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Summary

We consider inverse optimal control for strict-feedforward systems with input
delays. A basic predictor control is designed for compensation for this class
of nonlinear systems. Furthermore, the proposed predictor control is inverse
optimal with respect to a meaningful differential game problem. For a class of
linearizable strict-feedforward system, an explicit formula for compensation for
input delay, which is also inverse optimal with respect to a meaningful differen-
tial game problem, is also acquired. A cart with an inverted pendulum system is
given to illustrate the validity of the proposed method.
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1 INTRODUCTION

The major progress on feedforward systems was in the work of Mazenc and Praly,1 which introduced a Lyapunov approach
for stabilization of feedforward systems. Further developments on feedforward systems have been acquired by other
works.2-5 For strict-feedforward systems with actuator delay, not only global stability was obtained but also an explicit
formula for the predictor state was presented in the work of Krstic.6

Predictor-based controls for linear systems with input delays were developed in other works.7-11 For nonlinear systems
with time-varying input delays,12-15 as well as wave actuator dynamics with moving boundaries,16-18 predictor controls
have also been achieved. The implementation and approximation issues of predictor-feedback law can be found in the
work of Karafyllis and Krstic.19
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The inverse optimality concept is of significant practical importance because it allows the design of optimal control
laws without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation that may not be possible to solve.20

In this paper, we extend the results in the work of Krstic6 to inverse the optimal control design for strict-feedforward
systems. A basic predictor control is designed for compensation for input delay of this class of nonlinear systems first.
Furthermore, it is shown that it is inverse optimal with respect to a meaningful differential game problem. An explicit
formula for compensation for input delay of a class of linearizable strict-feedforward system, which is also inverse optimal
with respect to a meaningful differential game problem, is also acquired.

Notation . We use the common definitions of class , ∞,  functions from the aforementioned work.6 For a vector
X ∈ Rn,|X| denotes its usual Euclidean norm. For a scalar function u(·, t) ∈ L2 (0, 1), ||u(t)|| denotes the norm given

by
(∫ 1

0 u2(x, t)dx
)1∕2

.

2 GENERAL STRICT-FEEDFORWARD NONLINEAR SYSTEMS

Consider a strict-feedforward nonlinear system with actuator delay

Ż1(t) = Z2(t) + 𝜑1 (Z2(t),Z3(t), … ,Zn(t)) + 𝜙1 (Z2(t),Z3(t), … ,Zn(t))U(t − D) (1)

⋮ (2)

Żn−2(t) = Zn−1(t) + 𝜑n−2 (Zn−1(t),Zn(t)) + 𝜙n−2(Zn−1(t),Zn(t))U(t − D) (3)

Żn−1(t) = Zn(t) + 𝜙n−1(Zn(t))U(t − D) (4)

Żn(t) = U(t − D), (5)
for short,

Żi(t) = Zi+1(t) + 𝜑i
(

Zi+1(t)
)
+ 𝜙i

(
Zi+1(t)

)
U(t − D), (6)

where i = 1, 2, … ,n,Z
𝑗
= [Zj,Zj+1, … ,Zn]T, Zn+1(t) = U(t−D), 𝜙n = 1, 𝜙i(0) = 0, (𝜕𝜑i(0)∕𝜕Zj) = 0,𝜑i(Zi+1, 0, … , 0) = 0,

for i = 1, 2, … ,n − 1, j = i + 1, … ,n, and Z1 ∈ Rn is the state vector, U is a scalar control input, and D ∈ R+ is an
actuator delay.

2.1 Predictor control for general strict-feedforward nonlinear systems
The nominal control design (D = 0) for system (6) is given by Krstic6 as

U(t) = 𝛼1 (Z(t)) , (7)

where
𝜗n+1 = 0, 𝛼n+1 = 0, (8)

and
hi
(

Zi
)
= Zi − 𝜗i+1

(
Zi+1

)
, (9)

𝜛i
(

Zi+1
)
= 𝜙i −

n−1∑
𝑗=i+1

𝜕𝜗i+1

𝜕Z𝑗

𝜙𝑗 −
𝜕𝜗i+1

𝜕Zn
, (10)

𝛼i
(

Zi
)
= 𝛼i+1 −𝜛ihi, (11)

𝜗i
(

Zi
)
= −∫

∞

0

[
𝜁
[i]
i

(
𝜏,Zi

)
+ 𝜑i−1

(
𝜁 [i]

i

(
𝜏,Zi

))
+ 𝜙i−1

(
𝜁 [i]

i

(
𝜏,Zi

))
𝛼i

(
𝜁 [i]

i

(
𝜏,Zi

))]
d𝜏, (12)

for i = n,n − 1, … , 2, 1, and the notation in the integrand of (12) refers to the solutions of the subsystem(s)
d

d𝜏
𝜁
[i]
𝑗

= 𝜁
[i]
𝑗+1 + 𝜑𝑗

(
𝜁 [i]
𝑗+1

)
+ 𝜙𝑗

(
𝜁 [i]
𝑗+1

)
𝛼i

(
𝜁 [i]

i

)
, (13)

for j = i, i+ 1, … ,n at time 𝜏, starting from the initial condition Xi. Note that the last of the 𝜗's that need to be computed
is 𝜗2 (𝜗1 is not defined).
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Using a transport partial differential equation for representing the actuator state, we represent system (6) as

Żi(t) = Zi+1(t) + 𝜑i
(

Zi+1(t)
)
+ 𝜑i

(
Zi+1(t)

)
u(0, t), (14)

ut(x, t) = ux(x, t), (15)

u(D, t) = U(t), (16)
where i = 1, 2, · · · ,n, and u(x, t) = U(t + x − D).

The backstepping transformation is given as

w(x, t) = u(x, t) − 𝛼1(𝑝(x, t)), (17)

where p(x, t) = [p1(x, t), p2(x, t), · · · , pn(x, t)]T, x ∈ [0,D] is defined by
𝜕𝑝1(x, t)

𝜕x
= 𝑝2(x, t) + 𝜑1 (𝑝2(x, t), 𝑝3(x, t), · · · , 𝑝n(x, t)) + 𝜙1 (𝑝2(x, t), 𝑝3(x, t), · · · , 𝑝n(x, t))u(x, t) (18)

⋮ (19)
𝜕𝑝n−2(x, t)

𝜕x
= 𝑝n−1(x, t) + 𝜑n−2 (𝑝n−1(x, t), 𝑝n(x, t)) + 𝜙n−2(𝑝n−1(x, t), 𝑝n(x, t))u(x, t) (20)

𝜕𝑝n−1(x, t)
𝜕x

= 𝑝n(x, t) + 𝜙n−1 (𝑝n(x, t))u(x, t) (21)
𝜕𝑝n(x, t)

𝜕x
= u(x, t) (22)

with an initial condition
𝑝i(0, t) = Zi(t), i = 1, 2, · · · ,n. (23)

From (18)-(23), we have
𝑝n(x, t) = Zn(t) + ∫ x

0 u(𝑦, t)d𝑦, (24)

𝑝n−1(x, t) = Zn−1(t) + ∫ x
0 (𝑝n(𝑦, t) + 𝜙n−1 (𝑝n(𝑦, t))u(𝑦, t)) d𝑦, (25)

for i = n − 2,n − 3, · · · , 2, 1, and the predictor solution is obtained recursively as

