol to efficiently handle a bidirectional link fault by

making the restoration path bidirectional.

In [6], the restoration path is constructed simultaneously from both end nodes of a faulty link

(u, v), node u will send a construction request along a shortest path P (u, v), meanwhile node v

will send a similar request along a shortest path P ′(v, u). If P and P ′ are converging paths (i.e.,

P ′ is exactly the reversal of P ), messages from u and v will meet in midway and make a single

restoration path (as shown in Figure 1 (b)). Otherwise, if there are multiple shortest paths between

u and v, and P and P ′ are not converging paths, two fully or partially distinct restoration paths

may be constructed, wasting network resources and complicating the restoration process (as shown

in Figure 1 (c)).

As a single restoration path involves fewer nodes and is easier to handle than two fully or

partially distinct restoration paths, it is preferable to send construction requests along converging

paths. However, finding converging paths independently from nodes u and v is not trivial. Tradi-

tional shortest path algorithms [1, 4] cannot guarantee finding converging paths. Enumerating all

possible shortest paths and selecting one among them according to certain criteria is very inefficient

(as shown in Figure 2).

In this paper, we propose three converging path algorithms. The first one is an asymmetric

extension to traditional shortest path algorithms, where one node, say, node u, finds the forward

path and the other node v first finds the backward path from u to v and then reverses it. The other

two are symmetric algorithms. One of them uses a divide-and-conquer strategy to determine the

converging path through the selection of a series of middle points and the other is its optimization.

Both algorithms make use of the distance information, which can be derived from the global link

state information collected by each node in a link-state protocol.

The rest of the paper is organized as follows: Section 2 presents three converging path algo-
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Figure 1: One restoration path is constructed for a faulty unidirectional link (a) and a faulty

bidirectional link, if converging pathes are selected (b). Otherwise, two restoration paths are

constructed (c).

rithms and compares their asymptotic complexities. Section 3 gives simulated performance results.

Section 4 concludes this paper.

2 Proposed Algorithms

2.1 Preliminaries

A network can be viewed as an undirected graph G = (V, E), where V is the vertex (node) set and

E is the edge (link) set. (u, v) ∈ E is a bidirectional link where u and v are two nodes in V . Each

(u, v) is associated with a positive cost, du,v, representing the cost of travelling from u to v (or from

v to u).

A path P (u, v) in graph G is a sequence of distinct nodes (v1(= u), v2, v3, ..., vk(= v)) where

(v1, v2), (v2, v3), ..., (vk−1, vk) ∈ E. We say a path P ′(v, u) is the reversal of path P (u, v) if it

contains exactly the same set of nodes in reverse sequence (vk, vk−1, ...v1). The cost of a path is

the sum of the costs of its links. A shortest path between two nodes u and v is a path with the

minimum cost. We denote this minimum cost as the distance between u and v, or D(u, v).

Definition 1: Paths P (u, v) and P ′(v, u) are converging paths if (1) P (u, v) is a shortest path, and

(2) P ′(v, u) is the reversal of P (u, v).

Nodes in a shortest path between nodes u and v can only be selected from a subset of V .

The distance value D(u,w), if available, can be used to determine whether node w belongs to this

subset.

Definition 2: The intermediate node set Vs(u, v) ⊆ V is a set of nodes that appear in shortest

paths between u and v.
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Figure 2: Problems in finding converging paths: (a) different paths (1 and 2) may be selected by

nodes u and v, and (b) to enumerate all shortest paths may be a huge task.

According to the above definition, u, v ∈ Vs(u, v), Vs(u, v) = Vs(v, u) and Vs(u,w) ⊆ Vs(u, v),

∀w ∈ Vs(u, v). Apparently, w ∈ Vs(u, v) if and only if D(u,w) + D(w, v) = D(u, v) or w′ ∈
Vs(u, v) ∧D(u,w) + dw,w′ = D(u,w′).

A total order relation less than (<) on V is essential in determining an unique path among

all possible shortest paths. ‘<’ can be defined based on the lexigraphic order of node id’s, or on

a positional relation between nodes. Similarly, we say a node v is the minimum node in a subset

V ′ ⊆ V , if v < w,∀w 6= v ∈ V ′.

In the following discussion, we assume that the network is connected, i.e., at least one path

exists between any pair of nodes, thus the converging paths can always be found. We also assume,

same as [5], that each node has the global link state information. In addition, each node knows its

distance to every other node, as long as its routing table is established and well maintained.

