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Abstract—We have proposed a new form of action recognition
using motion sensors built in mobile and wearable devices. Due
to the miniaturization of hardware sensors, action classification
through mobile sensors has become a much more attainable
task. Using Android and Tizens integrated development envi-
ronment, we have devised applications for each of these devices
to document raw sensor data for analysis. Utilizing dynamic
time warping, we attempt to recognize and classify actions
based on differences in euclidean distances to build a strong
database for further development.

Index Terms—Wearable device, action recognition, action clas-
sification, dynamic time warping, time series

1. Introduction

With a large increase of health-based technological ad-
vancements, new applications are being brought to everyday
life. Step counters, heartbeat sensors are just some examples
of allowing users to keep track of their health. In recent
years, sensor usage has increased greatly. The size of sensors
has diminished drastically whilst the capabilities are still
growing. Sensors have a wide array of applications in many
field of studies. Originally these sensors were used mostly
in large industries for automated factory machines due to
their sheer size and impracticality, but in recent years there
has been a miniaturization which caused a leak into the
world of mobile devices. With the increase of sensor usage,
human action classification through sensor data becomes a
much closer goal. With the ability to classify human actions
accurately, we will be able to monitor users through their
everyday actions and motions to help calculate and notify
caloric intake and usage for a healthier lifestyle. Due to the
popularity of wearable devices such as Apple Watches and
Android Smartwatches, action classification would play in-
tegral part in this new wave of health applications. With the
use of accelerometer, gyroscope and magnetometer callback
that are built into our smart devices, we are able to display
sensor data in the form of a three-dimensional vector for
data analysis and action differentiation.

2. References

Previous work in action classification was performed
by Allen Y. Yang. The Wearable Action Recognition
Database[1] created to classify daily actions such as sit-
ting, walking, running and drinking water. The database is
available to the public and is an open source project. Using
multiple body sensors and a centralized communication
system, the Wearable Action Recognition Database(WARD)
system design is able to send sensor data over a network.
Allen Y. Yang used a distributed sparsity classifier to not
only conserve energy usage in sensors, but also to preserve
accuracy for global classification.

2.1. WARD

The wearable action database includes 20 human sub-
jects. There are 13 males and 7 females along with 13 rec-
ognizable actions that cover daily human activities. Motion
sensors are located on each arm, ankle and the waist which
then connects to a centralized communication system. The
database serves as a benchmark for future action recognition
algorithms which follows the four principles:

• The database contains sufficient number of human
subjects with large age differences.

• Action classes are general enough to cover habitual
activities in daily life.

• The locations of the sensors are practical for full-
fledged commercial systems

• The action data contain sufficient variation, mea-
surement noise and outliers in air discovery and
configuration of a heterogeneous network of sensor
equipped motes, as well as a library of signal pro-
cessing functions available on each node. It has also
been designed to allow the convenient introduction
of support for additional sensors and processing
functionality as needed.

2.2. Wearable Sensor Network Design

The system design for creating the WARD database
uses DexterNet[2]. DexterNet is a hierarchical sensor plat-



form which has a three layer architecture: Body Network
Layer(BNL), Personal Network Layer(PNL) and a Global
Network Layer(GNL). Each body sensor ,which falls under
the BNL, has both a triaxial accelerometer and a biaxial
gyroscope. The PNL system communicates with the wireless
sensors via a Tmote Sky base station connection which
allows for local configurations to minimize resource usage
between the PNL and GNL. Tmote Sky has a TinyOS on
an 8MHz microcontroller with 10kb RAM. The sensors
only trigger during events rather than a constant callback
which allows for a low-resource system design. The body
and personal network layer are built on the framework
called SPINE(Signal Processing in Node Environment)[3].
SPINE allows for the two network layers(BNL/PNL) to
interact with one another through an access point and feeds
information to the Global Network Layer. The GNL is what
allows for constant monitoring throughout a given location
by connecting multiple PNLs to the network.

Through multiple tests, it was deemed that the sensors
placed on the ankles were difficult to use for classifying
certain actions. All actions performed on the ankles have a
similar pattern throughout therefore the ankle sensor data is
somewhat too broad for usage. The current system design
requires recalibration of the accelerometers to form linear
corrections. This flaw generates a certain, yet constant,
amount of measurement error. Noted that some sensor out-
put under 1g may be shifted up 15 percent in certain sensors.
The gyroscopes also tend to rotate under linear motions
consistently across experiments for certain sensor boards.

2.3. Related Works

Previous projects using sensors for health monitoring
includes using kinematic sensors to measure elderly people
living independently at home. The walking detection al-
lowed for researchers to determine the mobility of a subject
based on their everyday activity. Using custom accelerome-
ters known as ACTIMOMETERS[5], P. Barralon was able to
help determine the mobility of independent senior citizens.
These customized accelerometers were used to measure both
activity and mobility in patients.

