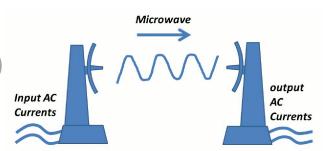
Cooperative Wireless Charging Vehicle Scheduling

Huanyang Zheng and Jie Wu

Computer and Information Sciences

Temple University


1. Introduction

- Limited lifetime of battery-powered WSNs
- Possible solutions
 - Energy conservation
 - Cannot compensate for energy depletion
 - Energy harvesting (or scavenging)
 - Unstable, unpredictable, uncontrollable...
 - Sensor reclamation
 - Costly, impractical (deep ocean, bridge surface ...)

(WSNs: Wireless Sensor Networks)

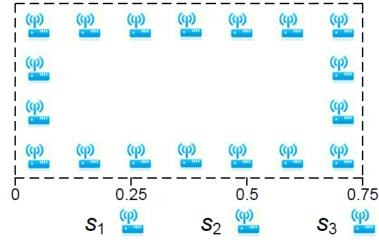
2. State of the Art

- The enabling technology
 - Wireless energy transfer (Kurs '07)
 - Wireless Power Consortium

- Wireless charging vehicles (WCV)
 - A WCV moves from one location to another for wireless charging
 - O Extended from mobile sink in WSNs and ferry in DTNs
 - Energy consumption
 - The movement of WCV
 - The energy charging process

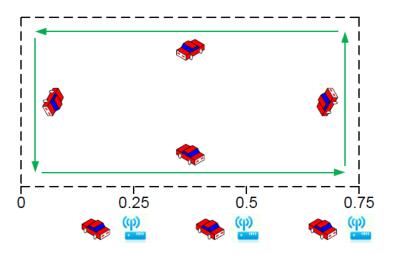
(DTNs: Delay Tolerant Networks)

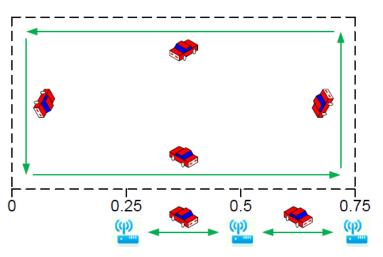
3. Collaborative Coverage & Charging

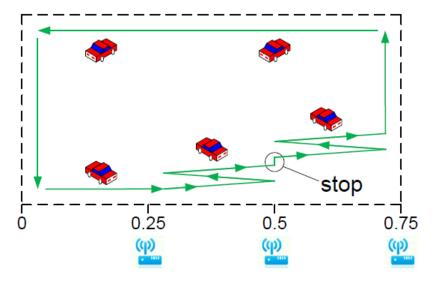

- Most existing methods
 - A WCV is fast enough to charge all sensors in a cycle
 - A WCV has sufficient energy to replenish an entire WSN (and return to the BS)
- Collaborative approach using multiple WCVs

Problem: Determine the minimum number of WCVs (with an unrestricted capacity but limitations on speed) to cover sensors with uniform/non-uniform recharge frequencies

Problem Description


A toy example


- A rectangle track with a circumference of 3.75 is densely covered with sensors with a recharge frequency of f=1 (WCV's max speed is 1)
- Sensors with f=2 at 0.25 and 0.75
- A sensor with f=4 at 0.5
- What is the minimum number of WCVs and the optimal trajectory of these MCs?

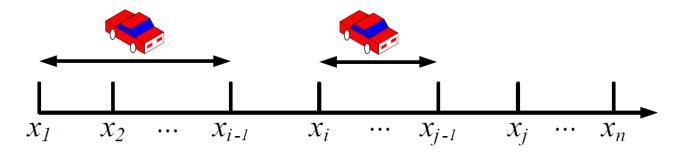

Possible Solutions

Assigning cars for sensors with f>1

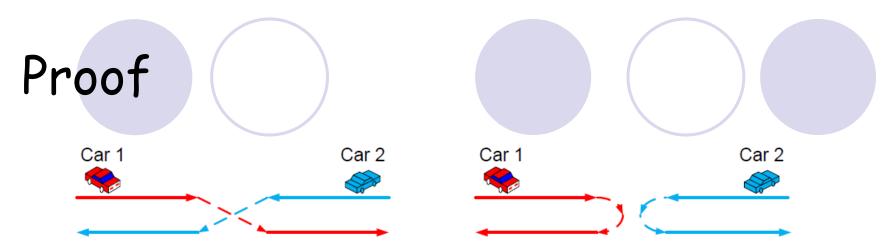
Optimal solution

4. Algorithm Design

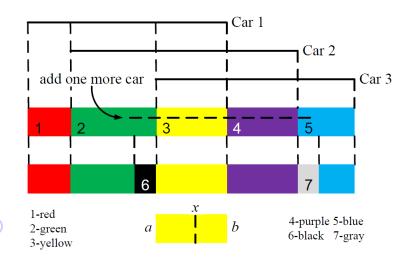
- Line space
 - Uniform frequency: optimal
 - Non-uniform frequency: bound of 2
- Circle space
 - Uniform frequency: optimal
 - O Non-uniform frequency: bound of 4
- Metric space
 - O Uniform frequency: bound of 2.5
 - O Non-uniform frequency: bound of $5\log_2 f_{\text{max}}/f_{\text{min}}$

