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Abstract—Equipped with accelerometers and gyroscopes, modern smartphones provide an appealing approach to
infrastructure-free navigation for vehicles in indoor environments (for example parking garages). However, a smartphone-based
inertial navigation system (INS) faces two serious problems. First, it is subject to errors that accumulate over time rather
quickly, which may grow to a level that renders the navigation meaningless. Second, without human input or external
references, the smartphone can hardly infer its initial position/velocity, which is the basis for distance calculation, since all that
a smartphone can learn is its acceleration. This raises a practical concern, as users often need to start indoor navigation
precisely when they are uncertain of their current whereabouts. In this paper, we present Bumping, a Bump-Aided Inertial
Navigation method that significantly alleviates the above two problems. At the core of this method is a Bump Matching algorithm,
which exploits the position information of the readily available speed bumps to provide useful references for the INS. The
proposed method is easy to implement, requires no infrastructures, and incurs nearly zero extra energy. We conducted real
experiments in tree parking garages of different environmental characteristics. The Bumping method produces an average
position error of 4-5 m in these scenarios, improving the accuracy by up to 87.1 percent, compared to the basic inertial

navigation method.

Index Terms—Indoor localization, inertial navigation, smartphones, vehicles

1 INTRODUCTION

EHICLE navigation has become a commodity service
with high availability, low cost, and reasonable
accuracy. In contrast to the success of outdoor navigation,
wall-mounted signs continue to be the primary reference
for vehicle navigation in indoor environments such as
parking garages, where GPS does not work. This has
attracted intense interests among both industry and
academia to develop indoor positioning technologies
that enable seamless outdoor-to-indoor navigation.
However, existing indoor positioning techniques with
meter-level or higher accuracy are mostly cost-prohibitive
to deploy, either because of the high cost of the signal
transmitters (e.g., Pseudolite, Ultra Wideband), or because
of the signal’s short ranges (e.g., Bluetooth, Infrared,
Ultrasound, RFID), whose scaling can be very costly.
The WiFi RSSI based positioning technique provides
average accuracy to a few meters, but requires extensive
off-line fingerprinting, which adds to the overall cost of
the solution.
Recently, smartphones have gained enormous popularity
as not only a communication tool, but also as a platform
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hosting a variety of services. The accelerometers and
gyroscopes/compasses equipped on many of these phones
open an opportunity for infrastructure-free positioning in
indoor environments. Given an initial position and velocity,
the phone can calculate its moved distance by double
integrating the acceleration readings based on the law of
inertia, and can produce a position relative to the start
point. Since its advent in the 1940s, inertial navigation
systems (INS) have been widely used in both military and
civil applications.

The main drawback of an INS is that it suffers from
accumulative errors due to integration drift: small errors in
the measurement of acceleration are integrated into
increasingly larger errors in velocity, which cause still
greater errors in distance and therefore the final position.
The fact that the errors grow quadratically with time poses
great challenges to applications requiring high accuracy.
Although a high-quality INS can keep the error within a
relatively small range (e.g., 1100 m in position and less than
one degree in orientation per hour [5]), it is not clear
whether the low-end inertial sensors on smartphones can
sustain a satisfactory level of accuracy for vehicles in
minutes of time, as often needed in an indoor environment.

To answer the question, we conducted an empirical
study on the inertial positioning performance of various
smartphones. It is found that smartphone INS has surpris-
ingly low accuracy, generating errors up to 100 m within a
minute, at a rate super-linear with time. This makes the
indoor navigation almost meaningless. Another practical
problem is that an INS always assumes a known initial
position/velocity, which is the basis of distance/angle

}laublication/ redistribution requires IEEE permission.
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Fig. 1. INS errors of six smartphones during a straight course of 350 m.

calculation. This is not always available, because the user
may start using the INS only when the current location
is unknown. Though the navigation application can ask
the user to move to a nearest distinguishing spot (e.g., the
entrance), a much more friendly solution is to discover
the vehicle’s current location automatically for the user.