Similarly another project used accelerometers to monitor
mobility in elders[6]. Using accelerometers and a centralized
connection system located on the waist, they were able
to detect any sudden increase in acceleration which could
indicate falling. This system design allows for the elderly
to live independently with a safe system of monitoring.

Previous projects classified actions through specific al-
gorithms. Previous techniques include uses of k-nearest-
neighbors[8,9] and cluster analysis[7]. More advanced time-
series algorithms for action classification include techniques
such as the hidden Markov Model[10]. For our project, we
will be using the time-series technique known as dynamic
time warping.

3. System Design

For our proposed research, we used a mobile and wear-
able device to help us record sensor data. In our case, we
used a Galaxy S6 Edge and Samsung Gear S3 Frontier as
our hardware. For our wearable, we used Tizen Wearable
v2.3.2 and for our Samsung Galaxy S6 Edge we used
Android 7.0 Nougat. Using the latest devices allows us to
accurately record data as well as have access to a wider
array of sensor types.

3.1. Sensors

For our android device, we are using the accelerometer,
gyroscope and magnetometer to classify human actions. For
the wearable device, we are using the same three sensors
with the implementation of a 4-channel audio recorder as
well. Future use of the 4-channel audio recorder will be
to synergize environment sounds to specific actions similar
to that of body worn microphones[10]. The accelerometer
helps us determine the movement of our devices whilst the
gyroscope helps us determine the orientation and rotation
during the action. The implementation of a magnetometer
allows us to determine the orientation relative to earths
magnetic field. In specific cases the magnetometer will be
able to help us differentiate our subjects based on specific
attributes and location.

3.2. Devices/Operating Systems

For the two devices, we had to develop separate appli-
cations using different IDEs. For the Galaxy S6 Edge, we
used Android Studio to log sensor data directly onto the
device while for the Galaxy S3 Frontier, we used Samsungs
new IDE Tizen Studio to create a sensor log on the Tizen
operating system. Unlike the previous WARD project, the
data collection protocol for our devices will be offline rather
than online.

3.2.1. Android Studio. Firstly, we had to create an applica-
tion for our android device that could not only gather sensor
data, but also create accessible logs for evaluation. For the
application design, we have a simple start and stop button
which initiates the sensor callback for the mobile device.
The sensor refresh rate is set to the android game setting
which allows us the maximum refresh rate which ranges
between 37-39(ms). Each axis for the three sensors are tab
separated values with proper line break after each sensor
log. To minimize resource expenditure, each sensor session
is saved as an appended string which is written to a text
file at the very end. As the sensor is constantly changing
values, each value is appended to the resulting value which
is written to the file upon termination. This allows for one
single action of writing to a text file rather than multiple file
writes for each sensor refresh. This technique allows for the
application to run in the background without accessing too
much of the devices resources. The maximum string size
is 231 - 1. Each file row is, at max, 54 characters long:



3 tabs and each float being approximately 10 characters
at max. The maximum length of each session comes out
to approximately 4418 hours minimum. Since we will be
conducting short sessions for analysis, saving sensor data
as a singular string not only minimizes battery usage but
also ensures that length will not be a long-term issue. After
each session, a folder with 3 text files is created and stored
inside internal memory of the device.

3.2.2. Tizen Studio. The second part of the development
phase is to create a samsung-based application specifically
for the Samsung Frontier. The issue arises where the Sam-
sung Frontier uses a relatively unutilized operating system
called Tizen. The IDE, Tizen Studio, is still relatively new
which makes finding source code and working in a generally
unused IDE very difficult. Furthermore, Android Studio and
Tizen Studio follow different languages and structure. Tizen
Studio runs native in C/C++ whilst Android Studio runs
native in java making the Samsung Frontiers application
development a much more laborious process. Following the
same route as that of the android application, I had the
refresh rate for the sensors set to 38 ms. The issue with
the wearable device is that interaction between the android
application and tizen application was unsuccessful. There
were many errors and difficulties attempting to create a
connection protocol between the two devices. We resorted
to storing data locally and collected wearable sensor data
separately from that of the mobile device. We ensured that
the refresh rate of the sensor matched that of the mobile
devices sensors so that the application of a moving average
will be as accurate as possible.

