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Wireless sensor networks (WSNs) are increasingly used in smart cities which involve multiple city services having quality of
service (QoS) requirements.Whenmisbehaving devices exist, the performance of current delivery protocols degrades significantly.
Nonetheless, the majority of existing schemes either ignore the faulty behaviors’ variability and time-variance in city environments
or focus on homogeneous traffic for traditional data services (simple textmessages) rather than city services (health care units, traffic
monitors, and video surveillance). We consider the problem of fault-aware multiservice delivery, in which the network performs
secure routing and rate control in terms of fault activity dynamic metric. To this end, we first design a distributed framework to
estimate the fault activity information based on the effects of nondeterministic faulty behaviors and to incorporate these estimates
into the service delivery. Then we present a fault activity geographic opportunistic routing (FAGOR) algorithm addressing a wide
range of misbehaviors. We develop a leaky-hop model and design a fault activity rate-control algorithm for heterogeneous traffic
to allocate resources, while guaranteeing utility fairness among multiple city services. Finally, we demonstrate the significant
performance of our scheme in routing performance, effective utility, and utility fairness in the presence of misbehaving sensors
through extensive simulations.

1. Introduction

Wireless sensor networks (WSNs) have been integrated with
smart cities and play an important role in smart city by
providing versatile applications through sensors. With the
demands for living and security standard of a city, it has
become necessary for WSNs to support a series of city
services, such as health monitoring, electricity consump-
tion, intelligent transportation, visual target tracking, and
multicamera surveillance [1, 2]. Sensors that are randomly
distributed in a network cooperate with each other to deliver
service data via multihop routing and rate control to the
sink, which can communicate with conventional networks,
for instance, the Internet.

Built upon open wireless medium, multiple city services
in WSNs are particularly vulnerable to attackers which are

attracted by sensitive information, less infrastructure, pri-
vacy, and so forth. Many service delivery protocols have been
proposed and evaluated for countering different types of mis-
behaving nodes [3, 4]; however, most studies largely ignored
the uncertainties and variabilities in the city environment. It
is not an easy job to characterize the dynamics of dynamic
ongoing or unknown attacks in an intuitionist way.Moreover,
recent works in [5, 6] have demonstrated that the attackers
with fixed strategy cannot disguise themselves as members of
a city and are then marked as the adversaries. Inconsistent
behaviors may exist in an intelligent misbehaving sensor or
adapt its strategy under random attacks in smart grids [7],
stealthy attacks inWSN-based IoT [8], and dynamic ongoing
attacks in smart cities [9]. Hence, the impact of misbehaving
sensors is probabilistic and time-varying in many cases.
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Figure 1: Multiservice delivery in a WSN of smart cities.

In order to characterize the effect of faulty behaviors on
routing and throughput, we propose an impact collecting-
based approach, which formulates the dynamics of faulty
behaviors. A popular approach is to collect information about
the direct impact of the misbehaviors, such as energy and
delivery quality inside a sensor. Besides that, the delivery
for city services is affected by some indirect impacts. For
example, the vehicle misleads network routine and causes
bandwidth consumption by announcing its various fake
position simultaneously or the frequent time interval [10]. To
defend against this type of misbehavior, a sensor needs to
obtain trust verification from other sensors. The aim of our
method is first to identify the state of a faulty sensor by, on
direct impact and on indirect impact, gathering verification
information received from its neighboring nodes. Then we
model the state of being faulty at each sensor as a random
process. Since the effect of faulty behaviors is probabilistic, the
state of being faulty will also be nondeterministic andmust be
studied by applying a stochastic framework. Accordingly, we
make each sensor establish novel metrics fault activity (FA)
for modeling the stochastic state of being faulty in terms of
statistical information about the probabilistic faulty nodes,
which is also utilized to select next forwarding candidates for
each hop and to allocate resource for each service.

Geographic opportunistic routing (GOR) is considered
an effective and flexible way to improve network performance
with the help of WSN localization and exploiting spatial
diversity [11–14]. Moreover, GOR maintains high efficiency
and scalability since each sensor only needs the local one-hop
connectivity. In this paper, our FAGOR uses more candidates
as backups and integrates fault activitymodel into the process
of the forwarding candidate selection. For example, as shown
in Figure 1, based on distance, energy, trust verification,

and delivery quality inside a sensor, each sensor filter is
prioritizing to choose a candidate sensor set of the neighbors.
These candidates follow the priorities to deliver the packet
opportunistically. Malicious sensors (node A and node B)
have very low priorities or are even not included in the
candidate set according to their direct impacts and indirect
impacts.

Network service performance becomes lowerwhen inside
intrusions are present since the effective flow gets thin-
ner when misbehaving nodes are on its routines [15, 16].
Therefore, it is necessary to apply rate-control design to
complement secure routing and guarantee performance.
A popular approach for reliable resource allocation is to
design improved optimal flow control (OFC) algorithms,
which solve network utility maximization (NUM) problems
with constraints on fixed reliability requirements [17–19].
However, these approaches are unable to adopt their resource
allocation and fairness dynamically according to the actual-
receive rate of each service. We develop a FA-leaky-hop
model in which each faulty sensor has potential effects on the
resulting data throughput and incorporate the actual-receive
rate at wireless hops into OFC approach.

Moreover, when multiple city services, for example, cam-
era monitoring, health surveillance, email, and smart home,
are run over a network as shown in Figure 1, the existing OFC
approaches usually lead to a serious unfair resource allocation
in terms of rates [20]. For example, real-time traffic which
has its minimum required rate may get almost zero utility,
despite nonzero rates. The utility function conditions of
OFC need be relaxed to describe different services regarding
heterogeneous traffic types. Based on FA-leaky-hop model,
we formulate the problem of allocating rate among multiple
services as a lossy flow optimization problem, namely, fault
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activity utility OFC, through maximizing the sum of relaxed
utilities subject to the network constraints. Considering the
existence of faulty sensors, our FA-UOFC algorithm allocates
traffic to various services and achieves fairness in terms of
actual-receive utility, rather than that in terms of rate or
utility. In particular, we define the utility fairness index which
could measure the degree of fairness performance based on
the achieved throughput in lossy networks and seek to gain
its considerable value under our service delivery strategies.

In this article, we investigatemultiple city service delivery
of joint routing and rate-control that can minimize per-
formance degradation in the event of misbehaving nodes.
To the best of our knowledge, we are the first work to
address both routing and rate-control for multiple services in
WSNs via a fault-dynamic model-based approach. The main
contributions of this paper are outlined as follows:

(i) We design a distributed framework of fault activity
information at each sensor to locally characterize the
impact of the nondeterministic and dynamic faulty
behaviors and to incorporate fault activity informa-
tion into data delivery for multiple city services.

(ii) We propose a fault activity-based geographic oppor-
tunistic routing protocol, FAGOR, which combines
the direct and indirect impacts of faulty behaviors, to
protect against a wide range of attacks.

(iii) We formulate the problem of allocating resources
among multiple services in the presence of misbe-
having nodes as a lossy flow optimization problem
along leaky-hop model. A distributed algorithm, FA-
UOFC, is developed to allocate the effective rate
properly within the sensor networks and to achieve
lossy utility fairness by sources with different traffic
types.

(iv) We define a novel index, index of utility fairness, that
quantitatively measure the degree of utility fairness
among multiple city services in distributed systems.

The rest of the paper is organized as follows. Related
work is described in Section 2. We depict our system model
in Section 3, and we present methods that allow sensors
to establish novel metrics fault activity (FA) according to
the impact of misbehaviors in Section 4. In Section 5, we
introduce the formulation of a GOR protocol based on FA
metrics. In Section 6, we describe the leaky-hop model and
formulate the optimal rate-control for multiple services in
the presence of misbehaving nodes. The performance of our
algorithm is evaluated in Section 7. Finally, we conclude the
paper and give directions for future work in Section 8.

2. Related Work

Over the past few years, literatures investigated the multiple
city service delivery over wireless networks. A resource
management scheme is proposed in [21] to offer the delivery
of various city services in the Internet of Things. Tang et
al. [22] propose a cross-layer resource allocation model for
guaranteeing the QoS requirements of elastic service (audio

and video surveillance, habitat monitoring, and real-time
traffic monitoring) based on the optimal achievable rate in
Cloud Radio Access Network. Spachos et al. [23] design
an energy-aware dynamic routing scheme to improve the
QoS-aware routing of multimedia traffic by optimizing the
selection of the forwarding candidate set.The feasibility of the
schemes mentioned above does not consider the existence of
malicious nodes, and there is no policy given to defend the
misbehaviors of wireless nodes. There exist works that study
particular misbehaviors of node-selfishness for multiservice
delivery. Luo et al. [24] design an algorithm to select relay
nodes in terms of residual energy metrics in WSN-based
IoT. The “ground truth” status of each node in [25] is served
as virtual credit to encourage data delivery according to its
social andQoS behavior.Thework in [26] presents a dynamic
trust management for secure routing to deal with selfish
behaviors and trust-related attacks. Our fault-aware routing
and resource allocation scheme extends from these solutions
with consideration given to a wider range of misbehaviors on
the multiservice delivery in WSNs from the perspectives of
both direct-impact factors and indirect impact factors.