2.2 An Asymmetric Algorithm

The first converging path algorithm is based on traditional shortest path algorithms. The idea is

that the two involving nodes u and v first decide a primary direction. If both sides, for example,

agree that the primary direction is from u to v, then node u will find an unique shortest path

P (u, v), meanwhile node v will first find the same unique path, also from u to v, and then reverse

it to obtain the converging path P ′(v, u).

The unique path is determined in two phases. In phase one, an arbitrary traditional shortest

path algorithm is used to compute the distance from node u to every other node w ∈ V , thus any
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possible shortest path can be constructed from node v via the selection of a series of preceding

nodes. In phase two, a shortest path is determined according to a predefined total order ‘<’. The

two-phase division makes the algorithm more flexible, and the overhead of the second phase is

negligible compared with the total execution time.

Unique-Path (u, v)

1: P ← [v], w ← v

2: while w 6= u do

3: w′ ← min{x|(x,w) ∈ E ∧D(u, x) + dx,w = D(u, w)}
4: P ← [w′]‖P, w ← w′

5: end while

6: return P

Acp (u, v) {Asymmetric Converging Path}
1: if u < v then

2: compute D(u,w), ∀w ∈ V {using any shortest path algorithm}
3: return Unique-Path (u, v)

4: else

5: compute D(v, w),∀w ∈ V

6: return reverse (Unique-Path(v, u))

7: end if

The critical part of the asymmetric algorithm is Unique-Path, which guarantees that the same

shortest path will be found independently by both node u and node v.

Lemma 1: If D(u,w), ∀w ∈ Vs(u, v) are known, Unique-Path(u, v) will terminate and return an

unique shortest path.

Assuming Acpu denotes the execution of procedure Acp on node u and Acpv denotes the

execution of the same procedure on node v, we have the following theorem:

Theorem 1: The asymmetric converging path (Acp) algorithm will terminate and {Acpu(u, v),

Acpv(v, u)} are converging paths.

Proof: First for termination, the procedure of computing one-to-all distance values is known

to terminate; from Lemma 1, Unique-Path will also terminate. So will Acp. Then for cor-

rectness, without loss of generality, we can assume that u < v, which means Acpu(u, v) =

Unique-Pathu(u, v) and Acpv(v, u) = reverse(Unique-Pathv(u, v)). From Lemma 1, Unique-

Pathu(u, v) = Unique-Pathv(u, v), and hence, Acpu(u, v) and Acpv(v, u) are converging paths.
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Figure 3: Unique-Path(u, v) selects a shortest path (u, c, d, v). Node v selects node d because

d < e and f 6∈ Vs(u, v). Node d in turn selects c, which is the only qualified node.

2

Although any shortest path algorithm can be used, our current implementation is based on the

Dijkstra’s algorithm [3, 4] for the sake of efficiency. The Dijkstra’s algorithm can find the shortest

path from a source node to every other node. Initially, the distance value of source is set to 0 and

the distance value of every other nodes is unknown. Among them, only the distance value of the

source is determined. At each round, the adjacent nodes to the last determined node update their

distance values, and the node with the lowest undetermined distance value is selected as the next

determined node. Finally, all the distance values are determined in n−1 rounds. In our simulation,

the above process stops after the value of D(u, v) is determined. Because the values of D(u,w),

∀w ∈ Vs(u, v), which are smaller than D(u, v), are determined before D(u, v), this partial distance

information is sufficient for determining an unique shortest path.

2.3 A Recursive Algorithm

The drawback of the asymmetric algorithm is that it does not make full use of the distance infor-

mation available in a real protocol, where each node often computes and keeps its distance to every

other node in order to select the shortest route. In Acp, if u is the ‘smaller’ node, it can use this

information and skip line 2. However, when u is ‘larger’, it has to compute the distances from node

v to every other node (line 5).

The following recursive symmetric algorithm assures that both nodes will use the distance

information available and avoid unnecessary computation. The problem is solved in a divide-and-

conquer manner:

1. Each node traverses Vs(u, v) to find the unique node w = min{Vs(u, v)}.

2. Each node recursively finds two sub-paths P1(u,w) and P2(w, v), and merges them to obtain

the converging path.
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Unique-Node uses a queue Q to traverse Vs(u, v), directed by the distance values from other

nodes to u. For each visited node, its distance value to v can be easily computed and reserved

for further traversing. After the traversal, the ‘minimum’ node is determined and recursively

divides the problem of finding one path into finding two sub-paths. To distinguish a visited node

from an unvisited one, a marking process (M) is used to mark every node in Vs(u, v). Initially,

M(u) = M(v) = T and M(w) = F for any other node w.