𝑝i(x, t) = Zi(t) + ∫
x

0
(𝑝i+1(𝑦, t) + 𝜑i (𝑝i+1(𝑦, t), · · · , 𝑝n(𝑦, t)) + 𝜙i (𝑝i+1(𝑦, t), · · · , 𝑝n(𝑦, t))u(𝑦, t)) d𝑦. (26)

A basic predictor feedback control law for system (14)-(16) is given as

U(t) = c
c + 1

𝛼1 (P(t)) = U∗(t), (27)

where c > 0 is sufficiently large, and P(t) = [p1(D, t), p2(D, t), · · · , pn(D, t)]T is acquired by (24)-(26) for x = D.
Under the backstepping transformation (17), system (14)-(16) is transferred to a target system as

Żi(t) = Zi+1(t) + 𝜑i
(

Zi+1(t)
)
+ 𝜙i

(
Zi+1(t)

)
(w(0, t) + 𝛼1 (Z(t))) (28)

wt(x, t) = wx(x, t) (29)

w(D, t) = U(t) − 𝛼1 (𝑝(D, t)) . (30)
Noting that p(D, t) = [p1(D, t), p2(D, t), · · · , pn(D, t)]T with the control law (27), (30) can be rewritten as

w(D, t) = − 1
c + 1

𝛼1(P(t)). (31)

The inverse transformation of (17) is given for all x ∈ [0,D] by

u(x, t) = w(x, t) + 𝛼1 (q(x, t)) , (32)

where q(x, t) = [q1(x, t), q2(x, t), … , qn(x, t)]T, x ∈ [0,D] is defined by
𝜕q1(x, t)

𝜕x
= q2(x, t) + 𝜑1 (q2(x, t), q3(x, t), · · · , qn(x, t)) + 𝜙1 (q2(x, t), q3(x, t), · · · , qn(x, t)) (w(x, t) + 𝛼1 (q(x, t))) (33)

⋮ (34)
𝜕qn−2(x, t)

𝜕x
= qn−1(x, t) + 𝜑n−2 (qn−1(x, t), qn(x, t)) + 𝜙n−2 (qn−1(x, t), qn(x, t)) (w(x, t) + 𝛼1 (q(x, t))) (35)
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𝜕qn−1(x, t)
𝜕x

= qn(x, t) + 𝜙n−1 (qn(x, t)) (w(x, t) + 𝛼1 (q(x, t))) (36)

𝜕qn(x, t)
𝜕x

= w(x, t) + 𝛼1 (q(x, t)) (37)
with an initial condition

qi(0, t) = Zi(t), i = 1, 2, · · · ,n. (38)
Under the inverse transformation (32), the target system (28), (29), (31) is transferred to system (14)-(16).

2.2 Stability analysis of the closed-loop system
Denote the diffeomorphic transformation defined by (9)-(13) as

𝜉(t) = H (Z(t)) . (39)

Lemma 1. There exists a class  function 𝜎∗ such that||𝑝(t)||L∞[0,D] ≤ 𝜎∗(|Z(t)| + ||u(t)||) (40)

for all t ≥ 0.

Proof. Using similar arguments to the proof in the work of Krstic,6 it can be deduced.

Lemma 2. There exists a class ∞ function 𝜎 such that|Z(t)| + ||u(t)|| ≤ 𝜎(|Z(t)| + ||w(t)||) (41)

for all t ≥ 0.

Proof. Using similar arguments to the proof in the work of Krstic,6 it can be deduced.

Lemma 3. There exists a class  function 𝜎 such that|Z(t)| + ||w(t)|| ≤ 𝜎(|Z(t)| + ||u(t)||) (42)

for all t ≥ 0.

Proof. Using similar arguments to the proof in the work of Krstic,6 it can be deduced.

Note that 𝛼1 is continuous with 𝛼1(0) = 0, and there exists a class ∞ function 𝜚1 such that

𝛼2
1 (𝑝(D, t)) ≤ 𝜚1 (|𝑝(D, t)|) . (43)

Using Lemmas 1 and 2, we have
𝛼2

1 (𝑝(D, t)) ≤ 𝜚1(|𝑝(D, t)|)
≤ 𝜚1 (𝜎∗(|Z(t)| + ||u(t)||))
≤ 𝜚1

(
𝜎∗ (𝜎 (|Z(t)| + ||w(t)||))) (44)

for all t ≥ 0.
Denote 𝜑 = 𝜚1 ◦ 𝜎∗ ◦ 𝜎, it is easy to know that

𝛼2
1 (𝑝(D, t)) ≤ 𝜑(2|Z(t)|) + 𝜑(2||w(t)||) (45)

for all t ≥ 0.
Now, we turn our attention to the target system and prove the following result on stability in the sense of its norm.

Lemma 4. Consider the target system (28), (29), (31). If there exists an M > 0 such that

𝜑 (2|Z(t)|) ≤ M𝛼2
1 (Z(t)) , (46)

𝜑 (2||w(t)||) ≤ M||w(t)||2, (47)
for all t ≥ 0, then there exists c∗1 > 0, for all c > c∗1, the target system (28), (29), (31) is asymptotically stable, that is, there
exists a  function 𝛽1 such that |Z(t)| + ||w(t)|| ≤ 𝛽1(|Z(0)| + ||w(0)||, t) (48)
for all t ≥ 0.



2980 CAI ET AL.

Proof. Consider (28) along with the diffeomorphic transformation 𝜉(t) = H(Z(t)) defined by (39). With the observation
that Zi+1 + 𝜑i + 𝜙i𝛼i+1 =

∑n
𝑗=i+1

𝜕𝜗i+1

𝜕Z𝑗

(Z𝑗+1 + 𝜑𝑗 + 𝜙𝑗𝛼𝑗+1), it is easy to verify that 𝜉̇i = 𝜛i(𝛼1 + w(0, t) +
∑n

𝑗=i+1 𝜛i𝜉i),

noting from (11) that 𝛼1 = −
∑n

𝑗=1 𝜛i𝜉i, we get 𝜉̇i = −𝜛2
i 𝜉i −

∑i−1
𝑗=1 𝜛i𝜛𝑗𝜉𝑗 + 𝜛iw(0, t), and it implies that 𝜉̇1 =

−𝜛2
1𝜉1 +𝜛1w(0, t). Taking a Lyapunov function S(t) = 1

2

∑n
i=1 𝜉

2
i (t) =

1
2
|H(Z)|2, we have that

Ṡ(t) = − 1
2

n∑
i=1

𝜛2
i 𝜉

2
i − 1

2

( n∑
i=1

𝜉i𝜛i

)2

+ w(0, t)
n∑

i=1
𝜛i𝜉i

≤ − 1
4

n∑
i=1

𝜛2
i 𝜉

2
i − 1

2

( n∑
i=1

𝜉i𝜛i

)2

+ nw2(0, t).

(49)

Consider system (28), (29), (31), an overall Lyapunov function is given as follows:

V(t) = S(t) + n∫
D

0
e xw2(x, t)dx. (50)

With (49), we have that

V̇(t) = 𝑆̇(t) + 2n∫
D

0
e xw(x, t)wt(x, t)dx (51)

= 𝑆̇(t) + n∫
D

0
e xdw2(x, t)

= 𝑆̇(t) + ne Dw2(D, t) − nw2(0, t) − n∫
D

0
e xw2(x, t)dx

≤ −1
4

n∑
i=1

𝜛2
i 𝜉

2
i − 1

2

( n∑
i=1

𝜉i𝜛i

)2

+ nw2(0, t) + ne Dw2(D, t) − nw2(0, t) − n∫
D

0
e xw2(x, t)dx

= −1
4

n∑
i=1

𝜛2
i 𝜉

2
i − 1

2

( n∑
i=1

𝜉i𝜛i

)2

+ ne Dw2(D, t) − n∫
D

0
e xw2(x, t)dx.