Due to the misbehaving nodes’ effect on network perfor-
mance, various defense strategies dealingwith the nodes’mis-
behaviors have been studied for wireless networks. However,
most of these works only present countermeasure analysis
for different types of faulty nodes and have not consid-
ered the uncertainties and dynamics of real environments.
Most of the studies assume that the faulty nodes employ a
constant strategy that will not change with time. In fact, a
faulty node can adopt variable misbehaviors to maximize its
intrusion strength [27]. Malicious nodes can be equipped
with cognitive technology and can adapt their attacking
strategy according to the legitimate users’ actions [28]. The
attackers decrease their attacks in frequency to disguise
themselves and to avoid being detected [29]. Mitchell and
Chen [30] characterize a malicious attacker by its capacity
to perform random attacks. Similar to [30], our approach
works against misbehaving behaviors which may exhibit
inconsistent behaviors; a misbehaving node acts as a good
node and does not launch attacks at first, in order to gain
the trust of other nodes, or, it may perform on-off attacks
with a randomprobability.Ourwork characterizes the impact
of potential dynamic faults and incorporates statistical infor-
mation into the resource allocation and routing protocols.
This assumption not only provides efficient defense against
stationary failures but also is suitable for mobile attacks and
the uncertain losses from the various environments.

In the reliable routing of WSNs, geographic routing is an
attractive approach since no end-to-end route is determined
before data delivery [31]. A QoS-aware geographic oppor-
tunistic routing, QGOR, is explored in [14] for delivering
packets with both time delay and reliability constraints in
WSNs. Using location information, Wu et al. [32] design
an efficient routing and load balancing algorithm in hybrid
VANET.These studies, however, do not consider and respond
to location-related attacks. Liu et al. [33] consider the use
of the location verification such that neighbors exchange
their location information to address a series of location-
related attacks. One main limitation of this scheme is that
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if the localization mechanism is separated from the routing
protocol, the protocol will fail. FAGOR is similar to those
schemes in terms of security requirements. FAGOR differs
from them in that it uses RSS to detect location information
and the verification from the other sensors to identify this
type of misbehaviors with possibility.

An optimization problem is first applied to formulate the
rate-control stack design of the wireline context by Kelly et al.
[34]. This pioneering work was further advanced by studies
in cellular wireless networks [35], ad hoc networks [36], and
wireless sensor networks [37]. The fundamental assumption
of the above research is that each application attains concave
utility function and, thus, is only suitable for elastic traffic. It
cannot deal with the resource allocation of multiple services
in sensor networks where both elastic and inelastic traffic
are commonly engaged. Lee et al. [38] show that instability
and high network congestion may be caused by the mixing
of inelastic and elastic traffic in the absence of appropriate
rate controllers. Hande et al. [39] have further derived the
sufficient and necessary conditions of system optimality in a
mixed-traffic scenario and have proposed a link provisioning
method which could potentially be used during the network-
planning stage. Alternatively,Wang et al. [20] have developed
a new rate-control framework that is able to deal with both
elastic and inelastic traffic of multiple services such that the
resulting utility is proportional fair. However, these works do
not consider the existence of misbehaving nodes and assume
that each wireless node is cooperative and well-behaved.

Recently, numerous protocolswhichmaximize the sumof
each application’s utility by setting fixed reliability constraints
have been proposed to allocate the resources of multiple
services to provide reliable wireless transmissions [16]. Their
works, however, are unable to adapt fairness dynamically
in terms of the actual-receive resource of each application.
Li et al. [19] incorporate rate, in addition to delay and
reliability, into the utility function to support different QoS
requirements of various traffic. In our paper, we take a similar
approach that the utility is defined to be a function of effective
utility received at destination nodes. By means of embodying
QoS objectives in the extended utility function, our FA-
UOFC is applicable for various services addressing their real
utility requirements and improves the utility performance
both of inelastic sources and elastic sources.

3. System Model and Assumptions

This section presents the network and the misbehaving-node
model handled in this article, as well as the assumptionsmade
in order to design the proposed architecture.

3.1. NetworkModel. In a smart city, a wireless sensor network
involves tiny devices, called sensor nodes V = {1, 2, . . . , 𝑉},
which have ability to cater to different applications. These
devices are randomly deployed in a city area with a constant
size, for example, a smart community containing residential
buildings, hospitals, schools, shopping malls, cafes, and
banks. Two SNs within the wireless transmission range 𝑅
can send data and communicate with each other, and any
two nodes with a distance greater than 𝑅 would require a

multihop to communicate with each other. A link is denoted
as a pair as nodes (𝑖, 𝑗), where 𝑖 ∈ V is the transmitter and𝑗 ∈ V is the receiver. The data collected by sensors is sent
to sinks which process data locally or through core networks
such as the Internet.

The location of sinks as data, computation, and control
center are known in the network. Each sensor knows the geo-
graphic coordinate of itself using one of secure localization
algorithms [40]. Meanwhile, a sensor can adapt its location
information with the help of some trusted mobile anchor
nodes in neighbor set, for example, vehicle nodes equipped
with GPS.

Due to the broadcast nature of the wireless medium,
the transmitters contend in wireless channel capacity for
the shared wireless medium if they are within the interfer-
ence range of each other. Considering the protocol model
[41] for successful transmission, the interference among the
transmissions is characterized by the interference sets. Since
the transmitters included in the interference set share the
same common channel capacity, only one of the sensors
may transmit over a channel in a time slot. Moreover, since
energy is a major concern inWSNs, we assume that sinks are
powerful services for collecting data and that other sensors
have limited and unreplaceable batteries. We build a power
dissipationmodel to guarantee the operational lifetime of the
sensor network in Section 6.

3.2. City Services. WSNs provide a variety of services to city
users that will force networks to support heterogeneous traf-
fic.More generally, utilities ofmultiple city services in a smart
city can be categorized as follows in terms of performance
goal perspectives [20]:

(i) Elastic utility for traditional data services such as file
transfer, mail, and ftp

(ii) Inelastic utility including real-time utility, rate-
adaptive utility, and stepwise utility such as video
surveillance, real-time monitoring, and teleconfer-
encing

Figure 1 illustrates an example network with five flows 𝑠1
to 𝑠5 of source rates 𝑥1 to 𝑥5, respectively. There are different
types of sensors embedded to support city services with dif-
ferent QoS requirements.The utility types of source nodes are
given as follows: inelastic utility for the first four source nodes
and elastic utility for the fifth source node. Note that, in com-
parisonwith other data delivery for elastic traffic, the assump-
tion of mixed traffic in our rate-control model is practical
for many smart city applications, such as water consumption,
electricity consumption, target tracking, health surveillance,
and smart home appliance.

3.3. Fault Activity Information. In this article, we assume
that the source nodes have no prior knowledge of the
abnormal behaviors of nodes being performed. That is, we
make no assumption about the malicious nodes’ strategies,
misbehaviors’ goals, or mobility patterns. We assume that the
types of misbehaviors, like failure of internal components or
external faults, are unknown to the network.
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Figure 2: The delivery framework for multiple services based on the fault activity information.

In order to characterize the effect of nodes’ misbehav-
iors on the multiservice delivery, each source must collect
information on the impact of the misbehaviors in city parts
of networks. However, due to the distributed characteristic
of wireless sensor nodes, no central network entity collects
the information on the misbehaviors’ impact of all sensors
and a fully distributed solution is required. Every source/SN
should have its own fault activity information (FAI) for
both its neighbors’ and its own faulty behavior impact. The
node FAI at each SN obtains the faulty activity impact of
its neighbors and of itself in terms of direct and indirect
impacts recommended by the SNs around it. Meanwhile, the
direct and indirect impacts are affected by SNs’ factors, that is,
energy, trust verification, and delivery quality inside a sensor.

When sensor node 𝑖 delivers multiservices to the sink via
multihop communication, there are some candidates based
on node 𝑖’s knowledge of available forwarding neighbors.
Nevertheless, since the node misbehaviors may degrade the
reliability of the routing path, each hop selects the most reli-
able one of these candidates in terms of their FAI. Addition-
ally, each sensor node tries tomaximize the benefit by sending
the feedback signal, the “resource price” determines the cost
of consuming limited resources by competing services, to
the source. Accordingly, each source is charged the resource
price and is then allocated a certain amount of resources
for delivering its service. For various types of services or
applications, each source is associated with a utility function
that reflects how much QoS benefit that source obtains at
the allocated transmission rate. Here, the network model of
the distributed framework of the candidate selection and rate
allocation of the sources is shown in Figure 2.

4. Characterizing the Impact of
Faulty Activities

In this section, we propose techniques for sensor node
estimation and characterization of the impact of faulty
activities and for obtaining misbehavior information. Under

the distributed framework of the fault activity information
(FAI), the FAI of each sensor node consists of two parts: direct
impact and indirect impact of misbehaviors on multiservice
delivery. Based on FAI, we determine the node-faulty state
and get the estimation of FA metric. Each relay sensor
should incorporate its neighbors’ estimates into its candidate
selection for next-hop from its neighbor set. In order for
a source node to incorporate the misbehavior impact in
the rate-control problem, its own estimation of FA must be
recorded in the data packets when the packets arrive at this
intermediate sensor and be sent back to the source nodewhen
the packets arrive at the sinks.

4.1. Direct-Impact Model

4.1.1. Delivery Quality inside a Sensor. In a smart city, sensors
with heterogeneous nature support and forward a mix of
elastic and inelastic traffic.With the existence of misbehaving
sensors along routing paths, the data rate of a flow gets
thinner and thinner and the actual-receive rate at the sink
is considerably lower than that at the source. Figure 3 shows
the utility obtained by elastic and inelastic applications at
different actual-receive rates. If an elastic service gets a rate
slightly greater or lower than their minimum required rate,
inelastic applications get zero utility. Therefore, the quality
of delivery inside a sensor is a significant factor for utility of
multiple services.