Unique-Node (u, v) {find min(Vs(u, v)) and compute distance to v}
1: Q ← {v}, min ←∞
2: while Q 6= ∅ do

3: extract w from Q

4: D(v, w) ← D(u, v)−D(u,w)

5: for all w′ ∈ {x|(w, x) ∈ E ∧D(u, x) + dx,w = D(u,w) ∧M(x) = F} do

6: M(w′) ← T , add w′ to Q

7: if w′ < min then

8: min ← w′

9: end if

10: end for

11: end while

12: return min

Rscp (u, v) {Recursive Symmetric Converging Path}
1: if u = v then

2: return [u]

3: else if (u, v) ∈ E ∧ du,v = D(u, v) then

4: return [u, v]

5: else

6: w ← Unique-Node(u, v)

7: return Rscp(u,w) ‖ reverse(Rscp(v, w)) †
8: end if

† a redundant w should be removed.

Lemma 2: If D(u,w) and D(v, w), ∀w ∈ Vs(u, v), are known to node u and node v, respectively,

then (1) execution of Unique-Node(u, v) on u will terminate and D(v, w), ∀w ∈ Vs(u, v), are know

to u after termination, (2) so will the execution of Unique-Node(v, u) on v, and (3) Unique-

Nodeu(u, v) = Unique-Nodev(v, u).

Theorem 2: The recursive symmetric converging path (Rscp) algorithm will terminate and
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Figure 4: Unique-Node(u, v) selects a intermediate node c. All the nodes in Vs(u, v) are traversed,

and c has the minimum node id.

{Rscpu(u, v), Rscpv(v, u)} are converging paths.

Proof: By using induction on the maximum hop number (Hmax(u, v)) of all shortest paths between

u and v. When Hmax(u, v) ≤ 1, Rscp returns immediately with the correct result (lines 1–4).

Assume that the theorem holds for Hmax(u, v) = k, we prove that it also holds for Hmax(u, v) =

k + 1.

From Lemma 2, Unique-Node will terminate and return the same node for Rscpu and Rscpv

(line 6). Notice that both Hmax(u,w) and Hmax(v, w) are smaller than k, from the assumption that

the computation of sub-paths will terminate and return two pairs of converging paths (P1(u,w),

P ′
2(w, u)) and (P2(w, v), P ′

1(v, w)). Therefore, Rscpu and Rscpv will both terminate and return

two converging paths P1(u,w)‖P2(w, v) and P ′
1(v, w)‖P ′

2(w, u) (line 7). 2

Two ‘less than’ relations can be employed for this algorithm:

1. Comparison of node id: w′ < w iff id(w′) < id(w).

2. Comparison of node position: w′ < w iff |D(u,w′)− D(u,v)
2 | < |D(u,w)− D(u,v)

2 |.

The second criterion may divide the path more evenly, thus reducing the recursion depth.

2.4 A Faster Algorithm

Although the recursive symmetric algorithm performs better than the asymmetric algorithm by

making use of the distance information, its performance can be further improved. Notice that the

most time consuming part of the recursive algorithm is the procedure of traversing Vs(u, v) to find

the minimum node, and this procedure is reiterated until every sub-path is split into one-hop pieces.

Unlike Rscp, the following fast symmetric algorithm invokes Unique-Node only once to determine

a middle point w and collects the necessary distance information. Then it uses the asymmetric

algorithm to construct two sub-paths P1(u,w) and P2(w, v) and merges them to a converging path.
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Fscp(u, v) {Fast Symmetric Converging Path}
1: if u = v then

2: return [u]

3: else if (u, v) ∈ E ∧ du,v = D(u, v) then

4: return [u, v]

5: else

6: w := Unique-Node (u, v)

7: return Unique-Path(u,w) ‖ reverse(Unique-Path(v, w)) ‡
8: end if

‡ a redundant w should be removed.

Theorem 3: The fast symmetric converging path (Fscp) algorithm will terminate, and

{Fscpu(u, v), Fscpv(v, u)} are converging paths.

Proof: The theory holds when u = v or a one-hop shortest path exists between u and v (lines

1–4). Otherwise, from Lemma 2, we know that Unique-Node will terminate and return the same

w for both Fscpu and Fscpv, and after it returns, both D(u, x) and D(v, x), ∀x ∈ Vs(u, v), are

computed (line 6). From Lemma 1, Unique-Path will terminate and return the same path P1(u,w)

and P2(v, w). Therefor, both Fscpu and Fscpv will terminate and return two converging paths

P1(u, w)‖reverse(P2(v, w)) and P2(v, w)‖reverse(P1(u,w)) (line 7). 2

2.5 Asymptotic Complexity

In the following discussion, we shall use n = |V | to represent the total number of nodes, n′ =

|Vs(u, v)| the number of nodes between end nodes u and v, h = Hmax(u, v) the maximum hop

number of all shortest paths between u and v, and k the maximum node degree, that is, the

maximum number of links adjacent to a single node.