With (31), we have

w2(D, t) = 1
(c + 1)2 𝛼

2
1 (P(t)) . (52)

Noting that 𝛼1(Z(t)) = −
n∑

i=1
𝜛i𝜉i, we get

V̇(t) ≤ − 1
4n

𝛼2
1 (Z(t)) −

1
2
𝛼2

1 (Z(t)) +
ne D𝛼2

1 (P(t))
(c + 1)2 − n||w(t)||2. (53)

With the help of (46), (47), it holds

V̇(t) ≤ −
( 1

4n
+ 1

2

)
𝛼2

1 (Z(t)) +
ne D (𝜑 (2|Z(t)|) + 𝜑 (2||w(t)||))

(c + 1)2 − n||w(t)||2
≤ −

(( 1
4n

+ 1
2

)
− ne DM

(c + 1)2

)
𝛼2

1 (Z(t)) −
(

n − ne DM
(c + 1)2

) ||w(t)||2. (54)

Choosing

c∗1 = 2n
√

2Me D∕2 (55)

for all c > c∗1, one has

V̇(t) ≤ −
( 1

8n
+ 1

4

)
𝛼2

1 (Z(t)) −
n
2
||w(t)||2, (56)

so the target system (28), (29), (31) is asymptotically stable. Since the function 𝛼2
1(Z(t)) is positive definite in Z(t),

there exists a class  function 𝛾1 such that V̇(t) ≤ −𝛾1(V(t)). Then, there exists a class  function 𝛽2 such that
V(t) ≤ 𝛽2(V(0), t) for all t ≥ 0. With additional routine class  calculations, one finds 𝛽1 that completes the proof of
the lemma.
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Theorem 1. Consider the closed-loop system consisting of (14)-(16) together with the control law (27). If there exists a
M > 0 such that (46), (47) hold, then there exists c∗1 > 0 given by (55), for all c > c∗1, the closed-loop system of (14)-(16),
(27) is asymptotically stable, that is, there exists a class  function 𝛽3 such that|Z(t)| + ||u(t)|| ≤ 𝛽3(|Z(0)| + ||u(0)||, t) (57)

for all t ≥ 0.

Proof. Using Lemmas 2 , 3, and 4, we have|Z(t)| + ||u(t)||
≤ 𝜎 (|Z(t)| + ||w(t)||)
≤ 𝜎 (𝛽1 (|Z(0)| + ||w(0)||, t))
≤ 𝜎

(
𝛽1
(
𝜎 (|Z(0)| + ||u(0)||) , t

)) (58)

for all t ≥ 0. Denote that 𝛽3(s, t) = 𝜎(𝛽1(𝜎(s), t)), (57) is drawn. Hence, the closed-loop system of (14)-(16), (27) is
asymptotically stable.

Theorem 2. Consider the closed-loop system consisting of (1)-(5) together with the control law (27). If there exists an
M > 0 such that (46), (47) hold, then there exists c∗1 > 0 given by (55), for all c > c∗1, the closed-loop system of (1)-(5), (27)
is asymptotically stable, that is, there exists a class  function 𝛽4 such that

|Z(t)| +(∫ t

t−D
U2(𝜃)d𝜃

)1∕2

≤ 𝛽4

(||Z(0)|| +(∫ 0

−D
U2(𝜃)d𝜃

)1∕2

, t

)
(59)

for all t ≥ 0.

Proof. Using Theorem 1, we get

|Z(t)| +(∫ t

t−D
U2(𝜃)d𝜃

)1∕2

= |Z(t)| + ||u(t)||
≤ 𝛽3 (|Z(0)| + ||u(0)||, t)

= 𝛽3

(|Z(0)| +(∫ 0

−D
U2(𝜃)d𝜃

)1∕2

, t

) (60)

for all t ≥ 0. Choosing 𝛽4 = 𝛽3, (59) is obtained. Hence, the closed-loop system of (1)-(5), (27) is asymptotically
stable.

2.3 Inverse optimal control for general strict-feedforward nonlinear systems
Theorem 3. Consider the closed-loop system consisting of (14)-(16) together with the control law (27). If there exists an
M > 0 such that (46), (47) hold, then there exists c∗∗1 > c∗1 > 0, for all c > c∗∗1 , the control law (27) minimizes the cost
functional

J = lim
t→∞

(
𝛾V(t) + ∫

t

0

(
L(𝜏) + 𝛾neD

c
U2(𝜏)

)
d𝜏
)
, (61)

where V(t) is given by (50), and L is a functional of (Z(t),U(𝜃)) for all t − D ≤ 𝜃 ≤ t such that

L(t) ≥ 𝛾

(
𝛼2

1(Z(t))
8n

+ n
2
||w(t)||2) (62)

for an arbitrary 𝛾 > 0.

Proof. Let

L(t) = −𝛾neD

c + 1
𝛼2

1 (P(t)) + 𝛾

⎛⎜⎜⎝1
2

n∑
i=1

𝜛2
i 𝜉

2
i + 1

2

( n∑
i=1

𝜉i𝜛i

)2

− w(0, t)
n∑

i=1
𝜛i𝜉i + nw2(0, t) + n∫

D

0
e xw2(x, t)dx

⎞⎟⎟⎠ . (63)
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It can be deduced that

L(t) ≥ −𝛾neD

c + 1
𝛼2

1(P(t)) +
𝛾

4

n∑
i=1

𝜛2
i 𝜉

2
i + 𝛾

2

( n∑
i=1

𝜉i𝜛i

)2

+ n𝛾 ∫
D

0
e xw2(x, t)dx. (64)

With the help of (46), (47), there exists
c∗∗1 = 8n2Me D (65)

for all c > c∗∗1 , one has

L(t) ≥ 𝛾

8n
𝛼2

1(Z(t)) +
n𝛾
2
||w(t)||2 (66)

for any t ≥ 0.
With the help of (49), (51), after some calculations, and noting U∗(t) = c

c+1
𝛼1(P(t)), we have

L(t) = −𝛾neD

c + 1
𝛼2

1(P(t)) + 𝛾

⎛⎜⎜⎝1
2

n∑
i=1

𝜛2
i 𝜉

2
i + 1

2

( n∑
i=1

𝜉i𝜛i

)2

− w(0, t)
n∑

i=1
𝜛i𝜉i + nw2(0, t) + n∫

D

0
egxw2(x, t)dx

⎞⎟⎟⎠
= −𝛾neD

c + 1
𝛼2

1 (P(t)) + 𝛾ne Dw2(D, t) − 𝛾V̇(t)

= −𝛾neD

c + 1
𝛼2

1 (P(t)) + 𝛾neD(U(t) − 𝛼1 (P(t)))2 − 𝛾V̇(t)

= −𝛾neD(c + 1)
c2 (U∗(t))2 + 𝛾neD

(
U(t) − c + 1

c
U∗(t)

)2
− 𝛾V̇(t)

= 𝛾neD

c
(U∗(t))2 + 𝛾ne D

(
(U(t) − U∗(t))2 − 2

c
U(t)U∗(t)

)
− 𝛾V̇(t),

(67)

and hence, it can be deduced that

𝛾V(t) + ∫
t

0

(
L(𝜏) + 𝛾ne D

c
U2(𝜏)

)
d𝜏 = 𝛾V(0) + 𝛾 ∫

t

0
ne D

(
1 + 1

c

)
(U(t) − U∗(t))2d𝜏 (68)

so the minimum of (61) is reached with
U(t) = U∗(t) (69)

such that
J = 𝛾V(0). (70)

Remark 1. c∗∗1 given by (65) is bigger than c∗1 defined by (55).