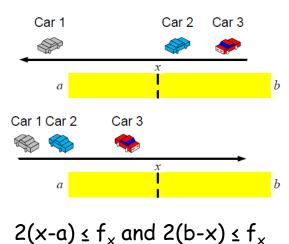

Line space (non-uniform frequency)

Back and Forth (BF)


BF(
$$x_1,...,x_n$$
; $f_1,...,f_n$):

When $n\neq 0$, generate a WCV that goes back and forth as far as possible at its full speed (covering $x_1, ..., x_{i-1}$);

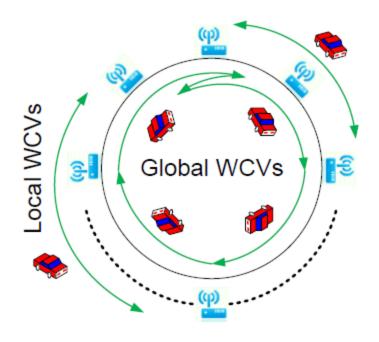

$$BF(x_{i},...,x_{n}; f_{i},...,f_{n})$$



Theorem 1: BF guarantees an approximation ratio of 2 for its optimal solution

- Two cars never meet or pass each other
- Partition the line into 2k-1 sub-regions based on the different car coverage (k is the optimal number of cars)
- Each sub-region can be served by one car going full speed
- One extra car is used when a circle is broken into a line

Line space (uniform frequency)


- The greedy solution becomes optimal
 - Proof by contradiction

Cycle space (non-uniform frequency)

- Break the cycle space into line space
 - Use the greedy solution on the line space
 - An approximation ratio of 4

Cycle space (uniform frequency)

- lacktriangle M_1 : There are C_1 WCVs moving continuously around the circle
- M_2 : There are C_2 WCVs moving inside the fixed interval of length $\frac{1}{2}$ so that all sensors are covered
- Combined method: it is either M_1 or M_2 , $C = \min \{C_1, C_2\}$
 - Optimal by contradiction
 - Otherwise, the WCVs meet

Metric space (uniform frequency)

Cycles in Minimum Forest (CMF)

CMF
$$(x_1,...,x_n; f_1,...,f_n)$$
:

for a minimum spanning forest with k=1,2... and n-1 edges construct a TSP for each connected component of the minimum spanning forest and regard each TSP as a cycle space for scheduling WCVs

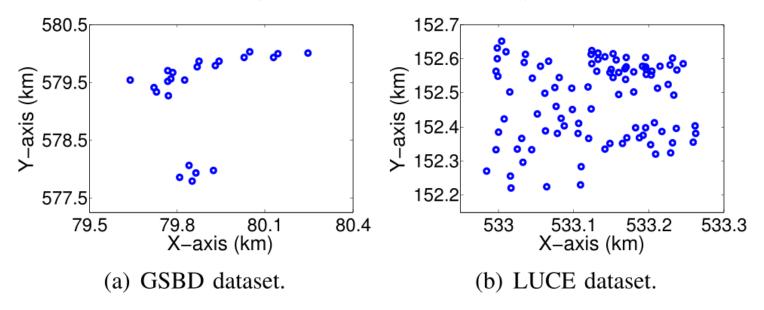
return the best one among all minimum spanning forests

Theorem 2: CMF guarantees an approximation ratio of 2.5 for the optimal solution

Proof idea: the total distances of WCVs in the optimal solution are larger than the minimum spanning forest

Metric space (non-uniform frequency)

Cover Sensors by Lifetimes (CSL)