Although a faulty node may perform various behaviors,
any good node exhibits the same behavior: delivering packets
correctly. Similar to the approach in [42], we use the ratio of
packets successfully delivered compared to those sent (pack-
ets may be corrupt even if received) in order to characterize
the delivery quality inside a sensor. During a certain period[𝑡 − 𝑇, 𝑡], each node (sender) enters the promiscuous mode
and checks whether the packet is actually forwarded by its
selected nodes. Additionally, it can record in the neighbor list
the running average number 𝑁𝑅𝑖[𝑡 − 𝑇, 𝑡] of packets sent to
node 𝑖 and the running average number𝑁𝑉𝑖[𝑡 − 𝑇, 𝑡] of valid
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Figure 3: Utility of elastic and inelastic services.

packets. Each sensor is aware of the delivery quality values of
any node 𝑖 andof its one-hopneighbors for the period [𝑡−𝑇,𝑡],
denoted as 𝑃𝑅𝑖([𝑡 − 𝑇, 𝑡]):

𝑃𝑅𝑖 ([𝑡 − 𝑇, 𝑡]) = 𝑁𝑉𝑖 [𝑡 − 𝑇, 𝑡]𝑁𝑅𝑖 [𝑡 − 𝑇, 𝑡] . (1)

4.1.2. Energy. If some sensors malfunction due to the lack
of energy, this degrades the overall network efficiency and
performance. 𝐸𝑖 is denoted as the remaining energy of node𝑖. Let 𝑒𝑠, 𝑒𝑡, and 𝑒𝑟 be the energy consumed in the sensing,
transmitting, and receiving for one data packet per unit time.

𝐸𝑖 =
{{{{{{{{{
𝑒𝑠 + 𝑒𝑡 if flow 𝑠 starts from node 𝑖
𝑒𝑡 + 𝑒𝑟 𝑠 ∈ 𝑆 (𝑖)
0 otherwise.

(2)

In order to update the direct-impact metric, the location
beacon of one-hop neighbors is extended to apply an addi-
tional field of remaining energy 𝐸𝑖(𝑡). We can use 𝑃𝑅𝑖([𝑡 −𝑇, 𝑡]) and𝐸𝑖 to update the estimate𝐷𝐼(𝑡) at the end of the time
interval. In order to balance the stability and the accuracy
of the estimation results, we update the estimation 𝐷𝐼(𝑡)
through iterations:

𝐷𝐼 (𝑡) = 𝜅 (𝛼𝐷𝐼 (𝑡 − 𝑇) + (1 − 𝛼) 𝑃𝑅𝑖 ([𝑡 − 𝑇, 𝑡]))
+ (1 − 𝜅) 𝐸𝑖 (𝑡) , (3)

where 0 < 𝛼 ≤ 1 is the parameter that controls the preference
between current and historic samples and 0 < 𝜅 ≤ 1.
4.2. Indirect Impact Model

4.2.1. Trust Verification. In smart environments, the network
also has one or more malicious users that control a number
of malicious colluders. All colluders may cooperate with each
other and turn their partner into an inside faulty node. Dur-
ing the initial stage or under a random attack strategy, these

malicious nodes do not immediately launch packet dropping
behaviors, and they modify their transmission power to dis-
guise themselves. Hence, the impact of the disguised nodes’
misbehavior is indirect on packet delivery from the perspec-
tive of the network, and a validation metric can be applied
to distinguishmalicious nodes with the voting-based scheme.

To keep consistency, we follow the assumption and vari-
able definitions about GOR in [43]. Each node periodically
broadcasts the location beacon with the location information
to its one-hop neighbors. After receiving the beacon from
node A, a neighbor B verifies the location information in
terms of the received signal strength. RSS is given by the
following [44]:

RSS𝐴𝐵 (dBm) = 𝑃𝑡 − 𝑝0 − 10𝛽 lg [𝑑𝐴𝐵𝑑0 ] + 𝑥, (4)

where 𝑃𝑡 is the node’s transmission power in dBm and 𝛽 is
the path loss factor. Here, 𝑝0 is the path loss at the reference
distance 𝑑0 and 𝑥 is a random variable. However, if the RSS
is susceptible, the above approach will lead to high false
negatives against location-related attacks. Based on (4), the
distance is estimated as𝐷𝐴𝐵 = 𝑑𝐴𝐵(1±𝜌), where 𝜌 is themea-
surement error. To reduce the effect of the disguised nodes,
nodeA requires collectingmore RSS value from the informa-
tion of its common neighbors. We denoteH = 𝑁(𝐴) ∧𝑁(𝐵) ={𝐻1, 𝐻2, . . . , 𝐻𝑘} as the intersection of A’s neighbor set and
B’s neighbor set. A neighbor node 𝑅𝑗 is selected by 𝐵 to find
the difference of the RSS value of the sender in𝐻 (e.g., node𝐻𝑗). Even though the transmission power may be modified,
the difference 𝑅𝐻𝑗𝐵𝑅𝑗 is found to be constant [45]:

𝑅𝐻𝑗𝐵𝑅𝑗 = RSS𝐻𝑗𝐵 − RSS𝐻𝑗𝑅𝑗10𝛽 = lg
𝑑𝐻𝑗𝑅𝑗𝑑𝐻𝑗𝐵 . (5)

As either the node 𝐻𝑗 or the chosen neighbor node 𝑅𝑗
may use forged information of this distance value, 𝐷𝐻𝑗𝑅𝑗 or
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𝐷𝐻𝑗𝐵 are used to replace the value of 𝑑𝐻𝑗𝑅𝑗 and 𝑑𝐻𝑗𝐵. We can
get the inequality from (5):

lg
𝐷𝐻𝑗𝑅𝑗𝐷𝐻𝑗𝐵 + lg

1 − 𝜌1 + 𝜌 ≤ 𝑅𝐻𝑗𝐵𝑅𝑗 ≤ lg
𝐷𝐻𝑗𝑅𝑗𝐷𝐻𝑗𝐵 + lg

1 + 𝜌1 − 𝜌 . (6)

Following this method, we can obtain (𝑅𝐻1𝐵𝑅𝑗 , 𝑅𝐻2𝐵𝑅𝑗 , . . . ,𝑅𝐻𝑐𝐵𝑅𝑗) for other nodes in set H. In this round, two disguised
nodes𝐻𝑚 and𝐻𝑖 are identified with 𝑅𝑗, provided that

𝑅𝐻𝑖𝐵𝑅𝑗 + lg
1 − 𝜌1 + 𝜌 ≤ 𝑅𝐻𝑚𝐵𝑅𝑗 ≤ 𝑅𝐻𝑖𝐵𝑅𝑗 + lg

1 + 𝜌1 − 𝜌 . (7)

With node𝐵’s neighbor nodes as reference nodes, each𝐻𝑖
belonging to 𝐻 can be identified using this method. During
the time period [𝑡 − 𝑇, 𝑡], there are 𝑞𝑖([𝑡 − 𝑇, 𝑡]) disguised
nodes that are faked by actually one node in a round and𝑓𝐻𝑖([𝑡 − 𝑇, 𝑡]) rounds of the entire 𝑚𝐻𝑖([𝑡 − 𝑇, 𝑡]) rounds in
the calculation. The estimate value 𝐷𝑆𝐻𝑖(𝑡) of the possible
disguiser𝐻𝑖 can be obtained by

𝐷𝑆𝐻𝑖 (𝑡)
= 𝛾𝐷𝑆𝐻𝑖 (𝑡 − 𝑇)

+ (1 − 𝛾) 1𝑞𝐻𝑖 ([𝑡 − 𝑇, 𝑡]) (1 − 𝑓𝐻𝑖 ([𝑡 − 𝑇, 𝑡])𝑚𝐻𝑖 ([𝑡 − 𝑇, 𝑡])) .
(8)

An attacker can launch a spoofing attack by sending
forged location beacons to attract SNs to choose one of them
as the next-hop. In this paper, the FAImanagementmakes use
of the RSS to verify SNs’ location and to address the location-
related attacks by offering nodes the location with possibility.
Based on the collected RSS values, we can compute the values(𝑅𝐴𝐵𝐻1 , 𝑅𝐴𝐵𝐻2 , . . . , 𝑅𝐴𝐵𝐻𝑘) for the set H whose size is 𝑘, where𝑅𝐴𝐵𝐻𝑖 = (RSS𝐴𝐵 − RSS𝐴𝐻𝑖)/10𝛽 = lg(𝐷𝐴𝐻𝑖/𝐷𝐴𝐵). Then the
following inequality can be provided to decide whether node𝐴 is marked as a successful validation:

lg
𝑑𝐴𝐻𝑖𝑑𝐴𝐵 + lg

1 − 𝜌1 + 𝜌 ≤ 𝑅𝐴𝐵𝐻𝑖 ≤ lg
𝑑𝐴𝐻𝑖𝑑𝐴𝐵 + lg

1 + 𝜌1 − 𝜌 , (9)

where 𝑑𝐴𝐻𝑖 and 𝑑𝐴𝐵 are the position announced in the
received location beacon. If the inequality is satisfied, it
means that node A with one neighbor𝐻𝑖 ∈ H can be marked
as a successful validation, and𝑀𝐻𝑖 = 1. Otherwise,𝑀𝐻𝑖 = 0.
We can obtain the ratio of successful validation of node A:

𝐿𝐶𝐴 (𝑡) = 1𝑘
𝑘∑
𝑖=1

𝐷𝑆𝐻𝑖 (𝑡)𝑀𝐻𝑖 . (10)

Furthermore, we introduce the indirect impact metric to
address issues of location-related attacks. In order to gain the
trust of other nodes, some malicious sensors claim them-
selves as legitimate nodes but transmit beacon messages con-
taining false location information to confuse other sensors.
Each network node may obtain the verification information
of its candidates indirectly received from its neighboring

nodes. Additionally, the impact of these disguised nodes’mis-
behaviorwhich pollutes the network systemwith bogus infor-
mation is indirect on packet delivery from the perspective of
the network. We get the expression of indirect impact metric
of node A:

𝐼𝐷𝐼𝐴 (𝑡) = 𝛿1𝐷𝑆𝐴 (𝑡) + 𝛿2𝐿𝐶𝐴 (𝑡) , (11)

where𝛿1+𝛿2 = 1 and 0 < 𝛿𝑖 < 1which is the coefficient factor.
The indirect impact metric of each node’s one-hop neighbors
can be calculated in terms of information in the beacon.
To reduce the bandwidth consumption caused by beacon
exchange, it is not necessary to contain the neighbor infor-
mation in the beacon unless the information is changed.

4.3. Fault Activity Metric Based on Determining Node State.
Due to the uncertainty in the faulty impact, we model the
direct impact and the indirect impact as random processes
and allow the sensor nodes to collect empirical data for
characterizing the process. In order to identify the faulty state
of each node, we design an impact metric which enables each
node to measure faulty impact for both its own faulty impact
and its neighbors’ faulty impact based on its knowledge of
available one-hop neighbors. The total impact value for node𝐴 can be given by

𝐼𝐴 (𝑡) = 𝜖𝐷𝐼𝐴 (𝑡) + (1 − 𝜖) 𝐼𝐷𝐼𝐴 (𝑡) , (12)

where 𝜖 is the factor with 0 < 𝜖 ≤ 1. Then we define the novel
faulty state and FA metric as follows.

Definition 1 (the node-faulty state). Λ 𝑖(𝑡0) denotes the faulty
status in node 𝑖 at time 𝑡0, where Λ 𝑖(𝑡0) = 1 indicates that
the node 𝑖 is faulty where 𝐼𝑖(𝑡0) ≤ 𝐼0; otherwise, Λ 𝑖(𝑡0) = 0
indicates that node 𝑖 is not faulty.

To determine the node-faulty state, we can use a heuristic
approach to test whether the current node is experiencing
“being faulty condition” in which the impact metric drops
below a certain threshold. Any node whose impact metric is
below the threshold can be regarded as a faulty node since
we are unable to accomplish our objectives efficiently. We
suppose that each node 𝑖 updates 𝐷𝐼𝑖 and 𝐼𝐷𝐼𝑖 after each
update period of 𝑇 seconds and estimates the FAmetric after
each update calculation period of 𝑇𝑠 ≫ 𝑇 seconds. Next, we
define the FA which is the time that faulty nodes spend in
each state per unit time.

Definition 2. TheFA for node-faulty state denoted by𝐴 𝑖 is the
fraction of time during period [𝑡 − 𝑇𝑠, 𝑡] for which the node 𝑖
is in the state Λ 𝑖, that is, 𝐴 𝑖 = (𝑇/𝑇𝑠) ∫𝑡𝑡−𝑇𝑠 Λ 𝑖(𝑥)𝑑𝑥.

To facilitate observation, we illustrate an example of
converting the impact value of a sensor node A (as shown
in Figure 4) into the faulty state with 𝐼0 being 0.6 in Figure 5
and the value of fault activity in Figure 6. Once we obtain the
estimation of FA, we can get the fault-statistical information
for routing path selection and resource allocation.
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Figure 4: Impact value of a sensor node.
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Figure 7: Connectivity probability with 𝑆 = 1000 ∗ 1000m2, 2 ∗10−5 ≤ 𝜆 ≤ 1 ∗ 10−3, and 50m ≤ 𝑅 ≤ 360m.

5. Fault Activity Geographic Opportunistic
Routing Algorithm

In this section, a geographic routing protocol on fault activity
metric is presented, providing methods for sensors to choose
the candidates based on impact caused by faulty behaviors.
FA-GOR selects more forwarding candidates based on the
routing metric of available next-hop forwarders.

Before presenting our routing algorithm, we first discuss
an intrinsic nature of WSNs that can support our idea:
network connectivity. When sensors are distributed in area 𝑆
randomly, the process that there are 𝑛 sensors in an arbitrary
area 𝑈 is modeled according to Poisson distribution [40]:

𝑃 {󵄨󵄨󵄨󵄨𝑁𝑛󵄨󵄨󵄨󵄨 𝑈 = 𝑛} = (𝜆𝑈)𝑛𝑛! 𝑒−𝜆𝑈, (13)

where 𝜆 denotes node density, |𝑁𝑛| is the cardinality of 𝑁𝑛,
and 𝜆 = |𝑁𝑛|/𝑈. In order to describe the full connection
probability 𝑃𝑐, we first calculate the probability 𝑃iso that no
link exists between sensor𝑁 and other nodes:

𝑃iso = 𝑃 {󵄨󵄨󵄨󵄨𝑁𝑛󵄨󵄨󵄨󵄨 𝜋 = 𝑅20} = 𝑒−𝜆𝜋𝑅2 . (14)

In terms of the isolation probability 𝑃iso, the full connec-
tion probability is given by the following [46]:

𝑃𝑐 ≥ 𝑒−𝜆𝑆𝑃iso . (15)

Figure 7 shows that when 𝜆 and𝑅 are set as proper values,
the expected fully connected can be achieved in a WSN.

Assuming that Dist(𝑦,Dest) is denoted as the distance
from sending node 𝑦 to the sink (denoted as Dest) and
Dist(V,Dest) is denoted as the distance from its neighbor
V ∈ 𝑁(𝑦) to the sink, we have the routing metric for the
forwarding candidates as follows:

metric𝑦V = 𝜗(1 − Dist (V,Dest)
Dist (𝑦,Dest)) + (1 − 𝜗) (1 − 𝐼V) , (16)
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Require: V ∈ 𝑁(𝑦), the neighbor set of node 𝑦
Ensure: the next forwarder 𝑛
(1) start a retransmission timer;
(2) select the forwarding set 𝐹(𝑦) including 𝑔 candidates from

neighbor nodes𝑁(𝑦), 𝐹(𝑦) = 0, 𝑔 = 0;
(3) for each node 𝑖 ∈ (𝑁(𝑦) − 𝐹(𝑦)) do
(4) if metric𝑦𝑖 = max{metric𝑦𝑗}, ∀𝑗 ∈ (𝑁(𝑦) − 𝐹(𝑦)) and𝑛 ≤ 𝑔 then
(5) add 𝑖 to 𝐹(𝑦); 𝑔 + +;
(6) end if
(7) end for
(8) prioritize the forwarder set using metric;
(9) broadcast the data packets;
(10) for each node 𝑖 ∈ 𝐹(𝑦) do
(11) receive the data packet;
(12) check the sender ID and start a timer and time(𝑖) = 𝜅/metric𝑦𝑖,

where 𝜅 is a constant;
(13) end for
(14) if node 𝑛 which obtains the highest priority receives the data

packet correctly then
(15) reply an ACK to notify the sender as well as other candidates

to cancel their timers;
(16) else
(17) if the priority timer expire then
(18) set 𝑛 = 𝑛󸀠, node 𝑛󸀠 has the lower-priority;
(19) goto 14;
(20) end if
(21) end if
(22) if no forwarding candidate has successfully received the packet

then
(23) if the retransmission timer does not expire then
(24) goto 2;
(25) end if
(26) end if
(27) return

Algorithm 1: FAGOR algorithm.

where 𝜗 ∈ (0, 1] is the constant weight indicating the relative
preference between distance and fault impact value 𝐼V. Each
next-hop forwarder is assigned with its priority based on the
metric value of (16).

We introduce the FAGOR algorithm to select the next
relay node following the assigned priority in forwarder set 𝐹
to relay the packets. Algorithm 1 depicts the pseudocode of
FAGOR algorithm.

Our FAGOR could defend against a wide range of misbe-
haviors. For example, in Figure 8, as one candidate of node𝐵’s
next-hops, node 𝐴 lies about its location and associates with
disguisers (𝐻4–𝐻7) as its colluders. The mutual neighbors of𝐴 and 𝐵, 𝐻1–𝐻7, need to report their RSS values related to𝐴 to 𝐵 and work based on majority voting. 𝐵 could choose
reference nodes from𝑁(𝐴) ∧𝑁(𝐻) to verify the validity of the
voters. Node 𝑅 sends the estimate value 𝐷𝑆𝐻𝑖 about 𝐻4–𝐻7
to node 𝐵 by (8). Node 𝐵 calculates 𝐿𝐶𝐴 to incorporate it into
indirect value of node 𝐴. Finally, node 𝐴 is found as being
faulty state during a period and could not be selected into the
routing path.