3 LINEARIZABLE STRICT-FEEDFORWARD SYSTEMS

From the work of Krstic,6 it was shown that a strict-feedforward system (1)-(5) for D = 0 is linearizable provided the
following assumption is satisfied.

Assumption 1. The functions 𝜑i(Zi+1) and 𝜙i(Zi+1) can be written as 𝜙n−1(Zn) = 𝜃′n(Zn) and 𝜑n−1(Zn) = 0, and

𝜙i
(

Zi+1
)
=

n−1∑
𝑗=i+1

𝜕𝜃i+1
(

Zi+1
)

𝜕Z𝑗

𝜙𝑗

(
Z
𝑗+1

)
+

𝜕𝜃i+1
(

Zi+1
)

𝜕Zn
(71)

𝜑i
(

Zi+1
)
=

n−1∑
𝑗=i+1

𝜕𝜃i+1
(

Zi+1
)

𝜕Z𝑗

(
Z𝑗+1 + 𝜑𝑗

(
Z
𝑗+1

))
− 𝜃i+2

(
Zi+2

)
(72)

for i = n−2, … , 1, using some C1 scalar-valued functions 𝜃i(Zi) satisfying 𝜃i(0) = (𝜕𝜃i(0)∕𝜕Zj) = 0, for i = 2, … ,n, j =
i, … ,n.

The nominal control design (D = 0) for linearizable strict-feedforward (1)-(5) is given by Krstic6 as

U(t) = 𝛼1 (Z(t)) , (73)
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where 𝜗n+1 = 0, 𝛼n+1 = 0, and, for i = n,n − 1, … , 2, 1,

𝛼i
(

Zi
)
= −

n∑
𝑗=i

(
Z𝑗 − 𝜗𝑗+1

(
Z
𝑗+1

))
, (74)

𝜁
[i]
n
(
𝜏,Zi

)
= e−𝜏

n−i∑
k=0

(−𝜏)k

k!
(

Zn−k − 𝜗n−k+1
(

Zn−k+1
))

(75)

𝜁
[i]
𝑗

(
𝜏,Zi

)
= e−𝜏

𝑗−i∑
k=0

(−𝜏)k

k!

(
Z𝑗−k − 𝜗𝑗−k+1

(
Z
𝑗−k+1

))
+ 𝜗𝑗+1

(
𝜁
[i]
𝑗+1

(
𝜏,Zi

))
(76)

𝜗i
(

Zi
)
= −∫

∞

0

[
𝜁
[i]
i

(
𝜏,Zi

)
+ 𝜑i−1

(
𝜁 [i]

i

(
𝜏,Zi

))
+ 𝜙i−1

(
𝜁 [i]

i

(
𝜏,Zi

))
𝛼i

(
𝜁 [i]

i

(
𝜏,Zi

))]
d𝜏. (77)

3.1 Predictor control for linearizable strict-feedforward systems
Consider the linearizable strict-feedforward system with actuator delay

𝑍̇i(t) = Zi+1(t) + 𝜑i
(

Zi+1(t)
)
+ 𝜙i

(
Zi+1(t)

)
u(0, t) (78)

ut(x, t) = ux(x, t) (79)

u(D, t) = U(t), (80)
where i = 1, 2, … ,n.

With the diffeomorphic transformation h = G(Z) defined by

hn = Zn (81)

hi =
n∑
𝑗=i

(
n − i
𝑗 − i

)
(−1)𝑗−i

(
Z𝑗 − 𝜗𝑗+1

(
Z
𝑗+1

))
, i = n − 1,n − 2, … , 1 (82)

and 𝜗j, j = 1, 2, … ,n given by (74)-(77), system (78)-(80) is transferred to the following system:

ḣi(t) = hi+1(t), i = 1, 2, … ,n − 1, (83)

ḣn(t) = u(0, t) (84)

ut(x, t) = ux(x, t) (85)

u(D, t) = U(t). (86)
The predictor feedback for system (83)-(86) is

U(t) = c
c + 1

𝛼1
(

G−1 (𝜂(D, t))
)
= − c

c + 1

n∑
i=1

(
n

i − 1

)
𝜂i(D, t) = U∗(t), (87)

where c > 0 is sufficiently large, and 𝜂(D, t) = [𝜂1(D, t), … , 𝜂n(D, t)]T is given by
𝜕

𝜕x
𝜂i(x, t) = 𝜂i+1(x, t), i = 1, 2, … ,n − 1, (88)

𝜕

𝜕x
𝜂n(x, t) = u(x, t) (89)

with initial condition 𝜂(0, t) = h(t) for x = D.
It can be deduced that

𝜂i(x, t) =
n∑
𝑗=i

x𝑗−i

( 𝑗 − i)!
h𝑗(t) + ∫

x

0

(x − 𝑦)n+1−i

(n + 1 − i)!
u(𝑦, t)d𝑦, (90)

for i = 1, 2, … ,n. By (81)-(82), we have

𝜂i(x, t) =
n∑
𝑗=i

x𝑗−i

( 𝑗 − i)!

n∑
l=𝑗

(
n − 𝑗
l − 𝑗

)
(−1)l−𝑗 (Zl − 𝜗l+1

(
Zl+1

))
+ ∫

x

0

(x − 𝑦)n+1−i

(n + 1 − i)!
u(𝑦, t)d𝑦, (91)
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for i = 1, 2, … ,n. Hence, the feedback law for system (83)-(86) can be rewritten as

U(t) = − c
c + 1

n∑
i=1

(
n

i − 1

)( n∑
𝑗=i

D𝑗−i

( 𝑗 − i)!

n∑
l=𝑗

(
n − 𝑗
l − 𝑗

)
(−1)l−𝑗 (Zl − 𝜗l+1

(
Zl+1

))
+ ∫

D

0

(D − 𝑦)n+1−i

(n + 1 − i)!
u(𝑦, t)d𝑦

)
. (92)

Noting that u(x, t) = U(x + t − D), the predictor control law for system (78)-(80) is

U(t) = − c
c + 1

n∑
i=1

(
n

i − 1

)( n∑
𝑗=i

D𝑗−i

(𝑗 − i)!

n∑
l=𝑗

(
n − 𝑗
l − 𝑗

)
(−1)l−𝑗 (Zl − 𝜗l+1

(
Zl+1

))
∫

t

t−D

(D − 𝑦)n+1−i

(n + 1 − i)!
U(𝜎)d𝜎

)
, (93)

where c > 0 is sufficiently large.
Next, we will prove that the closed-loop system consisting of (78)-(80) together with the control law (93) is

asymptotically stable.
With a diffeomorphic transformation

𝜉n−i =
i∑

𝑗=0

(
i
𝑗

)
hn−𝑗 , i = 0, 1, 2, … ,n − 1, (94)

system (83)-(86) is transferred to

𝜉̇i(t) =
n∑

𝑗=i+1
𝜉𝑗(t) + u(0, t), i = 1, 2, … ,n − 1 (95)