In this paper, we present a novel method, named Bumping,
that dramatically improves positioning accuracy and partially
solves the automatic startup positioning problem, without using
any extra infrastructure. The key idea is to exploit the position
information of speed bumps that are readily available in parking
garages. The bumps can be detected by accelerometers with a
high success rate (> 95 percent in our experiments), so as to
provide important opportunities for the INS to correct its
position and velocity. This way, the integration drift is limited
within two successive bumps, instead of growing infinitely.
Specifically, we make the following contributions:

1. an effective bump detection method based on the
Gaussian mixture model;

2. a Hidden Markov Model (HMM)-based Bump
Matching algorithm that accurately matches detec-
tion events to the right bumps, taking full consid-
eration of false positives/negatives;

3. a set of methods that estimate the vehicle’s restart
speed and compensate for the accelerometer errors;

4. experimental evaluation of the navigation method
in three parking garages.

Note that the evaluation results of the third garage is
presented in the supplementary document.

For the tree parking garages we experimented with, the
basic inertial navigation system produces average position
errors of 39.52 m, 36.35 m, 14.30 m, while the Bumping
method reduces the errors to 4.79 ms, 4.24 m, and 4.84 m,
respectively. The achieved accuracy is very encouraging,
because 4-5 m is merely the width of two parking lots in
a row. Moreover, for an arbitrary drive without assuming
a known initial position, Bumping can correctly start up
the navigation 80 percent of the time by traversing only
3 bumps; the probability of startup at a wrong place is
below 4 percent.

The outline of the paper is as follows. Section 2 describes
anumber of experiments that motivate our study. Sections 3
through 5 describe the bump detection, bump matching,
and positioning methods. Section 6 presents the evaluation
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Fig. 2. Mean/standard deviation of error increasing with time, by a
Google-Nexus S smartphone INS.

results and Section 7 concludes this paper. The overview of
the proposed navigation system and the related works are
provided in the supplementary document.

2 MOTIVATION

This section shows a set of experimental results that serve
as the motivation of our study.

2.1 Error Characteristics of Smartphone INS

The first set of experiments were conducted to show the
basic error characteristics of a smartphone INS. We used six
Android smartphones of different brands, namely Moto-
XT882, Moto-Defy, Moto-Milestone, HTC-G12, HTC-GS,
and Google-Nexus S, to calculate the moved distance of a
car driven in a straight course of about 350 m. To obtain the
ground truth of the distance traveled, we sampled the
trajectory by manually pressing a button on the phone
screen every time the car passed a lamppost. The distances
between the lampposts were measured off-line. The position
errors of the sample points on the INS trajectory are then
obtained using the lampposts as reference points. Fig. 1
shows the position errors of the the smartphones as a
function of time in a drive. It can be seen that the errors all
grow super-linearly with time.

The errors of the inertial sensors include those caused by
constant bias, thermo-mechanical white noise, temperature
effects, calibration errors, and bias instability. For inertial
sensors on the smartphone, the uncorrected bias errors and
white noise are typically the primary error sources [10].
The bias largely determines the mean error, while the white
noise has a zero mean and mainly impacts on the error
variance. If the bias is not very small, then the error will
build up very quickly. For instance, the Moto-DEFY
smartphone generates an error as high as 30 m in only
30 s. An additional observation from Fig. 1 is that although
the vehicle was driven at different speeds (as indicated by
the different ending times of the curves), there is no clear
correlation between error growth rate and driving speed.
The multiple error factors and this observation suggest that
it is highly difficult to accurately predict the error in
dynamic environments without external references.

Fig. 2 plots the position errors of the Google-Nexus S
smartphone, along with standard deviation, averaged over
14 runs for the same course as above. The two lines
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Fig. 3. Trajectories produced by a Google-Nexus S smartphone in a parking garage. Blue/red stars represent the start/end points of the trajectories.
(a) Original trajectory. (b) INS trajectory. (c) INS trajectory with nearest-segment (NS) map matching. (d) INS trajectory with HMM map matching.

represent the statistics of two days. Since the original errors
are sampled on particular distances, we obtain the errors
of particular points in time by polynomial interpolation.
From the figure, one can make three observations: 1) the
mean errors in both cases exhibit a super-linear trend;
2) the trends are quite different for the two days, reflecting
the inertial sensors’ sensitivity to external factors such as
temperature and driving speed; and 3) The standard
deviations widen as time goes on, which can be partly
explained by the white noise of the accelerometer that causes
the standard deviation of errors to grow at a rate propor-
tional to ¢*/2, where t is the time span of navigation [10].