6. Fault Activity Utility-Based Optimal Flow
Control Approach

In this section, we present a leaky-hopmodel which explicitly
takes account of faulty activities and then present fault
activity-based utility optimal flow control (FA-UOFC) based
on the leaky-hop model. One underlying assumption in the
utility framework of rate control is that the same flow is
present at all the hops along the route. In hostile environ-
ments, however, the data rate 𝑥𝑠 of a given flow 𝑠 becomes
thinner along its path. Due to potential faulty behaviors on
each node, all data deliveries are not successful.

6.1. Leaky-Hop Model. In Section 4, 𝐴 𝑖 is denoted as the
fraction of time during the unit period for which node 𝑖
exhibits misbehavior, while 1 −𝐴 𝑖 is the time fraction during
which node 𝑖 accomplishes its communication effectively
as a good node. 𝐴 𝑖 characterizes the probability of faulty
behaviors over single hop. At a link (𝑖, 𝑗) with transmission
rate∑𝑠∈𝑆(𝑖,𝑗) 𝑥𝑠, since data is only received correctly on 1 −𝐴 𝑖
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Figure 8: An illustration for misbehaving nodes.

from hop 𝑖, the correctly received data rate 𝑥󸀠𝑗 at hop 𝑗 is
presented by

𝑥󸀠𝑗 = (1 − 𝐴 𝑖) ⋅ ∑
𝑠∈𝑆(𝑖,𝑗)

𝑥𝑠. (17)

For path 𝑅𝑠 traversing multiple hops, the end-to-end
packet success ratio for path 𝑅𝑠 is given by

𝛾𝑠 = ∏
(𝑖,𝑗)∈𝑅𝑠

(1 − 𝐴 𝑖) . (18)

𝑅𝑖𝑠 is denoted as the subpath of 𝑅𝑠 between source 𝑆 and
the intermediate node 𝑖, and 𝑅𝑖𝑠 is denoted as the subpath of𝑅𝑠 between the intermediate node 𝑖 and the sink node of 𝑅𝑠.
For subpath 𝑅𝑖𝑠 of a data flow, the data delivery probability
at leaky-hop 𝑖 is given by 𝛾𝑖𝑠 = ∏(𝑖,𝑗)∈𝑅𝑖𝑠(1 − 𝐴 𝑖). It can be
seen that the data rate of a given flow becomes “thinner and
thinner” at each hop along its routing path, and we call the
flow traversing every potentialmisbehaving hop to be a leaky-
hop flow. We define goodput 𝑥󸀠𝑠 of flow 𝑠 as the data rate
received correctly at the sink [47]. Therefore, in the presence
of misbehaving nodes, 𝑥󸀠𝑠 = 𝛾𝑠𝑥𝑠.

An example leaky-hop model is described in Figure 9.
Flow 1 traverses along four leaky-hops: 𝑛1, 𝑛3, 𝑛4, and 𝑛6.
Flow 2 traverses along three leaky-hops: 𝑛2, 𝑛3, and 𝑛5. The
goodput of flow 1 at the destination is (1 − 𝐴𝑛1)(1 − 𝐴𝑛3)(1 −𝐴𝑛4)(1 − 𝐴𝑛6)𝑥1. It can be seen that the data rate of a flow
becomes lower and lower along multiple hops. For example,𝛾𝑛11 𝑥1 → 𝛾𝑛31 𝑥1 → 𝛾𝑛41 𝑥1 → 𝛾𝑛61 𝑥1. There may exist different
data delivery probabilities at a leaky-hop for different data
flows.The leaky-hop 𝑛3 for flow 1 and flow 2 has different data
delivery probabilities: 𝛾𝑛31 = (1 −𝐴𝑛3)𝛾𝑛11 , 𝛾𝑛32 = (1 −𝐴𝑛3)𝛾𝑛22 .
We call a potential faulty node on the routing path of flow 𝑠
to be a leaky-hop for flow 𝑠.

The resource allocation problem in WSNs gives rise to
many new challenges. Among the many unique characteris-
tics ofWSNs, we focus on two constraints in our formulation.
Due to the broadcast nature of the wirelessmedium, all trans-
missions are not successful and the transmitters contendwith
each other in the broadcast domain. To apply the constraint

of contention regions, we use the contention set concept from
[48]. The contention set Ω is denoted as the subset of links
belonging to a contention region that, at most, one link in Ω
can transmit in each time slot successfully. Let Ω(𝑖,𝑗) be the
contention link set of link (𝑖, 𝑗). If user 𝑠 transmits over link(𝑖, 𝑗), other flows in the contention set Ω(𝑖,𝑗) cannot transmit
packets simultaneously. Let 𝑐(𝑖,𝑗) be the capacity of link (𝑖, 𝑗).
We incorporate the node-faulty activity statistics into the link
capacity constraint generation. Due to leaky-hops along the
routing path, the flow rate is potentially reduced at each of
the receiving hops as packets are lost. The availability metric
in Definition 2 means the fraction of time for which the
immediate sensor delivers packets correctly. The stochastic
capacity constraint on the total flow rate traversing a link (𝑖, 𝑗)
is given by

∑
(𝑖󸀠 ,𝑗󸀠)∈Ω(𝑖,𝑗)

∑
𝑠∈𝑆
(𝑖󸀠 ,𝑗󸀠)

𝛾𝑖𝑠𝑥𝑠𝑐(𝑖,𝑗) ≤ 1. (19)

Another major point in WSNs is the energy constraint
caused by the energy consumption of sensing, transmitting,
receiving, and relaying data. Let 𝐵𝑖 denote the initial amount
of initial battery (energy) at node 𝑖, 𝑖 ∈ 𝑁.

We also incorporate the FA statistics into the energy
constraint, in which the power consumption of each node 𝑖
should not exceed the maximum allowed power generation𝑝max
𝑖 :

(𝑒𝑡 + 𝑒𝑟) ∑
𝑠∈𝑆(𝑖)

𝛾𝑖𝑠𝑥𝑠 + (𝑒𝑠 + 𝑒𝑡) 𝜆𝑖 ≤ 𝑝max
𝑖 , (20)

where 𝜆𝑖 = 𝛾𝑖𝑠𝑥𝑠, if flow 𝑠 starts from sensor node 𝑖; otherwise,𝜆𝑖 = 0. For a prespecified lifetime, 𝑇𝑑, the maximum node
power consumption 𝑝max

𝑖 = 𝐵𝑖/(𝑇𝑑−𝜏𝑝idle), where 𝜏 and 𝑝idle
are the duty cycle and energy consumed in the idle state per
unit time.

6.2. FA-UOFC for Multiple Services. For wireless sensor
networks in a smart city, many different types of sensor
are emerging to present numerous applications that exhibit
different utility behaviors. Similar to [20], we observe that the
operations of the data gathering involve both inelastic and
elastic traffic. In order to support the multiple types of traffic,
the flow control strategy should have the ability to allocate
traffic rates properly in order to balance the performance for
different applications. We will adopt the rate-control proto-
col, newly developed by Wang et al. [20], for handling elastic
and inelastic traffic. When each source 𝑠 transmits at rate 𝑥𝑠,
it attains a utility𝑈𝑠(𝑥𝑠). The utility function𝑈𝑠(⋅) is assumed
to be continuous, strictly increasing, and bounded in the
interval [𝑚𝑠,𝑀𝑠]. We define a “pseudoutility” 𝑢𝑠(𝑥𝑠) as

𝑢𝑠 (𝑥𝑠) = ∫𝑥𝑠
𝑚𝑠

1𝑈𝑠 (𝑦)𝑑𝑦, 𝑚𝑠 ≤ 𝑥𝑠 ≤ 𝑀𝑠. (21)

In order to provide a good performance balance for
different applications in sensor networks, the flow control can
be generalized to obtain new problem formulations, namely,
utility optimal flow control (UOFC), which maximizes the
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Figure 9: An example network with leaky-hop flows.

sum pseudoutility under the contention constraint [41] and
the energy constraint.

At the sink of flow 𝑠, the correctly received data rate can
be represented as 𝛾𝑠𝑥𝑠. The optimization problem introduced
previously can be presented as a new formulation:

Problem: max ∑
𝑠∈𝑆

(∫𝛾𝑠𝑥𝑠
𝑚𝑠

1𝑈𝑠 (𝑦)𝑑𝑦)
s.t.: ∑

(𝑖󸀠 ,𝑗󸀠)∈Ω(𝑖,𝑗)

∑
𝑠∈𝑆
(𝑖󸀠 ,𝑗󸀠)

𝛾𝑖𝑠𝑥𝑠𝑐(𝑖,𝑗) ≤ 1
(𝑒𝑡 + 𝑒𝑟) ∑

𝑠∈𝑆(𝑖)

𝛾𝑖𝑠𝑥𝑠 + (𝑒𝑠 + 𝑒𝑡) 𝜆𝑖
≤ 𝑝max
𝑖 .

(22)

Since the objective function𝑈𝑠(⋅) is nonnegative, continu-
ous, and strictly increasing (not concave), the “pseudoutility”∫𝛾𝑠𝑥𝑠
𝑚𝑠

1/𝑈𝑠(𝑦)𝑑𝑦 must be a strictly increasing concave func-
tion. Therefore, with linear, separable, convex, and compact
constraints, the optimization problem in (22) has a unique
optimal solution.