𝜉̇n(t) = u(0, t) (96)

ut(x, t) = ux(x, t) (97)

u(D, t) = U(t), (98)

and it can be deduced that
n∑

i=1

(
n

i − 1

)
hi(t) =

n∑
i=1

𝜉i(t). (99)

The infinite-dimensional backstepping transformation is defined as follows:

w(x, t) = u(x, t) +
n∑

i=1

(
n

i − 1

)
𝜂i(x, t), (100)

where 𝜂i(x, t), i = 1, 2, … ,n are given by (90).
Noting that 𝜂i(0, t) = hi(t), with the help of (87), (98)-(100), system (95)-(98) is transferred to the target system

𝜉̇i(t) = −
i∑

𝑗=1
𝜉𝑗(t) + w(0, t), i = 1, 2, … ,n (101)

wt(x, t) = wx(x, t) (102)

w(D, t) = 1
c

n∑
i=1

(
n

i − 1

)
𝜂i(D, t). (103)

The inverse backstepping transformation of (100) is defined as follows:

u(x, t) = w(x, t) −
n∑

i=1
𝜛i(x, t), (104)

where
𝜕

𝜕x
𝜛i(x, t) = −

i∑
𝑗=1

𝜛𝑗(x, t) + w(x, t), i = 1, 2, … ,n (105)

with initial condition 𝜛 i(0, t) = 𝜉(t).
Under the inverse backstepping transformation (104), the target system (101)-(103) is transferred to system (95)-(98).
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Lemma 5. Consider the target system (101)-(103), there exists c∗ > 0 such that system (101)-(103) is asymptotically
stable for all c > c∗, that is, there exist R > 0, 𝜆 > 0, such that for all c > c∗,

|𝜉(t)|2 + ||w(t)||2 ≤ Re−𝜆 t(|𝜉(0)|2 + ||w(0)||2) (106)

for all t ≥ 0.

Proof. Denote

A =

⎡⎢⎢⎢⎢⎣
−1 0 0 · · · 0
−1 −1 0 · · · 0
⋮ ⋮ ⋱ ⋱ ⋮

−1 −1 · · · −1 0
−1 −1 −1 · · · −1

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎣
1
⋮
1
1

⎤⎥⎥⎥⎦ . (107)

Since A is a Hurwitz matrix, for any a positive matrix Q, there exists a positive matrix P such that AP + PAT = −Q.

Considering system (101)-(103), an overall Lyapunov function is given as follows:

V(t) = 𝜉TP𝜉 + l∫
D

0
e xw2(x, t)dx, (108)

where l > 2𝜆max(PBBT P)
𝜆min(Q)

. We have that

V̇(t) = 𝜉T (AP + PAT) 𝜉 + 2𝜉TPBw(0, t) + 2l∫
D

0
e xw(x, t)wt(x, t)dx

= −𝜉TQ𝜉 + 2𝜉TPBw(0, t) + 2l∫
D

0
e xw(x, t)wt(x, t)dx

≤ −𝜆min(Q)𝜉T𝜉 + 𝜆min(Q)
2𝜆max(PBBTP)

𝜉TPBBTP𝜉 + 2𝜆max(PBBTP)
𝜆min(Q)

w2(0, t) + l∫
D

0
e xdw2(x, t)

≤ −𝜆min(Q)
2

𝜉T𝜉 + 2𝜆max(PBBTP)
𝜆min(Q)

w2(0, t) + leDw2(D, t) − lw2(0, t) − l∫
D

0
e xw2(x, t)dx

≤ −𝜆min(Q)
2

𝜉T𝜉 + le Dw2(D, t) − l∫
D

0
e xw2(x, t)dx

≤ −𝜆min(Q)
2

|𝜉|2 + le Dw2(D, t) − l||w(t)||2.

(109)

From (103), we have

w2(D, t) = 1
c2

( n∑
i=1

(
n

i − 1

)
𝜂i(D, t)

)2

. (110)

Using (90), we get

𝜂i(D, t) ≤
||||||

n∑
𝑗=i

D𝑗−i

(𝑗 − i)!
h𝑗(t)

|||||| +
|||||∫

D

0

(D − 𝑦)n+1−i

(n + 1 − i)!
u(𝑦, t)d𝑦

|||||
≤ e D|h(t)| + Dn+1−i

(n + 1 − i)!

√
D||u(t)||

≤ e D|h(t)| + max
{

D,
D2

2!
, … ,

Dn

n!

}√
D||u(t)||,

(111)

so
w2(D, t) ≤ 1

c2 (2
n − 1)2 (2e2D|h(t)|2 + 2𝜍D||u(t)||2) , (112)

where

𝜍 =
(

max
{

D,
D2

2!
, … ,

Dn

n!

})2

. (113)

It can be deduced that the inverse of (94) is

hn−i(t) =
i∑

𝑗=0
(−1)i+𝑗

(
i
𝑗

)
𝜉n−𝑗(t), i = 0, 1, 2, … ,n − 1, (114)
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and after some calculation, we have

|h(t)| ≤ √
4n − 1√

3
|𝜉(t)|. (115)

It is easy to get from (105) that

𝜛(x, t) = e A x𝜉(t) + ∫
x

0
e A(x−s)Bw(s, t)ds, (116)

where A and B are given by (107). Furthermore, we get

|𝜛(x, t)|2 ≤ 2e2|A|x|𝜉(t)|2 + 2
||||∫ x

0
e A(x−s)Bw(s, t)ds

||||
2

≤ 2e2|A|x|𝜉(t)|2 + 2∫
x

0

|||e A(x−s)B|||2ds∫
x

0
w2(s, t)ds

≤ 2e2|A|x|𝜉(t)|2 + 2|B|2 ∫ x

0
e2|A|(x−s)ds∫

x

0
w2(s, t)ds

= 2e2|A|x|𝜉(t)|2 + |B|2 e2|A|x − 1|A| ∫
x

0
w2(s, t)ds.

(117)

Using (104), we have

u2(x, t) ≤ 2w2(x, t) + 2

( n∑
i=1

𝜛i(x, t)

)2

≤ 2w2(x, t) + 2n
n∑

i=1
𝜛2

i (x, t)

= 2w2(x, t) + 2n|𝜛(x, t)|2.
(118)

By (117), (118), it can be deduced that

||u(t)||2 ≤ 2||w(t)||2 + 2n
(

e2|A|D − 1
)

|A| |𝜉(t)|2 + 2n|B|2|A|
(

e2|A|D − 1
2|A| − D

) ||w(t)||2. (119)

With the help of (112), (115), (119), we arrive at

w2(D, t) ≤ 1
c2 (2

n − 1)2
(

2e2D(4n − 1)
3

|𝜉(t)|2 + 2𝜍D||u(t)||2)
≤ 2(2n − 1)2

c2
e2D(4n − 1)

3
|𝜉(t)|2

+ 2(2n − 1)2

c2 𝜍D

(
2|w(t)|2 + 2n

(
e2|A|D − 1

)
|A| |𝜉(t)|2 + 2n|B|2|A|

(
e2|A|D − 1

2|A| − D
) |w(t)|2)

= 2(2n − 1)2

c2

(
e2D(4n − 1)