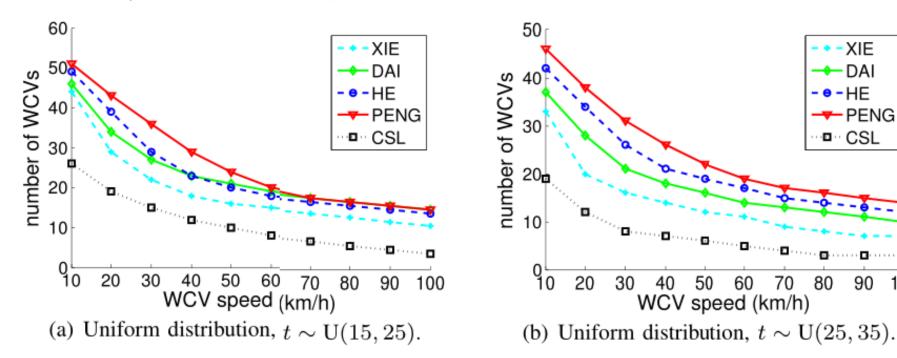

```
 \begin{aligned} \textit{CSL}(x_1, ..., x_n; \ f_1, ..., f_n): \\ & \text{for i = 1 to } \log_2 f_{\text{max}} / f_{\text{min}} \\ & \text{Sensors with } 2^{i-1} * f_{\text{min}} < f < 2^i * f_{\text{min}} \ \text{are grouped} \\ & \text{Schedule each sensor group with } \textit{CMF} \\ & \text{Return the best one among all minimum spanning forests} \end{aligned}
```

Theorem 2: CSL guarantees an approximation ratio of $5\log_2 f_{max}/f_{min}$ for the optimal solution

Proof idea: CMF has a ratio of 2.5; the number of sensor groups is $log_2 f_{max}/f_{min}$; each group has a ratio of 2

5. Experiments

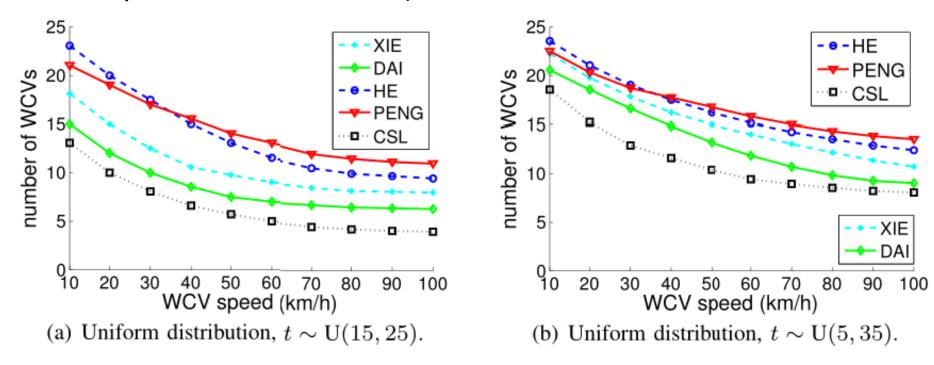
Two datasets (sensor locations)


- WCV speed is tuned from 10 km/h to 100 km/h
- Three sensor frequency (i.e., lifetime) distributions:
 - Uniform, normal, and exponential

Comparison Algorithms

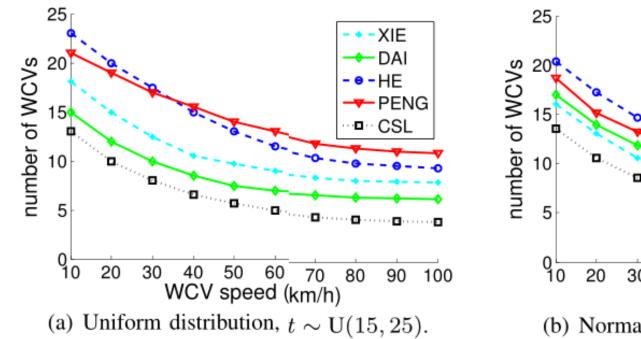
- XIE uses linear programming to near-optimally schedule only one WCV to recharge the sensors. It is iteratively applied until all sensors can run forever.
- DAI schedules WCVs according to vehicle routing problems. It can construct a forest among sensors, and assigns WCVs to each tree in the forest.
- HE is a on-demand approach in which each WCV prioritizes the nearest sensor that is close to its lifetime. It is also iteratively applied.
- PENG is a greedy approach that schedules WCVs according to sensor lifetimes. Sensors with shorter lifetimes are prioritized by WCVs.

Experiment Results


Impact of average sensor frequencies (GBSD)

 More WCVs are needed for higher frequencies (smaller sensor lifetimes) and smaller WCV speeds

Experiment Results


Impact of sensor frequencies variance (GBSD)

 More WCVs are needed for a higher frequency variance, especially when WCVs have high speeds

Experiment Results

Impact of frequency distribution difference (GBSD)

(b) Normal distribution, $t \sim N(20, 5)$.

Not sensitive to distribution difference

Experiment Summary

- Larger frequencies bring larger demands on WCVs
- Larger fluctuations of frequencies also bring larger demands on WCVs
- Not sensitive to frequency distribution differences

5. Conclusions

- Wireless energy transfer
- Collaborative mobile charging & coverage
 - Unlimited capacity, but limitations on speed
- Other extensions
 - Charging efficiency
 - WCVs as mobile sinks
 - O ...