2.2 Smartphone INS in an Indoor Environment

To see how a smartphone-based INS works in an indoor
environment, we conducted experiments in a parking
garage (see Fig. 3a) using the Google-Nexus S smartphone,
which is equipped with both an accelerometer and a
gyroscope. The car was driven along a multi-round path,
starting at the blue star symbol and ending at the red star
symbol. The total drive took 175 s; the first part (with
blue line) took 85 s, and the second (in red) took 90 s. The
calculated trajectory is shown in Fig. 3b. It can be seen that
the inertial sensors seriously underestimate the true
acceleration, producing a much shrunken trace. At the
end of the first part of drive, for instance, the position error
reaches 70 m. To make things worse, the angular error by
the gyroscope causes a wide disorientation of the trajectory.

Next, we examine how much map information can help
with navigation. We use a basic map-matching algorithm,
known as the Nearest-Segment (NS) Matching [4], to pull
those off-track parts of the trajectory back to the roads.
This algorithm simply projects a calculated position onto
the closest road segment. Fig. 3c shows the matching result.
From the result, we can see that the algorithm breaks the
trajectory and creates random jumps, which are obviously
wrong. We also use a more advanced map-matching
algorithm [6] based on the HMM model. Compared to
the basic NS matching, this algorithm also considers the
transition probabilities between road segments, and uses
a dynamic programming algorithm to optimally align the
trajectory with road segments. Fig. 3d shows the result.
Still, we can see some off-course trajectory segments, due
to the large error accumulated during the drive.

3 Bump DETECTION

Bump detection is a process to identify bumps on the road
surface. As a salient feature, a bump can cause vibration
to a vehicle passing over, with such an intensity that it can
be sensed by the accelerometers by checking the z-axis
acceleration [1]. Our bump detection process outputs a
detection event to an upper layer inertial navigation
application when it believes it has detected a bump. A
detection event occurs when the front wheels of a vehicle
hit a bump. The bump will also be hit by the rear wheels,
causing a minor detection event.

We use a Gaussian Mixture Model (GMM) [7] to detect
bumps. The main difference of this model from previous
approaches [1] is that the GMM model can adaptively learn
the difference between bump-incurred signals and back-
ground signals from the road; thus, we do not need to find
an absolute threshold of signal strength to differentiate
bump signals from background ones.

The z-axis acceleration signal from a smooth road
surface can be approximated by a Gaussian distribution.
Its mean p and variance o can be dynamically adjusted
with sufficient and consistent evidence from the environ-
ment. In our context, the space of smooth roads is far more
than that of bumps. Hence, a signal X will be regarded as a
bump signal if its strength deviates significantly from the
mean of smooth-road signal strength. More specifically,
X is abump signal if the absolute difference between X and
p is larger than the standard deviation multiplied by a
predefined threshold V};, that is

| X — p| > Vip x 0.

Otherwise, X will be regarded as smooth-road signal, and
the mean and variance will be updated as follows:

po=(1=MX))p+MX)X (1)

o = /(1= A(X))o? + AKX — )’ 2)

where A(-) is the probability density function extracted
from the past samples.

The above solution is called the single Gaussian model,
which roughly approximates the background signal distri-
bution. For improved accuracy, we have found that a better



TAN ET AL.: A BUMP-AIDED INERTIAL NAVIGATION METHOD FOR INDOOR VEHICLES

Original Signal

fe +

+ +

10k -------
5 ;
0 0.5 1 1.5 2
x 10"
The Signal for Detected Events with Vth=3
15 T T T T
10"”*'?|ii‘i'r"”| """" W"\'\'\"'\' '|'\”||”':'| """ r """""" ["""' |‘|%
5 i i i i
0 0.5 1 1.5 2
x 10"
The Signal for Detected Events with Vth=4
15 T T T T
10--...‘.‘\|.‘.| ........... lil ...... j ....... ‘I‘ ..... ‘-
il BN S 1
5 1 1 1 1
0 0.5 1 1.5 2
x 10"

Fig. 4. A stream of acceleration signals and events detected by the GMM
model with different V};,.

approximation is provided by GMM [7], which uses K
Gaussian distributions to model background signals. The
complexity stems from the fact that a signal from the
accelerometers is the outcome of a combination of various
forces and errors, which independently follow their own
Gaussian distributions. The GMM model assigns a weight
wr to each of the K Gaussian distribution, provided
> pwr = 1. Each new evidence (new signal from a smooth
road surface) causes each wy, to be updated as follows

W = (1 — Q)wy, + aFy,

where « is the learning rate, and Fj, is 1 for the matched
Gaussian model and 0 for the remaining models. In fact, F},
reflects whether the current signal matches model &, and wy,
is effectively the probability that previously-sensed signals
match model &, with an exponential window on historic
values. The weight of the matched model will increase, and
the remaining will decrease at the rate of % Of course, the
updated weights should be normalized accordingly. For
more details of GMM, the reader is referred to [7].