3
+

2n𝜍D
(

e2|A|D − 1
)

|A|
) |𝜉(t)|2

+ 4(2n − 1)2

c2 𝜍D
(

1 + n|B|2|A|
(

e2|A|D − 1
2|A| − D

)) |w(t)|2,

(120)

where 𝜍 is given by (113). Using (109), (120), we get

V̇(t) ≤ −𝜆min(Q)
2

|𝜉(t)|2 + 2(2n − 1)2leD

c2

(
e2D(4n − 1)

3
+

2n𝜍D
(

e2|A|D − 1
)

|A|
) |𝜉(t)|2

+ 4leD(2n − 1)2

c2 𝜍D
(

1 + n|B|2|A|
(

e2|A|D − 1
2|A| − D

)) |w(t)|2 − l||w(t)||2. (121)
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Choosing

c∗ = 2
√

2(2n − 1)e
D
2 max

⎧⎪⎨⎪⎩
√

le2D(4n − 1)
3𝜆min(Q)

+
2nl𝜍D

(
e2|A|D − 1

)
|A|𝜆min(Q)

,

√
𝜍D

(
1 + n|B|2|A|

(
e2|A|D − 1

2|A| − D
))⎫⎪⎬⎪⎭ (122)

for all c > c∗, we get

V̇(t) ≤ −𝜆min(Q)
4

|𝜉(t)|2 − l
2
||w(t)||2

≤ −min
{

𝜆min(Q)
4

,
l
2

}{|𝜉(t)|2 + ||w(t)||2} . (123)

With (108), we have
min {𝜆min(P), l}

(|𝜉(t)|2 + ||w(t)||2)
≤ V(t)
≤ max

{
𝜆max(P), le D} (|𝜉(t)|2 + ||w(t)||2) . (124)

Thus, from (123), (124), it holds that
V̇(t) ≤ −𝜆V(t) (125)

with

𝜆 =
min

{
𝜆min(Q)

4
,

l
2

}
max {𝜆max(P), leD}

. (126)

We arrive at
V(t) ≤ e−𝜆 tV(0)

≤ e−𝜆 t max
{
𝜆max(P), le D} (|𝜉(0)|2 + ||w(0)||2) . (127)

With the help of (124), we have

|𝜉(t)|2 + ||w(t)||2 ≤ V(t)
min {𝜆min(P), l}

≤ max
{
𝜆max(P), le D}

min {𝜆min(P), l}
e−𝜆 t (|𝜉(0)|2 + ||w(0)||2) . (128)

Thus, for all c > c∗, we get (106) where c∗,𝜆 are given by (122) and (126), respectively, and R = max{𝜆max(P), le D}
min{𝜆min(P), l}

. The
proof is completed.

Lemma 6. Considering system (83)-(86), there exists c∗ > 0 such that system (83)-(86) is asymptotically stable for all
c > c∗, that is, there exist R > 0, 𝜆 > 0, such that for all c > c∗,

|h(t)|2 + ||u(t)||2 ≤ Re−𝜆 t (|h(0)|2 + ||u(0)||2) (129)

for all t ≥ 0.

Proof. With the help of (94), we get

|𝜉(t)| ≤ √
4n − 1√

3
|h(t)|. (130)

Using (90), we have

𝜂i(x, t) ≤
||||||

n∑
𝑗=i

x𝑗−i

( 𝑗 − i)!
h𝑗(t)

|||||| +
|||||∫

x

0

(x − 𝑦)n+1−i

(n + 1 − i)!
u(𝑦, t)d𝑦

|||||
≤ e x|h(t)| + xn+1−i

(n + 1 − i)!
√

x||u(t)||
≤ e x|h(t)| + max

{
x, x2

2!
, … ,

xn

n!

}√
x||u(t)||

≤ e x|h(t)| + e x
√

x||u(t)||,
(131)
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with i = 1, 2, … ,n. By (100), it can be deduced that

||w(t)||2 = ∫
D

0
w2(x, t)dx

≤ 2∫
D

0
u2(x, t)dx + 2∫

D

0

( n∑
i=1

(
n

i − 1

)
𝜂i(x, t)

)2

dx

≤ 2||u(t)||2 + 4(2n − 1)2 ∫
D

0

(
e2x|h(t)|2 + e2xx||u(t)||2) dx

=
(
2 + 2(2n − 1)2 (De2D − e2D + 1

)) ||u(t)||2 + 2(2n − 1)2(e2D − 1)|h(t)|2.
(132)

We deduce from (115), (119) that

|h(t)|2 + ||u(t)||2 ≤
(

4n − 1
3

+
2n
(

e2|A|D − 1
)

|A|
) |𝜉(t)|2

+
(

2 + 2n|B|2|A|
(

e2|A|D − 1
2|A| − D

)) ||w(t)||2
≤ Λ1

(|𝜉(t)|2 + ||w(t)||2) ,
(133)

where

Λ1 = max

{
4n − 1

3
+

2n
(

e2|A|D − 1
)

|A| , 2 + 2n|B|2|A|
(

e2|A|D − 1
2|A| − D

)}
. (134)

Using Lemma 5, there exist R > 0, 𝜆 > 0, such that for all c > c∗,|h(t)|2 + ||u(t)||2 ≤ Λ1
(|𝜉(t)|2 + ||w(t)||2)

≤ Λ1Re−𝜆 t (|𝜉(0)|2 + ||w(0)||2) (135)

for all t ≥ 0. With the help of (115), (132), we get

|h(t)|2 + ||u(t)||2 ≤ Λ1Re−𝜆 t (|𝜉(0)|2 + ||w(0)|||2)
≤ Λ1Re−𝜆 t

(4n − 1
3

+ 2(2n − 1)2(e2D − 1)
) |h(0)|2

+ Λ1Re−𝜆 t (2 + 2(2n − 1)2(De2D − e2D + 1)
) ||u(0)||2

≤ Λ1Λ2Re−𝜆 t (|h(0)|2 + ||u(0)||2)
(136)

for all t ≥ 0, with

Λ2 = max
{4n − 1

3
+ 2(2n − 1)2 (e2D − 1

)
, 2 + 2(2n − 1)2 (De2D − e2D + 1

)}
. (137)

Denote
R = RΛ1Λ2, (138)

(129) is drawn. The proof is completed.

Theorem 4. Consider the closed-loop system consisting of (78)-(80) together with the control law (87). Under
Assumption 1, there exist c∗ > 0 and a  function 𝛽5, such that for all c > c∗,

|Z(t)|2 + ∫
t

t−D
U2(𝜎)d𝜎 ≤ 𝛽5

(|Z(0)|2 + ∫
0

−D
U2(𝜎)d𝜎, t

)
(139)

for all t ≥ 0.