In the following, we use Lagrangian dual method
and develop a rate-control algorithm. First, we form the
Lagrangian as follows:

𝐿 (𝑥󸀠, 𝜆, 𝜆) = ∑
𝑠∈𝑆

(∫𝛾𝑠𝑥𝑠
𝑚𝑠

1𝑈𝑠 (𝑦)𝑑𝑦

− 𝛾𝑖𝑠𝑥𝑠(( ∑
(𝑖,𝑗)∈𝐿(𝑠)

∑
(𝑖󸀠 ,𝑗󸀠)∈Ω(𝑖,𝑗)

𝜆) + (𝑒𝑟 + 𝑒𝑡) ∑
𝑖∈𝑁(𝑠)

𝜆

+ (𝑒𝑠 + 𝑒𝑡) 𝜄𝑠)) +∑
𝑙

𝜆𝑐𝑙 + ∑
𝑖∈𝑁

𝜆𝑝max
𝑖 ,

(23)

where 𝜆 = [𝜆1, 𝜆2, . . . , 𝜆𝐿]𝑇, 𝜆 = [𝜆1, 𝜆2, . . . , 𝜆𝑆]𝑇, and 𝑢 =(𝜆, 𝜆) are all nonnegative. 𝜄𝑠 = 𝜆, assuming flow 𝑠 starts from
node 𝑛. The objective function of dual problem is given by

min
𝜆,𝜆

𝐷(𝜆, 𝜆) = min
𝜆,𝜆≥0

max
𝑥󸀠

𝐿 (𝑥󸀠, 𝜆, 𝜆) . (24)

We use the gradient method to solve the above dual
problem. The Lagrangian multipliers for the dual can be
updated as follows at each iteration 𝑡:

𝜆(𝑖,𝑗) (𝑡 + 1) = [[𝜆(𝑖,𝑗) (𝑡) + 𝜑( ∑
(𝑖󸀠 ,𝑗󸀠)∈Ω(𝑖,𝑗)

∑
𝑠∈𝑆(𝑖,𝑗)

(𝑥𝑠𝛾𝑖𝑠)

− 𝑐(𝑖,𝑗))]]
+

,
(25)

𝜆(𝑖) (𝑡 + 1) = [𝜆(𝑖) (𝑡)
+ 𝜑(((𝑒𝑡 + 𝑒𝑟) ∑

𝑠∈𝑆(𝑖)

𝑥𝑠 + (𝑒𝑠 + 𝑒𝑡) 𝜆𝑖)𝛾𝑖𝑠
− 𝑝max
𝑖 )]+ ,

(26)

where 𝜑 > 0 is a small step size, and 𝑧+ = max{0, 𝑧}. Here,𝜆(𝑖,𝑗), (𝑖, 𝑗) ∈ 𝐿, can be considered the price for using the
resource of contention set Ω(𝑖,𝑗). Similarly, 𝜆(𝑖), 𝑖 ∈ 𝑁, can
be interpreted as the price for using energy at sensor node𝑖. Given these two prices, each flow 𝑠, 𝑠 ∈ 𝑆, adopts its rate
according to

𝑥𝑠 (𝑡 + 1) = [𝑢󸀠−1𝑠 (𝜆𝑠 (𝑡))]𝑀𝑠
𝑚𝑠

, (27)

where [𝑧]𝑎𝑏 = min(max(𝑧, 𝑎), 𝑏), 𝑢󸀠−1𝑠 is the inverse of 𝑢󸀠s, and
(27) can be replaced as follows:

𝑥𝑠 (𝑡 + 1) = 𝑈−1𝑠 ([ 1𝜆𝑠 (𝑡)]
𝑈𝑠(𝑀𝑠)

𝑈𝑠(𝑚𝑠)

) , (28)

where 𝜆𝑠(𝑡) = ∑(𝑖,𝑗)∈𝐿(𝑠) 𝜆(𝑖,𝑗)(𝑡) + (𝑒𝑟 + 𝑒𝑡) ∑𝑖∈𝑁(𝑠) 𝜆𝑖(𝑡) + (𝑒𝑠 +𝑒𝑡)𝜄𝑠(𝑡). Hence, we propose Algorithm 2 based on the problem
formulation of fault activity-based utility optimal control.

Our algorithm can be carried out in a distributedmanner
by message exchange in the network, as shown in Figure 10.
To implement our scheme, no node in the network needs
to know global information nor the individual variables
of algorithm. The information needs to be updated by the
receiving node and to be sent via piggybacking.
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At each time 𝑡 = 1, 2, . . . ,
(1) Update source rate: Each source node 𝑠 calculates the

source rate 𝑥𝑠(𝑡 + 1) for the next period according to
Eq. (28);

(2) Update resource prices: Using the information of
aggregated transmission rate, link (𝑖, 𝑗) computes a new sole
contention price 𝜆(𝑖,𝑗)(𝑡 + 1) according to Eq. (25) and
node 𝑖 computes a new energy price 𝜆𝑖(𝑡 + 1) according to
Eq. (26);

(3) Deliver information towards the sink: Sensor node 𝑖
adapts the contention price 𝜆(𝑖,𝑗)(𝑡) and the energy
price 𝜆𝑖(𝑡) along the path, and propagates towards the
sink;

(4) Feedback message from the sink: The sink feedbacks
the FA parameter and the aggregated resource price to
the source via the reverse path.

Algorithm 2: FA-UOFC algorithm.
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Figure 10: System model for Algorithm 2.
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First, each sensor node estimates and updates the
resource price locally, the fault activity information of its
neighbors, and its own fault activity information; then we
apply two additional header fields, mean field and price field,
to both data packets and control packets. When a new packet
arrives, the updated FAI is multiplied together and the local
prices are added to the price of the packets that arrive from
the upstream node. When the packet arrives at the sink, val-
ues of the two fields will be feedback to the source node by the
acknowledgement packet.

Second, when the packet arrives at the sink, the aggre-
gated FAI and resource prices will be piggybacked to the
source node in the acknowledgement packet.

Third, each node can construct its local contention set by
exchanging information from neighbors instead of knowing
the entire network topology.

Hence, the total number of additional exchange opera-
tions is within 𝑂(𝐿𝑁), where 𝑁 is the number of source 𝑆󸀠
routing paths and 𝐿 is the number of network’s links. The
proposed fault activity utility optimal flow control algorithm
is practical and realizable in WSNs.

6.3. Utility Fairness. The goal of our rate-control approach is
to able to maintain an acceptable level of service degradation,
including effective network throughput and fairness, in the
presence of misbehaving nodes. In this section, we establish
the existence and uniqueness of a utility fair solution with
the presence of misbehaving nodes and define a novel index,
utility fairness index, which quantitatively measures the
degree of utility fairness in distributed systems.

Considering the performance of different services, the
utility OFC (UOFC) with the resource constraints in WSNs
allocates flow rates of different applications according to their
utility requirements, and, what is more, the optimization
approach yields utility fairness [20]. In WSNs without faulty
nodes, the set of goodput rate vector 𝑋 for each flow 𝑠 that
satisfies the resource constraints in problem (22) with 𝛾𝑖𝑠 =1 for 𝑖 ∈ 𝑁 is called the rate region 𝑋(𝑐, 𝑠, 1). In hostile
environments, the set of goodput vector𝑋󸀠 that follows from
problem (22) with 𝛾𝑖 ̸= 1 is denoted as 𝑋(𝑐, 𝑠, 𝛾). It is clear
that 𝛾𝑖𝑠 ≤ 1 and that𝑋(𝑐, 𝑠, 𝛾) ⊆ 𝑋(𝑐, 𝑠, 1).

When the rate-control Algorithm 2 with 𝐴 𝑖 = 0 leads
to equilibrium (𝑥∗, 𝜆∗, 𝜆∗) at convergence, the pseudoutility
function 𝑢(𝑥) is maximized within the feasible solution.
Here we can employ both a utility proportional fairness as
described in [20] and utility max-min fairness proposed
in [48]. For any other feasible allocation 𝑥 ̸= 𝑥∗, if∑𝑠∈𝑆(𝜕𝑢(𝑥∗𝑠 )/𝜕𝑥𝑠)(𝑥𝑠 − 𝑥∗𝑠 ) = ∑𝑠∈𝑆((𝑥𝑠 − 𝑥∗𝑠 )/𝑈𝑠(𝑥∗𝑠 )) ≤ 0,
the source rate allocation 𝑋∗ = [𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑠 ]𝑇 is utility
proportionally fair. 𝑈(𝑥) is the strictly concave function;
the strict inequality holds and meets the utility proportional
fairness definition. Therefore, the source rate allocation in
Algorithm 2 with 𝛾𝑖 = 1 is utility proportionally fair.
To achieve utility max-min fairness, we give a new dis-
tributive flow control algorithm. If the aggregate price of
Algorithm 2 is replaced with 𝜆𝑠(𝑡) = max{max(𝑖,𝑗)∈𝐿(𝑠)𝜆(𝑖,𝑗)(𝑡),
max𝑖∈𝑁(𝑠)𝜆𝑖(𝑡)}, which is the maximum of the contention
prices and the energy prices along the path, the updated

algorithm could provide a utility max-min fair allocation
among all data flows.