The asymptotic complexity of the Dijkstra’s shortest path algorithm is Θ(kn log n). Notice

that although only the distance values of the nodes in Vs(u, v) are needed, they are determined

only after all the nodes with smaller distance values are determined. The asymptotic complexity

of Unique-Path is Θ(kh) and that of Unique-Node is Θ(kn′). The recursion depth of Rscp

is Θ(log h) and the overall complexity is Θ(kn′ log h) on average. However, in the worst case, the

recursion depth is h− 1 and the overall complexity is Θ(kn′h). Now we consider the complexities

of these algorithms in two cases:

1. When D(u,w), ∀w ∈ Vs(u, v), is available.
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• The complexity of Acp is Θ(kh) for the forward side and Θ(kn log n) for the other side,

the overall complexity is Θ(kn log n).

• The complexity of Rscp is Θ(kn′ log h) on average and Θ(kn′h) in the worst case.

• The complexity of Fscp is Θ(kn′).

Because n′ ¿ n holds in most cases, the performance of both symmetric algorithms shall be

much better than the asymmetric algorithm.

2. When no distance information is available. The complexity of Acp is Θ(kn log n), the com-

plexity of Rscp is Θ(kn log n + kn′h), and the complexity of Fscp is Θ(kn log n + kn′) =

Θ(kn log n). Because n′ ¿ n holds in most cases, the difference shall be very small.

3 Performance Simulation

The three converging path algorithms are simulated to compare their performance. Among them,

the recursive symmetric algorithm is implemented with two ‘less than’ functions (comparing id

and position). Two different situations are considered in the simulation: (1) when the distance

information is available, and (2) when the distance information is not available.

3.1 Network Generator

Networks used in the simulation are generated by a modified version of the random network gen-

erator GRIDGEN [2]. This software can be used to construct a connected graph with n nodes and

m links. At first, n nodes are placed into an x× y grid (xy = n). The grid links form a “skeleton”

guaranteeing connectivity. Then additional links are added between randomly selected pairs of

nodes, until the total number of links reaches m.

All skeleton links are associated with the same cost Dmax, which is always larger than those

random distances associated with the additional links. If m À 2n, a shortest path will not contain

many skeleton links. However, when m is very close to 2n, those skeleton links will produce many

alternative shortest paths.

Two groups of networks are generated: (1) networks with different number of nodes (n) and

fixed average node degree (20 or link/node ratio m
n = 10), and (2) networks with fix number of

nodes (n = 900) and different number of links (m). For each network, 100 pairs of nodes are

randomly selected for computing the converging paths.
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Figure 5: Execution time when distance information is available and m = 10n.
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Figure 6: Execution time when there is no distance information, and m = 10n.

3.2 Data Interpretation

For the networks with average node degree 20, all symmetric algorithms are much faster than Acp

when distance information is available (Figure 5). Among the symmetric algorithms, Fscp is much

faster than Rscp. However, the difference between two recursive algorithms is not so obvious.

This is because the maximum hop number of the converging paths is relatively small (h = 10 on

average). When distance information is not available (Figure 6), the asymmetric algorithm is the

fastest one, but the difference is relatively small (10–20%).

For networks with different node degrees (Figure 7), data shows that the asymmetric algorithm

slows down quickly as the node degree increases. However, the symmetric algorithms are relatively

insensitive to the node degree . This is because when the node degree k increases, the hop number
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of the converging path h also decreases, thus the overall execution time, which is Θ(kn′h), still

maintains on the same level. Therefor, relatively the symmetric algorithms perform even better

when the average node degree is larger.

4 Conclusion

We have proposed three algorithms to solve the converging path problem. All of them have

Θ(kn log n) complexity if the converging paths are constructed from scratch. However, when the

one-to-all distance information is available, as it is in many link-state routing protocols, the two

symmetric algorithms performs much better. This conclusion is also supported by the simulation

results. Future research works include: (1) using more efficient shortest path algorithm in the

asymmetric algorithm, (2) more simulations, especially with larger hop number of converging path,

and (3) the effect of outdated distance information caused by network topology changes.
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