

Cost-effective Signal Map Crowdsourcing with Auto-Encoder based Active Matrix Completion

```
$C@IBTUIB-DP, :<I>C<J;C<J, ,PI;CP, 4C@IB;C<IB<I? +D08P

/<IETB6ID@MNOTJA"@MUI<PODN</IETB6ID@MNOT

/<IETB6ID@MNOT

5@HK@6ID@MNOT
```

Reporter: Chengyong Liu

Zhou X , Zhang Z , Wang G , et al. Practical conflict graphs in the wild[J]. IEEE/ACM Transactions on Networking, 2015, 23(3):824-835.

Background 3/23

Traditional signal map construction Full site survey

Professionals
Professional equipments

Interpolation reconstruction based on a small number of signals

Related Works

KNN

Gaussian Processes

Compressive Sensing

Matrix completion

Low accuracy Complex model

Sparse property

Prior knowledge

• • •

Background 4/23

Crowdsourcing method to collect signals

equipped with a set of cheap powerful embedded sensors

Mobile phones are quite pervecin

Design for Mobile Phone Sensing[C]// International Conference on Mobile Computing & Networking. ACM, 2012.

Unevenly distributed participants

Sensorly: https://www.sensorly.com/ OpenSignal: https://www.opensignal.com/

Background

System Model 7/23

Auto-encoder can learn nonlinear features in matrices

Fan J , Chow T . Deep learning based matrix completion[J]. Neurocomputing, 2017:S0925231217309621.

Auto-encoder can learn nonlinear features in matrices

Fan J , Chow T . Deep learning based matrix completion[J]. Neurocomputing, 2017:S0925231217309621.

Auto-encoder can learn nonlinear features in matrices

Fan J , Chow T . Deep learning based matrix completion[J]. Neurocomputing, 2017:S0925231217309621.

Auto-encoder can learn nonlinear features in matrices

Fan J , Chow T . Deep learning based matrix completion[J]. Neurocomputing, 2017:S0925231217309621.

Basic

The original image

The 30% sampling rate

For reconstruction algorithms, the signals at different locations have different effects on the reconstruction accuracy

The reconstructed image

Relative error 41%

The 40%(30%+10%) sampling rate

The reconstructed image

The 40%(30%+10%) sampling rate

Advanced 13/23

Active Crowdsouring Scheme

$$I^{i,j} = abs(x_{t-1}^{i,j} - x_t^{i,j})$$

$$I^{i,j} = abs(x_{t-1}^{i,j} - x_t^{i,j})$$

$$I_{initial} = abs(\widetilde{M}_0 - mean(M_{his})) -$$

The degree of changes in signals

Advanced 14/23

The Signal Dynamics

Advanced 15/23

Experiment Setup

■ The simulated WiFi indoor positioning dataset

- -- The ray tracing technology generates 5000 signal maps with random changes of channel as historical signal maps
- -- 50% missing rate
- -- signal maps from the same channel random variation as test data

Baseline algorithms

- -- BCS Model signal map reconstruction as a compressive sensing model
- -- LmaFit A popular alternating least-squares method for matrix completion

Experiment Results

AER can achieve lower errors with higher probability

	5%		6%		7%		8%
AER	0.053	0±0.0011	0.052	23±0.0000	0.0	517±0.0011	0.0510 ± 0.0013
BCS	0.071	6 ± 0.0000	0.07	16 ± 0.0000	0.0	715 ± 0.0000	0.0716 ± 0.0000
MC	0.090	8 ± 0.0024	0.085	59 ± 0.0017	0.0	831 ± 0.0015	0.0810 ± 0.0013
9%		10%		15%		20%	25%
0.0507∃	⊢0.0015	0.0502±0.	0015	0.0489±0.0	020	0.0486 ± 0.00	022 0.0484±0.0020
0.0716	<u>⊦0.0000</u>	$0.0716\pm0.$	0000	0.0715 ± 0.0	000	0.0715 ± 0.00	000 0.0715±0.0000
0.0797	⊢ 0.0000	$0.0786\pm0.$	0000	0.0752 ± 0.0	000	0.0714 ± 0.01	24 0.0611±0.0000
						RMS	$E = \frac{ \hat{\Omega} \bullet (\widetilde{M} - M) }{ \hat{\Omega} \bullet M _F}$

The relative error of AER is at least 2% lower than the other two algorithms

Experiment Results

Under the same number of acquisitions, the active method is **far superior** to other methods

The proposed method can achieve more than 90% coverage

Experiments 19/23

Conclusions

A comprehensive solution for signal map construction

- The offline training phase
- The online reconstruct phase

An active crowdsourcing scheme for better performance

A more realistic signal map model with the description of the signal dynamics

Future Works

- Impact of different types of collection equipment on signal collection
- How to accurately determine the signal collection location of historical signals
- How to design an active mechanism more reasonably

Thanks for coming

Have a nice day!

riave a riice day:

Basic Model