6.3.1. Utility Fairness of𝑋(𝑐, 𝑠, 𝛾). We relate the arguments on
utility OFC based on the leaky-hop model to a case without
leaky-hop by proving a continuity property of fair allocation
as 𝛾𝑖 approaches 1. Let the ratio of node-faulty activities drop
to zero: lim𝑘→∞min(𝑖,𝑗)∈𝑅𝑠𝛾𝑘𝑖 = 1. Then the rate regions in
WSNs containing faulty nodes converge the rate regions in
the correspondingWSNswithout faulty nodes, and utility fair
solution converges to the corresponding utility fair solution
without faulty nodes [47].

The goal of our rate-control approach is to be able to
maintain an acceptable level of service degradation, including
effective network throughput and fairness, in the presence of
misbehaving nodes. In this section, we establish the existence
and uniqueness of a utility fair solution with the presence of
misbehaving nodes and define a novel index, utility fairness
index, which quantitatively measures the degree of utility
fairness in distributed systems.

In the homogeneous traffic context, Jain et al. [49]
propose a quantitative measure called Index of Fairness to
tell how far the resource allocation is from equality. With
considering QoS requirements of different applications, it
may be undesirable to allocate resources simply according to
conventional measurements such as Index of Fairness [49].
Hence, we define a novel index, index of utility fairness 𝑓(𝑥),
which measures the utility fairness of various applications
and addresses their utility requirements:

𝑓 (𝑥󸀠) = (∑𝑛𝑠=1 𝑢 (𝑥󸀠𝑠))2|𝑁|∑𝑛𝑠=1 𝑢 (𝑥󸀠𝑠)2 , (29)

where 𝑥󸀠𝑠 is the goodput of flows and |𝑁| is the number of
flows in WSNs. This index measures the “equality” of user
utility allocation. If all sources get the same amount of utility,
that is, if 𝑢(𝑥󸀠𝑖 ) are all equal, then the utility fairness index is
1. As the disparity increases, the utility fairness decreases and
is near 0 as only a selected few users will be favored. A higher
value of 𝑓(⋅)means a higher degree of utility fairness.

7. Performance Evaluations

In this section, we conduct simulation experiments to evalu-
ate the performance of the proposed FAGOR protocol and
FA-UFOC scheme when misbehaving nodes exist in the
network. We first describe the simulation setup and then
compare the simulation results with GPSR [12], DWSIGF
[13], QGOR [14], and our proposed FAGOR protocol in a
variety of experiments. Next, we illustrate the advantage of
the FA-UOFC over the traditional OFC approach without
considering misbehavior of faulty nodes. Finally, we show
the effectiveness of our proposed FAGOR protocol combined
with our FA-UOFC algorithm for WSNs in adversarial
environments, and we simulate the fairness of our proposed
scheme in terms of utility fairness index and the convergence
discussed in Section 6.3.1.

The extensive simulations have been conducted in
OPNET and C++ simulator. The OPNET simulator is
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Figure 11: Simulation scenario.

designed for the network design and performance test. It is
further enhanced to support for wireless sensor networks
in city environments. In original OPNET, the calculation of
received power only considers the propagation model of free
space. In the urban communication environment, wireless
channel is affected by the diffraction of signals by various
buildings and trees. A Rician model is used as a channel
fading model to illustrate effects due to buildings, obstacles,
and trees in the city. We incorporate Rician distribution into
the receiver power module in OPNET in accordance with
radio wave propagation model in practical scenarios.

We consider static WSNs for a smart city. Therefore,
mobility is not considered in experiments. As shown in
Figure 11, 100 to 400 wireless sensors, which include both
misbehaving sensors andwell-behaved sensors, are randomly
deployed in an area of 1000m × 1000m. The percentage of
misbehaving nodes to all the nodes which is a simulation
parameter is varied from 0 to 0.4 in different experiments.
Each sensor has IEEE 802.15.4 based technology.The sources
send data to 10 sinks which have sufficient power. The initial
power of each sensor is set to 9mW. The parameters for
energy consumption are set to 𝑒𝑡 = 150 nJ/bit, 𝑒𝑟 = 158 nJ/bit,
and 𝑒𝑠 = 100 nJ/bit, respectively [50]. Each simulation runs
3000 iterations, and the default simulation parameters are
listed in Table 1.

7.1. The Effectiveness of FAGOR. In this section, we show
how our FAGOR protocol can provide effective routing with
the existence of an arbitrary number of misbehaving nodes.
The proposed FAGORprotocol is benchmarked against other
three routing protocols: (1) DWSIGF, (2) GPSR, and (3)
QGOR (a QoS-aware GOR which provides routing service
based on the end-to-end QoS metric [22]). The following
two metrics are used to compare the performance of the
protocols:

(i) PDR: the ratio of the total number of data packets by
the sink packet delivery to the total amount of data
packets sent by the source

(ii) End-to-enddelay: the time interval for the data packet
to be transmitted from the source node to the sink

Table 1: Parameter values in simulations.

Parameter Value
Simulation iterations 3000
Numbers of nodes 100, 200, 300 or 400
Percentage of misbehaving
nodes 0∼0.4
Network size 1000
MAC protocol 802.15.4
Packet size 512 byte
Numbers of candidates 𝑁 = 3
Maximum power
consumption 9mW

Power parameters 𝑒𝑡 = 150 nJ/bit,
Weight values

𝑒𝑟 = 158 nJ/bit, 𝑒𝑠 = 100 nJ/bit𝛼 = 0.7, 𝛿1 = 0.4, 𝛿2 = 0.6, 𝜅 = 0.7𝛾 = 0.7, 𝜗 = 0.7, 𝜖 = 0.8, 𝜑 = 0.002

We simulate Sybil attacks with 4 Sybil nodes which
perform random attacks with a configurable probability.
The Sybil nodes create more virtual locations by altering
their transmission power, which is similar to location spoof-
ing attackers. We model randomly distributed misbehavior
nodes such as black holes, gray holes, and nodes in jamming
regions which drop data packets with variable possibility.The
routing protocol is simulated attacking with varied probabil-
ities to evaluate performance under various misbehaviors.

First we show the effectiveness of FAGOR under varied
the number of misbehaving nodes. Figure 12(a) reports the
packet delivery ratio of FAGOR in comparison with the other
three routing protocols. We have the following observations:
(a) the PDR of FAGOR is consistently higher than GPSR
and DWSIGF with the existence of a varied number of
misbehaving nodes, and (b) the PDR of FAGOR declines
more slowly than GPSR and DWSIGF as the percentage
of misbehaving nodes increases. The reason is that the
misbehaving nodes are more likely to be chosen as the next-
hop nodes inGPSR andDWSIGF,while FAGOR incorporates
faulty impacts for choosingmore reliable candidates to set up
the routing paths.

The PDR in QGOR is higher than in other routing
protocols except FAGOR. This can be explained as follows.
QGOR also selects more reliable relays according to the QoS
priority of neighboring nodes. However, without the ability
to identify location-related attacks, QGOR may select a Sybil
node as the next-hop relay. Our FAGOR gives low reliability
values to Sybil nodes based on majority voting and to other
misbehaving nodes based ondirect-impact values. In terms of
the compound of reliability value by the proposed FAmetric,
FAGOR transmits packets with faulty hops, and the impact of
misbehaviors on the network performance is stable.

As the number of misbehaving nodes increases, the end-
to-end delay of GPSR and DWSIGF plotted in Figure 12(b)
decreases. For hostile sensor networks, misbehaving nodes
in the routing path would cause links to break. The decline
of the end-to-end delay means that only the data packets
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Figure 12: Packet delivery ratio and end-to-end delay versus percentage of misbehaving nodes.

from the nodes that are closer to the sink can be successfully
delivered to the sink in GPSR and DWSIGF, while it is
hard to successfully transmit the data packets to a distant
destination with more hops. However, FAGOR and QGOR
encourage suboptimal candidates to collaboratively relay data
packets that the delay of such packets raises. As the number
of misbehaving nodes increases, FAGOR and QGOR spend
more time maintaining uninterrupted communication, and
higher end-to-end delays are consequently achieved.

Furthermore, FAGOR gets a lower end-to-end delay than
QGOR because of the existence of Sybil nodes among misbe-
having nodes. Since the reliability of neighbors is unknown
at the beginning, FAGOR uses majority voting to decrease
the probability of location attacks. Compared to QGOR
which operates without identifying location attacks, FAGOR
mitigates Sybil attacks in advance and saves the network
delay time.

We further study the effect of 𝐼0 on the performance of
FAGOR. The packet delivery ratio under varied values of𝐼0 is shown in Figure 13(a). In this simulation, we find out
that underestimating the parameter 𝐼0 will lead to imprecise
next-hop choosing results and will affect the performance
of FAGOR. On the other hand, overestimating 𝐼0 as shown
in Figure 13(b) may make the routing algorithm yield less
feasible next-hops, lead to repeated candidate discovery, and
result in higher delay.This result illustrates that there is trade-
off between the PDR and time delay and choosing a proper
value of 𝐼0 gives better performance of FAGOR.

Figure 14 compares the performance of four protocols for
different network size by increasing the numbers of nodes
from 100 to 400. Compared with GPSR and DWSIGF, our
FAGOR improves the delivery ratio by approximately 40%
and keeps stable with the different random topologies.

