Cost-effective Signal Map Crowdsourcing with
Auto-Encoder based Active Matrix Completion
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Sensorly : https://www.sensorly.com/
OpenSignal : https://www.opensignal.com/
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Signals fluctuate significantly during different times of day, and this fluctuation is non-

linear
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Active Crowdsouring Scheme

Difference in reconstructed signal maps
in different batches
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The Signal Dynamics
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txperiment
Setup
B The simulated WiFi indoor positioning dataset

-- The ray tracing technology generates 5000 signal maps with
random changes of channel as historical signal maps

-- 50% missing rate

-- signal maps from the same channel random variation as test
data

B Baseline algorithms

-- BCS Model signal map reconstruction as a compressive sensing
model

-- LmaFit A popular alternating least-squares method for matrix
completion
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Resdts
AER can achieve with
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The relative error of AER is lower than the

other two algorithms
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Results

The proposed method can achieve

coverage
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A comprehensive solution for signal map construction

® The offline training phase
® The online reconstruct phase

An active crowdsourcing scheme for better performance

A more realistic signal map model with the description of
the signal dynamics

Conclusions



Futuwre
Works

® |mpact of different types of collection equipment
on signal collection

® How to accurately determine the signal collection
location of historical signals

® How to design an active mechanism more
reasonably
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