The mean and standard deviation of the matched model
are updated according to equations (1) and (2), and those of
the unmatched models remain the same. In our implemen-
tation, the initial values of wy, i, and o? are set to 0, 0, and
45, respectively. Fig. 4 shows a stream of acceleration
signals and detection events by the GMM model. A
threshold Vj;, = 4 is found to strike a nice balance between
false negative rate and false positive rate.

4 BUMP MATCHING ALGORITHM

In this section, we introduce the hidden Markov Model,
and then describe how to model our particular problem.
The modeling will use a bump graph that represents the
connectivity of the bumps as well as distances between
them. Next, we try to map a detection event to a bump
using this HMM model, hoping to find out which bump the
vehicle is currently located at during the drive.
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41 HMM Preliminary

An HMM is a Markov process with a set of unobserved
(hidden) states and observable states. Transitions between
hidden states are governed by a set of transition probabilities,
while an observable state is generated from the hidden
states with an emission probability distribution. Given some
input, an HMM traverses its states to produce its output:
the observable state emitted at each hidden state. While one
can observe the output (sequence of observable states), the
sequence of hidden states is unknown. The target is to find
out the sequence of hidden states that the process has gone
through.

In the bump matching context, each hidden state
corresponds to a bump, and each observable state
corresponds to a bump detection event. Here, the transition
probability from bump ¢ to bump j is the probability of a
vehicle finding its first detected bump to be j after passing
bump i. The emission probability of a detection event is
the probability of the vehicle having indeed moved the
calculated distance from the last matched bump, condi-
tioned on the last detection event being matched to that
bump. In this context, our problem then is to determine
the most probable bump given a recent detection event.
For higher accuracy, we want to determine the most
probable sequence of bumps for a sequence of recent
detection events.

4.2 Bump Graph

The bump graph is a directed and weighted multi-graph,
where a node represents a bump, and a directed edge
represents a direct path (i.e., without intermediate bumps)
between two bumps, with a weight equal to the length of
that path. Two nodes have multiple connecting edges when
there exist multiple direct paths between them. If a bump
is deployed on a two-way road, then it is represented as
two nodes on the bump graph. Fig. 5b shows an example of
bump graph abstracted from the road topology in Fig. 5a.
The nodes are labeled 1, 2, . . ., n. The kth edge between two
nodes i and j has weight dJ;.

4.3 HMM for Bump Detection

We now explain the transition probabilities, which deter-
mine the possible sequences of bumps that have been
passed and successfully detected, and the emission prob-
abilities, which determine the most likely bump for a
particular detection event. Assume that the probability of
false positives between nodes i and j is & = min(1, d;; - &),
where ¢’ is the false positive probability for a unit distance,
and the probability of false negative (missing a bump) is 3.

4.3.1 Transition Probabilities

Fig. 5c shows a state transition diagram of the states. The
diagram is also a multi-graph whose nodes are the same as
those in the bump graph, and whose edges ¢!, can be of two
types: single-hop edge and multi-hop edge. A single-hop
edge corresponds to an edge in the bump graph, while a
multi-hop edge corresponds to a viable path of at least two
hops on the bump graph. Two nodes may have multiple
connecting paths on the bump graph; these paths form
multiple edges of the same direction between the two nodes.
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Fig. 5. (a) A garage map with four bumps (small shaded blocks). (b) The
bump graph, where a node corresponds to a bump. (c) Diagram of bump
state transition, where an arc represents a single-hop (solid line) or multi-
hop path (dashed line). (d) HMM state diagram with emission probabilities.
In the diagram, s;’s represent the hidden states (i.e., bumps) and y;’s the
observable states (detection events). The purpose is to infer the sequence
of bumps traversed from the sequence of detection events.

Now we assign transition probability to the edge €.
For a single-hop edge, its transition probability is

vl = (1-dia’) - (1= 8),

for a multi-hop edge, we assume that its corresponding
path on the bump graph has length Df.‘:i and traverses hf‘/
intermediate bumps. Then

ply= (1= Dlj-a)- g% - (1-B).