In order to evaluate the number of candidates of the
performance of FAGOR, we consider network scenarios with
different numbers of misbehaving nodes. From Figure 15(a),
we see that PDR increases and the gap of PDR between 𝐼0 =0.1, 𝐼0 = 0.4, and 𝐼0 = 0.7 gets smaller as the number of
candidates increases. Thus more candidates in FAGOR can
relieve the performance degradation under more misbehav-
ing nodes. Figure 15(b) shows that the transmission delay
decreases when 𝑁 = 1. This is because, in FAGOR, when
packet dropping ratio is high, there will be fewer hop counts
which means that the data delivery would not last long. As
the number of candidates increases, transmission time delay
when 𝐼0 = 0.1 increases faster than when 𝐼0 > 0.1 due to
a long one-hop delay in the presence of more misbehaving
nodes. The simulation results show that there is a trade-off
between the time delay and robustness on the selection of the
candidates’ numbers.

One object of FAGOR is to ensure the ability to operate
effectively under dynamic misbehaving networks. In our
simulation study, we set up a configurable probability of
misbehaving nodes which behave well at the beginning of the
experiment. They change to misbehaving nodes at random
points of time. In Figure 16, we show the PDR performance of
four protocols with a varied percentage of behavior-changing
nodes.The following observations can be obtained from these
figures. First, the packet delivery ratio of FAGOR is consis-
tently higher than that of the other three protocols with dif-
ferent percentages of changing misbehaving nodes. Second,
since FAGOR selects faulty nodes in the routing path, the
impact ofmisbehaviors on the network performance is stable.

7.2. The Effectiveness of FA-UOFC. In this subsection, we use
numerical examples to illustrate the advantage of FA-UOFC
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Figure 13: Packet delivery ratio and end-to-end delay with different values of 𝐼0.
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Figure 14: Scalability evaluation.

algorithm over the OFC with same resource constraints.
In the simulation, the sensor nodes turn to misbehaving
nodes with probability 0.35. The network topology for one
sink is depicted in Figure 17. We assume a link capacity of
4 kbps and a maximum node power consumption of 4mW.
In smart cities, there are various types of sensors embedded
in networks to support multiple services with different QoS

requirements. Therefore, we set utility functions consisting
of elastic and inelastic traffic. The utility function of each
source node is given as 𝑈1(𝑥1) = 1/(1 + 𝑒−2(𝑥1−6)), 𝑈2(𝑥2) =
log(𝑥2 +1)/ log 11,𝑈3(𝑥3) = 0.1𝑥3,𝑈4(𝑥4) = 1/(1+𝑒−2(𝑥4+4)).
All the sources have their maximum rates at 10Mbps.

We compare the effectiveness of two flow control
strategies: (1) NE-OFC (OFC with noneffective utility
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Figure 15: Candidate number evaluation.
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functions and constraints); (2) FA-UOFC (our improved
OFC approach). NE-OFC approach subject to contention
and energy constraints for WSNs is with utility functions
of allocated flow rate without considering the faulty impact
caused by misbehaving nodes. Figure 18 shows the com-
parison of the goodput for each flow at sink between our
proposed FA-UOFC and NE-OFC. The proposed FA-UOFC
can be seen to have achieved higher performance in terms

of effective throughput compared to the conventional flow
control method. Obviously this is due to the introduction of
the faulty activitymetric.The source adjusts its flow rate on its
route adaptively to compensate for data loss in our FA-UOFC
algorithm, which takes into account the effect ofmisbehaving
nodes in utility function and constraints.

According to Section 6, 𝑥 is denoted as the injection rate
at the source node and 𝑥󸀠 is denoted as the goodput at the
sink. Figure 19 verifies that the rate-control algorithm in NE-
OFC converges and is able to provide utility proportional
fairness (we use the sumof contention price and energy price)
among four source nodes according to the utilities of 𝑥 on the
source nodes. Without considering faulty nodes, the source
algorithm controls the flow rates to provide a utility fair
resource allocation in which 𝑆1 achieves a utility 𝑈1(𝑥1) = 1
and 𝑆2, 𝑆3, and 𝑆4 then share the remaining network resources
with an equal utility of 0.52.

In fact, the goodputs of four flows cannot maintain the
utility fairness at their sink nodes after traveling along the
leaky-hops. The utilities of goodputs for four flows in the
NE-OFC approach and FA-UOFC approach are shown in
Figure 20. It can be seen that FA-UOFC yields higher utilities
of goodput for four flows than NE-OFC. In Figure 19, three
flows share a fair utility allocation that 𝑈2(𝑥2) is equal to𝑈3(𝑥3) and 𝑈4(𝑥4). However, the utility fairness is broken
due to different faulty effects on three paths consisting of
misbehaving nodes. 𝑈3(𝑥󸀠3) and 𝑈4(𝑥󸀠4) of goodputs at the
sinks both from NE-OFC and FA-UOFC in Figure 20 are
lower than those of rates at the source nodes in Figure 19.
Meanwhile,𝑈2(𝑥󸀠2) of goodput from FA-UOFC increases, yet𝑈2(𝑥󸀠2) from NE-OFC decreases. We calculate two indexes
of utility fairness, 0.7 and 0.86, according to (29) for NE-
OFC and FA-OFC, respectively. It demonstrates that better
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Figure 18: Goodput at sink.
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Figure 19: Utility of flow rate at source in NE-OFC.

utility fairness is attained among flows by FA-UOFC. Our
proposed algorithm effectively adjusts the resource allocation

by explicitly taking into account the faulty effects in utility
functions and constraints. Clearly, the network performance
under misbehaving nodes is improved by our proposed FA-
UOFC algorithm through both better utility fairness and
higher effective throughput.

7.3.TheFAGORProtocol Combinedwith FA-UOFCAlgorithm.
In the following, we investigate the performance of our pro-
posed FAGOR protocol combined with FA-UOFC algorithm
forWSNs in adversarial environments.Theproposed FAGOR
+ FA-UOFC scheme is benchmarked against the scheme
with only FAGOR which does not employ any optimal flow
control algorithm. Figures 21 and 22 plot the goodputs and
the goodputs’ utilities obtained by FAGOR and FAGOR +
FA-UOFC while increasing the percentage of misbehaving
nodes in the network from 5% to 40%. Clearly, our pro-
posed method significantly outperforms FAGOR in terms
of the goodputs and goodputs’ utilities obtainable under a
varied percentage of misbehaving nodes. The benefit of our
proposed method over FAGOR increases as the number of
misbehaving nodes increases. The result demonstrates that
the FA-UOFC complements secure routing and alleviates the
performance degradation caused by the misbehaving nodes
along the routing paths.
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Figure 20: Utility of goodput.
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Figure 21: Goodput at sink.

We also take a closer look at Flow 2 and Flow 3 in
Figure 22. As the number of themisbehaving nodes increases,
the goodputs’ utilities of Flow 2 and Flow 3 in our scheme
increase, whereas they decrease in FAGOR. Accordingly, our
scheme achieves higher goodputs’ utilities for Flow 2 and
Flow 3 than FAGOR. This is due to the source nodes in
our scheme, which are able to compensate for faulty nodes
in the allocation of traffic based on the real performance
requirements of services and which can achieve utility fair-
ness among the goodputs.

To demonstrate the fairness of FAGOR and FAGOR +
FA-UOFC, we point to the variation of 𝑓(𝑥) in (29). With
various values for the percentage of misbehaving nodes 𝑝1

and the probability of dropping packets 𝑝2 in Figure 23, our
proposed scheme can be seen to achieve a higher degree
of utility fairness in terms of utility fairness index 𝑓(𝑥)
for goodput than the FAGOR scheme. This is because our
proposed scheme explicitly takes into account the loss feature
of faulty nodes and embodies the utility fairness objectives in
the utility function that are concerned with the goodputs.

For a sequence of networks with decreasing impact with
misbehaving nodes, we can see in Figure 23 that the utility
fairness index converges to 0.92. As discussed in Section 6,
the rate allocation and utility fairness in our scheme converge
to those of the corresponding lossless networks when the
ratios of nodes’ faulty activities drop to zero. Figure 23
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Figure 22: Utility of each flow.
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Figure 23: Utility fairness index.

shows the trends of utility fairness for goodput in adversarial
environments.

8. Conclusion

In this paper, we studied the problem of routing and rate
control for multiple city services over wireless sensor net-
works in the presence of misbehaving nodes whose effect
can be characterized statistically. We presented methods for
each sensor to probabilistically characterize the impact of
a variable fault. To address how to maintain an acceptable
level of network performance degradation, we utilized fault
activity information in the next-hop selection of each sensor

and incorporated this information into the rate-control algo-
rithm for data sources. An improved, fault-aware version of
the routing algorithm FAGOR is proposed, and we explicitly
added fault activity information into the routing metric.
We formulated resource allocation for multiple services as
a lossy network flow optimization problem using relaxed
utility functions. In addition, we developed a distributed
rate-control algorithm called FA-UOFC which can achieve
the lossy utility fairness among sources with different traffic
types. Through comprehensive performance comparisons,
we demonstrate that FAGOR protocol achieves a better
performancewith an acceptable overhead and that FA-UOFC
algorithm achieves a higher effective utility and better utility
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fairness when various misbehaving nodes exist in a WSN.
Finally, we show that our proposed FAGOR protocol com-
binedwith FA-UOFCalgorithmproves effective in improving
effective utility and utility fairness compared to the scheme
with only FAGOR protocol.

Even through the development of our research is based
on the wireless sensor network setting, the framework can
generally be extended to other energy-constrained wireless
ad hoc networkmodels. In the future, mobility aspects can be
considered in order tomodelmore realistic wireless networks
in smart cities. We also plan to model smart malicious
behaviors and study their effects on data delivery.
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