Proof. With the diffeomorphic transformation h(t) = G(Z(t)) defined by (81)-(82), there exist  functions 𝛾1, 𝛾2
such that |Z(t)|2 = |G−1 (h(t)) |2 ≤ 𝛾1

(|h(t)|2) , (140)

|h(t)|2 = |G (Z(t)) |2 ≤ 𝛾2
(|Z(t)|2) . (141)
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Using Lemma 6, there exists c∗ > 0 such that the closed-loop system (78)-(80) together with the control law (87)
holds that |Z(t)|2 + ∫

t

t−D
U2(𝜎)d𝜎 = |Z(t)|2 + ||u(t)||2

≤ 𝛾1
(|h(t)|2) + ||u(t)||2

≤ 𝛾3
(|h(t)|2 + ||u(t)||2)

≤ 𝛾3

(
Re−𝜆 t (|h(0)|2 + ||u(0)||2))

≤ 𝛾3

(
Re−𝜆 t (𝛾2(|Z(0)|2) + ||u(0)||2))

≤ 𝛾3

(
Re−𝜆 t (𝛾4

(|Z(0)|2 + ||u(0)||2)))
≤ 𝛾3

(
Re−𝜆 t

(
𝛾4

(|Z(0)|2 + ∫
0

−D
U2(𝜎)d𝜎

)))

(142)

for all t ≥ 0, with 𝛾3(s) = 𝛾1(s) + s,𝛾4(s) = 𝛾2(s) + s. Choosing 𝛽5(s, t) = 𝛾3(Re−𝜆 t(𝛾4(s))), where 𝜆, R are given by (126),
(138), respectively, (139) is obtained. The proof is completed.

3.2 Inverse optimal control for linearizable strict-feedforward systems
Theorem 5. Consider the closed-loop system consisting of (78)-(80) together with the control law (87). Under
Assumption 1, there exists a sufficiently large c∗∗ > c∗ > 0, for all c > c∗∗, the control law (87) minimizes the cost functional

J = lim
t→∞

(
𝛾V(t) + ∫

t

0

(
L(𝜏) + 𝛾leD

c
U2(𝜏)

)
d𝜏
)

(143)

where l > 2𝜆max(PBBT P)
𝜆min(Q)

, and L is a functional of (Z(t),U(𝜃)), for all t − D ≤ 𝜃 ≤ t, such that

L(t) ≥ l𝛾
(
𝜆min(Q)

4
|𝜉(t)|2 + 1

2
||w(t)||2) (144)

for an arbitrary 𝛾 > 0.

Proof. Let

L(t) = − 𝛾le D

c + 1
𝛼2

1
(

G−1 (𝜂(D, t))
)
− 𝛾

(
−𝜉T(t)Q𝜉(t) + 2𝜉T(t)PBw(0, t) − lw2(0, t) − l∫

D

0
e xw2(x, t)dx

)
, (145)

where l > 2𝜆max(PBBT P)
𝜆min(Q)

. It can be deduced that

L(t) ≥ − 𝛾leD

c + 1
𝛼2

1
(

G−1 (𝜂(D, t))
)
− 𝛾

(
−𝜆min(Q)𝜉T(t)𝜉(t) + 𝜆min(Q)

2𝜆max(PBBTP)
𝜉T(t)PBBTP𝜉(t)

+
2𝜆max

(
PBBTP

)
𝜆min(Q)

w2(0, t) − lw2(0, t) − l∫
D

0
e xw2(x, t)dx

)
≥ − 𝛾leD

c + 1
𝛼2

1
(

G−1 (𝜂(D, t))
)
+ 𝛾𝜆min(Q)

2
|𝜉(t)|2 + l𝛾||w(t)||2.

(146)

From (87), (111), we know

𝛼2
1
(

G−1 (𝜂(D, t))
)
=

(
−

n∑
i=1

(
n

i − 1

)
𝜂i(D, t)

)2

≤ (2n − 1)2
(

e D|h(t)| + max
{

D,
D2

2!
, … ,

Dn

n!

}√
D||u(t)||)2

≤ (2n − 1)2 (2e2D|h(t)|2 + 2e2DD||u(t)||2) .
(147)
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With the help of (115), (119), we arrive at

𝛼2
1
(

G−1 (𝜂(D, t))
) ≤ 2e2D(2n − 1)2 (|h(t)|2 + D||u(t)||2)
≤ 2e2D(2n − 1)2

(
4n − 1

3
+

2nD
(

e2|A|D − 1
)

|A|
) |𝜉(t)|2

+ 4De2D(2n − 1)2
(

1 + n|B|2|A|
(

e2|A|D − 1
2|A| − D

)) ||w(t)||2.
(148)

Choosing

c∗∗ = max
⎧⎪⎨⎪⎩

8le3D(2n − 1)2
(

4n−1
3

+ 2nD(e2|A|D−1)|A|
)

𝜆minQ
, 8De3D(2n − 1)2

(
1 + n|B|2|A|

(
e2|A|D − 1

2|A| − D
))

, c∗
⎫⎪⎬⎪⎭ , (149)

where c∗ is given by (122), for all c > c∗∗, by (146), (148), it holds

L(t) ≥ l𝛾𝜆min(Q)
4

|𝜉(t)|2 + l𝛾
2
||w(t)||2. (150)

Noting U∗(t) = c
c+1

𝛼1(G−1(𝜂(D, t))), after some calculations, we have

L(t) = − 𝛾leD

c + 1
𝛼2

1
(

G−1(𝜂(D, t))
)
− 𝛾

(
−𝜉T(t)Q𝜉(t) + 2𝜉T(t)PBw(0, t) − lw2(0, t) − l∫

D

0
e xw2(x, t)dx

)
= − 𝛾leD

c + 1
𝛼2

1
(

G−1 (𝜂(D, t))
)
+ 𝛾le Dw2(D, t) − 𝛾V̇(t)

= − 𝛾leD

c + 1
𝛼2

1
(

G−1 (𝜂(D, t))
)
+ 𝛾le D(U(t) − 𝛼1

(
G−1 (𝜂(D, t))

))2 − 𝛾V̇(t)

= − 𝛾leD(c + 1)
c2 (U∗(t))2 + 𝛾le D

(
U(t) − c + 1

c
U∗(t)

)2
− 𝛾V̇(t)

= 𝛾leD

c
(U∗(t))2 + 𝛾le D

(
(U(t) − U∗(t))2 − 2

c
U(t)U∗(t)

)
− 𝛾V̇(t),

(151)

and hence, it can be deduced that

𝛾V(t) + ∫
t

0

(
L(𝜏) + 𝛾le D

c
U2(𝜏)

)
d𝜏 = 𝛾V(0) + 𝛾le D ∫

t

0

(
1 + 1

c

)
(U(t) − U∗(t))2d𝜏 (152)

so the minimum of (143) is reached with

U(t) = U∗(t) (153)

such that
J = 𝛾V(0). (154)

The proof is completed.

4 EXAMPLE

Example 1. Consider a strict-feedforward nonlinear system given by Krstic6 as

Ż1(t) = Z2(t) + Z2
3(t) (155)

Ż2(t) = Z3(t) + Z3(t)U(t − D) (156)

Ż3(t) = U(t − D), (157)

where Z1,Z2,Z3 ∈ R are the states, U is a scalar control input, and D ∈ R+ is an actuator delay. It is illustrated in the
aforementioned work6 that the overall system (155)-(157) is not linearizable.
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The nominal control design (D = 0) for system (155)-(157) is obtained by Krstic6 as

U(t) = − Z1(t) − 3Z2(t) − 3Z3(t) −
3
8

Z2
2(t)

+ 3
4

Z3(t)
⎛⎜⎜⎝−Z1(t) − 2Z2(t) +

1
2

Z3(t) +
1
2

Z2(t)Z3(t) +
5
8

Z2
3(t) −

1
8

Z3
3(t) −

3
8

(
Z2 −

Z2
3

2

)2⎞⎟⎟⎠ .
(158)