Every node in the state diagram also has a self loop
representing the residual probability, that is

pi=1-— Zzpfj

#k

4.3.2 Emission Probabilities

Fig. 5d shows an example of HMM state diagram
corresponding to the bump graph, where s; represents a
hidden state and y; represents an observable state. Upon
a bump detection event, the INS needs to determine which
bump it has encountered. Letbump ¢ be the last matched bump
before the event occurs, and d,.. the moved distance from
bump ¢, calculated from the acceleration measurement. Then,
the emission probability is pf/ X Pace, Where pg. is the
probability of the error being the difference between
the calculated and true distances. In practice, the latter is
the error probability density function integrated over a unit
distance centered at the error value.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.7,
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Typically, the errors are primarily caused by two factors:
uncorrected bias and white noise [10]. The former is subject
to bias instability, so for a particular time span t of
navigation, the produced error can be modeled by a
Gaussian distribution whose mean depends on ¢; the latter
has a mean equal to zero, and can also be modeled with
a Gaussian distribution whose variance depends on ¢ [10].
Because of the independence of these two factors, we
model the aggregate error using a Gaussian distribution
N (ins(t), 02, (t)), where p;,5(t) and o2, () are the unknown
mean and variance functions. These two functions can be
estimated with a bump-aided error sampling and interpo-
lation method (to be detailed in Section 5). In the beginning,
we simply set 1,5(t) = 0 and o7, (t) = 0. Due to the limited
number of bumps the vehicle encounters during naviga-
tion, the estimated p;,s(t) and o7 (t) may be very rough.
Fortunately, our experimental study shows that these
functions do not have to be precise to allow accurate bump
matching, because of the very high success rate of bump
detection that dominates the emission probability. This
means that when a detection event occurs, it is very likely
that the vehicle has indeed hit a bump, so the matching can
be done with fairly high confidence, even without further
judgment from the error probability of the INS.

Finally, we use the angular information of the gyroscope
to refine the emission probability. Our navigation system
samples the gyroscope and maintains a current angle A.,,,
assuming a zero initial angle. Let the difference between
the heading directions at B,y and B, be A;.. Then the
final emission probability is multiplied by an additional
factor 1 — |Acur — Atruel/ -

4.4 Online Bump Matching

Given a detection event, it has an emission probability for
every bump. The naive way of determining the current
bump is to pick the bump with the largest emission
probability, and discard all other possibilities. This near-
sighted strategy can be improved by retaining all (or the
top few) emission probabilities, and then considering a
joint match for a sequence of most recent detection events.
Generally, we consider a sliding window of recent
detection events, and solve for the best joint match, using
the Viterbi dynamic programming algorithm [9].

5 POSITIONING

The bump matching algorithm allows the INS to reset its
current position, called a restart position, upon detection of a
bump. In this section we describe how to calculate position
based on the restart position. We call the navigation
process between two successive detection events a round.
The beginning time of a round is defined as the time when
the vehicle’s front wheels are determined to be right on top
of a bump.

5.1 Restart Speed Estimation

In additional to the restart position, we also need to
estimate the restart speed. The reason for using a new
estimate instead of the integration result from historic
data is the same as using a restart position, that is, to get
rid of the accumulated errors.
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Fig. 6. Maps of the parking garages. The areas enclosed by red lines
are tested areas. (a) Coastal City, 200 m x 180 m. (b) Central City,
160 m x 160 m.

Assume that the front and rear wheels get on top of a
bump at times ¢; and ¢,, respectively, and that the vehicle
has a speed vy and v, at the two points in time, respectively.
Further assume the wheelbase, namely the distance between
the centers of front and rear wheels, is known in advance.
Based on v,, we double integrate the acceleration readings
for the time interval (¢;,t,). The result should be approx-
imately equal to the wheelbase. With this equation, we can
obtain an estimate of v,. Based on this estimate, we then
integrate the accelerations for (¢y,¢,) to obtain an estimate
for vy, which is the desired startup speed.

5.1.1  Wheelbase determination

Wheelbase is a key parameter for some common vehicle size
class systems, in which vehicles of the same class have a small
difference in wheelbases. For example, in the U.S. system
today, Mid-size cars usually have wheelbase between 2.68
and 2.79 m [8]. For simplicity, we can use the median
wheelbase for a vehicle class. To obtain the wheelbase of a
particular vehicle, the user can choose to enter/choose the
vehicle’s class, with which the vehicle’s wheelbase can be
approximately determined. Alternatively, if an input from
the user is not available, we use the default value, 2.70 m. The
error in the wheelbase estimate will result in a position error
linear with time. In the supplementary document, we show
that this error impacts on positioning accuracy moderately,
but the Bumping method still performs far better than
schemes without startup speed estimation, due to its
avoidance of historic errors from previous rounds.

5.2 Positioning During Travel

With restart position and speed determined, the distance
moved can be calculated by double integrating the
acceleration measurements. To navigate correctly, we also
use the gyroscope on the smartphone to infer the moving
direction. The distance and direction together produce a
meaningful trajectory, which is further fitted into a map
topology using a map matching algorithm. We have tested
the positioning system in combination with two map
matching algorithms: the NS matching algorithm, and the
HMM-based matching algorithm. The latter takes into
account the transition constraints between road segments,
so as to produce better results. This will be demonstrated
in Section 6.
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5.2.1  Error compensation

The matched bumps also provide an opportunity to predict
the accelerometer’s errors. Assume the latest two matched
bumps have a distance of z, and the calculated distance
between the two corresponding detection events is Z, then
we obtain an error sample (t,err), where t is the time span
of distance calculation and err =27 —xz. These samples
are saved to help us estimate the accelerometer’s mean
error and error variance for an arbitrary ¢ via polynomial
interpolation/extrapolation. The estimated errors will thus
be compensated in real time by the navigation process in
the next round. These error samples are also used to define
the error probability density function N(pis(t),0?, (1))

»Yins

required by the emission probabilities in Section 4.

5.3 Automatic Startup Positioning
INSs invariably assume a known initial position and speed,
and this is the reason for its being used along with other
systems such as GPS and Wifi [4], rather than as an
independent system. In our context, however, the initial-
ization condition may not be satisfied. For example, in a
parking garage, the need of navigation often arises only
when the user loses direction. The fact that the user is
unaware of his/her current locations makes it infeasible for
the INS to get an input from the user, therefore the
navigation will simply be unable to start.

The bumps provide a possible solution for the problem
of automatic startup positioning. Given a sequence of M
recent detection events, we can obtain the joint emission
probability p; of such a sequence being matched to a
particular sequence S; of bumps (Bj, Bs, ..., By). We say
that the current detection event is matched to the bump By,
with probability p;, with respect to S;. Considering all
possible S; that contains By as its last element, we have
the probability of the current detection event being
matched to By as

By,'s matching probability = Z pi-

We pick the two bumps with the highest matching
prObabﬂitieS' say p'}natch and p?natch (pvlnat(:h 2 p;uatah)' as the
candidate startup bumps. As the vehicle moves along, the
candidate startup bumps and their matching probabilities
are updated. Only when p! .. /p? .., called the distin-
guishing ratio, exceeds a predefined threshold 7 (e.g., 1.5),
called the distinguishing threshold, the candidate startup
bump with the larger matching probability is taken as the
current bump, and its position is taken as the vehicle’s
current position. At this time the navigation starts up. The
startup delay and positioning accuracy depend on M and 7.
This is demonstrated in Section 6.

6 EVALUATION

We chose tree parking garages as experimental scenarios,
where the evaluation results of the third parking garage
refer to the supplementary document. Fig. 6 shows the
sketch maps of these garages, and Table 1 lists the specifics
of experimental settings. In each scenario, a Volkswagen
Jetta was driven along planned routes. A Google Nexus S
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TABLE 1
Experimental Scenarios
Scenario Drive Num. Num. Num.
(garage) length  Repeti-  bumps events
tions

Coastal City 760m 8 11 14
Central City 494m 4 9 9

smartphone fixed on the car measured the motion/angular
accelerations with a sampling rate of 50 Hz. Our program
calculated positions based on these data. For the HMM
used in the bump matching algorithm, the false negative/
positive rates of bump detection are set to be 5 percent and
0 respectively, according to the statistics of our empirical
data. We consider seven schemes:

1. InertialOnly, in which the positioning is solely based
on the inertia law;

2. Inertial+NS, which combines InertialOnly with the
NS map matching algorithm [4];

3. Inertinl+HMM, which combines InertialOnly with
the HMM map matching algorithm [6];

4.  Bump, which combines InertialOnly with our bump
matching algorithm (i.e., restart position/speed
estimation), without bias correction;

5. Bump+NS, which combines the Bump scheme with
the NS map matching algorithm;

6. Bump+HMM, which combines Bump with the HMM
map matching algorithm;
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7. BumpFull, which combines Bump+HMM with error
compensation.