By Theorem 2, the predictor control for system (155)-(157) is designed as

U(t) = c
c + 1

U1(t) = U∗(t), (159)

where c > 0 is sufficiently large and

U1(t) = − P1(t) − 3P2(t) − 3P3(t) −
3
8

P2
2(t)

+ 3
4

P3(t)
⎛⎜⎜⎝−P1(t) − 2P2(t) +

1
2

P3(t) +
1
2

P2(t)P3(t) +
5
8

P2
3(t) −

1
8

P3
3(t) −

3
8

(
P2 −

P2
3

2

)2⎞⎟⎟⎠ ,
(160)

and P1(t) = p1(D, t),P2(t) = p2(D, t), and P3(t) = p3(D, t) are provided for x = D by

𝑝1(x, t) = Z1(t) + ∫
x

0

(
𝑝2(𝑦, t) + 𝑝2

3(𝑦, t)
)

d𝑦 (161)

𝑝2(x, t) = Z2(t) + ∫
x

0

(
𝑝3(𝑦, t) + 𝑝2

3(𝑦, t)u(𝑦, t)
)

d𝑦 (162)

𝑝3(x, t) = Z3(t) + ∫
x

0
u(𝑦, t)d𝑦. (163)

Responses of the states of system (155)-(157) under the control law (159) are shown for c = 100 in Figure 1. One can
observe that the closed-loop system is asymptotically stable. By Theorem 3, the control law (159) is inverse optimal.

Example 2. Consider a cart with an inverted pendulum system given by Wei21 as follows:

(m1 + m2)q̈1 + m2l cos(q2)q̈2 = m2l sin(q2)q̇2
2 + F (164)

cos(q2)q̈1 + lq̈2 = g sin(q2), (165)

where m1 and q1 are the mass and position of the cart; m2, l, and q2 ∈ (−𝜋∕2, 𝜋∕2) are the mass, length of the link,
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FIGURE 1 Responses of the states X1(t),X2(t),X3(t) of system (155)-(157) with the control law (159) for initial conditions as
X1(0) = 0,X2(0) = 0.3,X3(0) = 0.2 and U(𝜃) = 0, for 𝜃 ∈ [0, 1]
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and angle of the pole, respectively, and g= 9.8 is the acceleration of gravity. Let q̇2 = 𝑝2, 𝑝̇2 = u. Applying the feedback
law (see the work of Wei21)

F = −ul
(

m1 + m2sin2(q2)
)
∕ cos(q2) + (m1 + m2)g tan(q2) − m2l sin(q2)q̇2

2 (166)

and with the following global change of coordinates

x1 = 𝜆

(
q1 + l ln

(
1 + tan(q2∕2)
1 − tan(q2∕2)

))
(167)

x2 = q̇1 + (l∕ cos(q2)) 𝑝2, (168)

we get
ẋ1 = 𝜆x2 (169)

ẋ2 = tan(q2)
(
g + l

cos(q2)
𝑝2

2

)
(170)

q̇2 = 𝑝2 (171)

𝑝̇2 = u, (172)

where 𝜆 > 0. To map the upper half-plane to R, we use another global change of coordinates and control as follows:

x3 = tan(q2) (173)

x4 =
(
1 + tan2 (q2

)
𝑝2 (174)

v =
(
1 + x2

3
)

u +
2x3x2

4(
1 + x2

3
) +

(
gx3 +

g

2
x4

)√
1 + x2

3 . (175)

Finally, the dynamics of the cart-pole system is transformed into the following (assuming l = 1):

ẋ1 = 𝜆x2 (176)

ẋ2 = x3

(
g +

x2
4(

1 + x2
3
)3∕2

)
(177)

ẋ3 = x4 (178)

ẋ4 = −(gx3 + (g∕2)x4)
√

1 + x2
3 + v. (179)

From the aforementioned work,21 the control law
v = v1 + v2 (180)

v1 = −2x4 − x3 −
(

1∕
√

1 + x2
3

)
z1 (181)

z1 = x2 +
(

x4∕
√

1 + x2
3

)
+ (g∕2)x3 (182)

v2 = 𝜇−1
2

(
1
2

x3

√
1 + x2

3 − x4

√
1 + x2

3 −
1
2

x2

)
− 𝜇2z2 (183)

z2 = x1 − N2 (184)

N2 = −x2 −
g

2
x3 −

1
2g

x4 −
x4√

1 + x2
3

− 5
4

⎛⎜⎜⎜⎝
x3

√
1 + x2

3

2
+ 1

2
ln
(

x3 +
√

1 + x2
3

)⎞⎟⎟⎟⎠ (185)

𝜇2 = 1
2g

+ 1√
1 + x2

3

(186)

globally asymptotically stabilizes system (176)-(179).
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We consider system (176)-(179) with input delay as follows:
ẋ1 = 𝜆x2 (187)

ẋ2 = x3

(
g +

x2
4(

1 + x2
3
)3∕2

)
(188)

ẋ3 = x4 (189)

ẋ4 = − (gx3 + (g∕2)x4)
√

1 + x2
3 + U(t − D), (190)

where D ∈ R+ is an actuator delay.
By Theorem 2, the control law for system (187)-(190) is given by

U(t) = c
c + 1

U1(t) = U∗(t), (191)

where c > 0 is sufficiently large, and U1(t) = v(t) is given as (180)-(186) by replacing xi(t), i = 1, 2, 3, 4, with Pi(t), i =
1, 2, 3, 4, and P1(t) = p1(D, t),P2(t) = p2(D, t),P3(t) = p3(D, t), and P4(t) = p4(D, t) are provided for x = D by

𝑝1(x, t) = x1(t) + ∫
x

0
𝜆𝑝2(𝑦, t)d𝑦 (192)

𝑝2(x, t) = x2(t) + ∫
x

0

(
𝑝3(𝑦, t)(g +

𝑝2
4(𝑦, t)(

1 + 𝑝2
3(𝑦, t)

)3∕2

)
d𝑦 (193)

𝑝3(x, t) = x3(t) + ∫
x

0
𝑝4(𝑦, t)d𝑦 (194)

𝑝4(x, t) = x4(t) + ∫
x

0
− (g𝑝3(𝑦, t) + (g∕2)𝑝4(𝑦, t))

√
1 + 𝑝2

3(𝑦, t) + u(𝑦, t)d𝑦. (195)

Figures 2 and 3 show the simulation results for the cart-pole system with the initial state (q1, p1, q2, p2) =
(5, 0, 𝜋∕3, 0) (ie, (x1, x2, x3, x4) = (2.5 + 0.5ln(

√
3+1√
3−1

), 0,
√

3, 0)), and c = 100. In Figure 4, clearly, the control law
(191) stabilizes the inverted pendulum in its upright position after a rather short time. The parameters are chosen as
m1 = m2 = l = 1.
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FIGURE 2 State trajectory of system (187)-(190)
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FIGURE 3 Control law (191)
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FIGURE 4 Position of the cart-pole system (164)-(165)

5 CONCLUSIONS

Inverse optimal control for strict-feedforward systems with input delays is studied in this paper. A basic predictor control
is designed for compensation for this class of nonlinear systems. Furthermore, it is shown that it is inverse optimal with
respect to a meaningful differential game problem. For a class of linearizable strict-feedforward system, an explicit formula
for compensation for input delay, which is also inverse optimal with respect to a meaningful differential game problem,
is also obtained. A cart with an inverted pendulum system is given to illustrate the validity of the proposed method.
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