For a navigation process, we sample its position at each
detection event, and obtain the absolute difference between
the calculated position (before bump matching) and the
true bump’s position, where the association is determined
by manual annotation. These differences give us a set of
error samples of the whole navigation process. In our
experiments, the detection events are identically matched
to the same sequence of bumps, so we are able to obtain an
average position error for each event over multiple drives.

6.1 Positioning Accuracy
Figs. 7 and 8 show the trajectories of the smartphone INS in
the two scenarios. Taking the Coastal City case as an
example, we see that the InertialOnly scheme totally misses
the track, especially in the second part (red line). This is
because of the negative error bias of the inertial sensors in
the phone. The bias can be more clearly seen in Fig. 2,
where the INS produces a negative error of more than 80 m
within just one minute of driving. It is thus no surprise that
in the Coastal City scenario, the INS produces a trajectory
of a much smaller size, with an average position error of
39.52 m. The map matching algorithms can help with the
first part of the drive, but fails to work for the second part,
in which the error is too large to permit a reasonable guess
about the vehicle’s true positions, even with full informa-
tion of the map.

With the aid from the bumps, the situation becomes very
different. Due to the high success rate of bump detection
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Fig. 7. Trajectories of a drive in the Coastal City garage produced by a Google-Nexus S smartphone. (a) Original. (b) InertialOnly. (c) Inertial+NS.

(d) Inertial+HMM. (e) Bump. (f) Bump+NS. (g) Bump+HMM. (h) BumpFull.
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Fig. 8. Trajectories of a drive in the Central City garage produced by a Google-Nexus S smartphone. (a) Original. (b) InertialOnly. (c) Inertial+NS.

(d) Inertial+HMM. (e) Bump. (f) Bump+NS. (g) Bump+HMM. (h) BumpFull.

(> 95 percent), the bump matching algorithm performs
very well in resetting the navigation process, and allows
the INS to restart its calculation. This can be clearly seen,
for example, in Fig. 7e, where the bumps at ¥ ~ 120 m
and X ~ 0 m successfully correct the position errors. The
Bumping method, in effect, limits the accumulation of
errors within successive bumps. The map matching
algorithms further refine the trajectories, making them
align better with the road topology. Little difference is
observed between the two map matching algorithms.

Fig. 9 shows the average position error of each detection
event (before bump matching) over multiple drives along
the same route. In the Coastal City case (Fig. 9a), a total of
8 drives were performed along a route. Roughly speaking,
the position error of the InertialOnly scheme tends to grow
with time, reaching 39.52 m on average, and 85.20 at
maximum. In contrast, the position error of the various
bump-aided methods remains constantly below 11 m. In
general, the BumpFull method works best among the various
bump-aided schemes, producing an overall average error
of 4.79 m and a maximum 12.52 m. The positioning accuracy
is very encouraging, since the average error is merely the
width of two parking lots in a row.

6.2 Startup Positioning

Automatic startup position estimation tries to match a
window, called a matching window, of M recent detection
events to a sequence of M bumps. For every bump, there is
a matching probability p,q.n corresponding to the latest
detection event. A metric, distinguishing ratio, is main-
tained as the ratio of the largest matching probability to the
second largest one. When this ratio exceeds a threshold 7,
the bump with the largest matching probability is taken
as current bump and its position as current position. There
are three cases for the matching outcome: 1) Correct match,
which means that the matched bump is correct; 2) Mismatch,
which means that the matched bump is wrong; and
3) Matching failure, which means that the distinguishing
ratio is no greater than 7.

To obtain the overall performance of this method, and
in particular, the impact of the window size M and the
distinguishing threshold 7, we drove the car along some
random routes in the Coastal City and Central City
garages. For every detection event, we backtrack M
detection events in the reverse direction of the route to
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Fig. 9. Average position errors over multiple drives along planned routes.
The overall average position errors (for all detection events) are 4.79 m
and 4.24 m respectively. (a) Coastal City. (b) Central City.



1678

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.7,

JULY 2014

® 9
[=IR-1
T

Percentage(%)
[o2]
o
7

Percentage(%)

N
=)
T

N
=]
T

1 15 2 25 3 35 4 45 5 55
Distinguishing threshold

(@)

1 15 2 25 3
Distinguishing threshold

35 4 45 5 55

(b)

create an event window. This can be viewed as if the user
started navigation at the time of the earliest detection event
in that window. We want to show what is the user’s chance
of a successful startup positioning, supposing the user
launches the INS from a random bump and uses at most M
detection events (which reflects the delay for the naviga-
tion system to start working).

A total of 78 such event windows are created, representing
78 random starting paths. Fig. 10 shows the correct match rate,
mismatch rate, and matching failure rate for varying M and 7.
From the figure, we can make two observations: 1) as M
grows, the correct match rate increases, and both of the other
two rates decrease. This is no surprise, since a longer event
window makes a stronger fingerprint that allows more
accurate matching. From M =4 to M = 5, the difference is
too small to be noticeable, suggesting the the matching
window size may not need to be very large. 2) For a particular
M, a small n means more tolerance to matching ambiguities,
hence a lower matching failure rate, but a higher mismatch
rate. As 7 grows, the matching algorithm becomes more
demanding, and so causes an increased matching failure
rate and a smaller mismatch rate. For the sake of maximum
user experience, the mismatch rate should be minimized.
Therefore, for the two parking garages, M = 4 and a medium
to high 7 appear to be the best choices.

6.3 Impact of Bump Detection Errors

Though our empirical data show a very low false negative
rate (FN <5 percent) and false positive rate (FP = 0%) for
bump detection, we want to see how robust the bump
matching algorithm is to higher FN/FP rates. We simulate
various FN/FP rates by randomly removing detection
events from, or inserting fake detection events into the
events stream, and compare the positioning accuracy. The
maximum rates simulated are 30 percent, which are very
high for realistic indoor environments.

Fig. 11 gives the average position errors of the Coastal
City and Central City scenarios under different combina-
tions of FN/FP rates. We can see an obvious impact of these
rates on position accuracy. In general, the higher the rates,
the larger the average errors. However, even for FN = 20%
and FP =30% (or vice versa), the errors are still much
smaller than the Inertial+HMM method, which is the best
among the schemes without using bumps. For the Bump-
ing method, though the missed or mistaken bump detec-
tions cause misalignment of the vehicle’s position with
the bumps, the HMM model shows its strong ability to
avoid or rectify mismatches. Fig. 11c shows an example in
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Fig. 10. Startup matching results for varying matching window size M and distinguishing threshold 7. (a) M = 2. (b) M = 3. (c) M = 4. (d) M = 5.
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the Coastal City scenario, in which the bump detection
algorithm misses two bumps (enclosed by dashed red
boxes) and mistakenly detects a bump that does not exist
(light green box). For the two missed detection events,
the distance and angular information of the inertial sensors
plays a critical role in suppressing the possibility of
mismatch. For example, for the first missed detection (top
red box), a naive bump matching scheme may match the
next detection event to the bump in the red box when the
vehicle is really on the next one, resulting in an error equal
to the length of the U-shaped road segment between the
real and envisioned bumps (about 80 m). This error may
persist for the rest of the navigation. With HMM matching,
this mismatch can be avoided, because the emission
probability considers the probabilities of both distance
error and angular error. The same happens to the second
missed bump, shown in the lower red box.

For the mistaken detection event (green box), the bump
matching algorithm faces two possibilities: either the
vehicle has indeed moved for the distance between the
two real bumps before and after the event spot, or a false
positive occurs. The algorithm finds that the former case is
more probable, thus, wrongly matches the detection event
to the next real bump on the route. Fig. 11d shows the
position error at each detection event. As can be seen, the
missed detections do not affect the error because they
have both been taken care of by the HMM model; in
contrast, the seventh event is a mistaken detection, and so
is matched to the next real bump on the route, resulting in a
big error. This error, however, is gradually corrected in
subsequent events, especially after the route makes a U-turn.

7 CONCLUSION

In this paper, we show that the widely deployed speed
bumps in parking garages provide opportunities to
improve the accuracy of the INS. The proposed Bumping
method first detects the bumps using a Gaussian mixture
model, then maps the detection events to the right bumps
with high accuracy, using a Hidden Markov Model. Field
experiment results in three parking garages show that the
proposed method significantly improves the positioning
accuracy compared to the basic inertial navigation method,
and is able to work without a known initial position most of
the time. In the future, we will consider the possibility of
installation of extra speed bumps in improving positioning
accuracy, taking into account of issues of both navigation
experience and safety.
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Fig. 11. Impact of bump detection accuracy on positioning accuracy. (a) Position error in Coastal City. (b) Position error in Central City. (c) An
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