Figure 1. Application page

Figure 2. Before Execution

4. Evaluation

For the each sensor we have three variables each rep-
resenting a specific dimension: X, Y and Z. Keeping the

data in the form of a text file allows us to easily transition
between MATLAB and Python due to each IDE having
their own capabilities. Each dataset had to be cropped
due to the initial gesture of executing and terminating the
application. Best case scenario for graphing data would be
strictly the action performed without the inclusion of starting
and stopping the applications. Each subject was to hold
the phone in their left hand and put the phone in their
pocket before the start of each action. The orientation of
the phone in the pocket was kept the same throughout each
user as to maintain accuracy. To maximize the accuracy
of dynamic time warping, removal of the initial and final
gesture were necessary. Our current testing only utilizes
the mobile device as our hardware. Our calculations and
evaluations are required for only a singular device for the
sake of accuracy before we implement a second variable.

4.1. Testing

For evaluation, we used a total of three subjects with
different body frames to help us determine subtle differences
in each action performed. Using three subjects of different
sizes allows us to gather a larger range for action classifica-
tion so that if we were to add new subjects, the range should
hypothetically fall within the initial range of three subjects.
We used a total of five exercises which were squatting,
sitting, jumping jacks, push-ups and sit-ups. For each action
was performed a total of 5 times for each session. After each
session termination, the application returns the time each
action took in milliseconds which we use as our timestamp
for graphing.

Figure 3. Accelerometer Graphed in Python

4.2. Graphing/Data Smoothing

Using pythons matplotlib API, we were able to graph the
sensor data and recognize specific features for each action.
Upon data analysis, the graphs for the accelerometer and
magnetometer contained a large amount of spiking values.
We determined that the sensor data contained too much
noise and required a filter to smooth the graphs for further
analysis. Different actions can cause bouncing inside the
pocket between each session which will cause sensor values
to oscillate depending on the sensor and action type. To
compensate for the noise, we applied a moving average filter
to smooth out the data.



4.2.1. Moving Average Filter. A moving average filter is
also known as a low pass filter. The moving average filter
accepts a certain number of input points and then returns
a single output point. This technique allows us to remove
large changes in nearby values to give us a smoothening
effect. With the application of a moving average filter, we
tend to lose valuable data along with noise. As we are able
to cut down large values from the raw data, keeping track
of our window size is also important. For the project, we
used a default window size of 32 for all three sensors. For
further testing purposes, it would help to change the window
sizes based on the number of sensor values we have for each
action as well the sensor type we will be using. Gyroscope
values tend to change less dramatically than magnetometer
values, which would require us to use a larger window frame
for a gyroscope than that of a magnetometer.

Figure 4. Accelerometer Graphed in Python (Moving Average Filter Ap-
plied)

4.3. Dynamic Time Warping

One of the key elements for our research is the time
series analysis algorithm known as dynamic time warping.
Considering that we are calculating sensor changes over
different amounts of time, the application of dynamic time
warping allows us to generate a matrix for classification.
One common application is in speech recognition where dif-
ferent speaking speeds can be warped so that the features of
the graph is matched accordingly. In our case, each subject
performs an action at different speeds, but the issue is gone
when dynamic time warping is applied. Using MATLABs
function dtw(x,y), we are able to get a returning float which
is the euclidean distance between the two graphs as shown
in figure 8.

4.4. Results

Each sensors values have to be analyzed differently.
For an accelerometer, each axis represents the change in
movement based on that specific direction while a gyro-
scopes three values each represent either roll, pitch or yaw.
The three axis for the accelerometer and magnetometer
represents a vector value, so we apply the three values to the
three dimensional euclidean distance formula(1) to acquire
a single value. We classify the euclidean distance between

Figure 5. Dynamic Time Warping applied to gyroscope pitch graph for
jumping jacks.

each sensor using a matrix. The column would represent
each possible combination between subjects whilst the rows
represent each action as displayed in figure 6. With this
combination, we are then able to gather values for each
possible combination of subjects and actions. In Table 1,
we follow the same format as the table in figure 6. The
values given are the gyroscopic(G) components of Yaw,
Pitch and Roll as well as magnetometer (M). Each excercise
is compared to one another with our subjects having the
initials J, N and D. For example, the first row and first
column’s value in Table 1 would represent the difference in
graphs of the Jumping-Jack action between a combination
of all three subjects.

Figure 6. Accelerometer value for three dimensions. Values are Euclidean
distances between each subject.

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 (1)

4.5. Inclusion of New Action

After generating a reliable classification matrix with a
set range between three subjects, we incorporated a new
action. Jumping high knees, which involve the action of
alternating knee lifts up to the subjects stomach, was per-
formed 5 times in the session. Jumping high knees have
similar characteristics to that of jumping jacks, squats and
our sitting action. In terms of phone orientation, jumping
high knees have the same positioning as that of squats due
to the phones placement in the users pockets.

The reason we chose jumping high knees is due to the



TABLE 1. CLASSIFICATION MATRIX

(G) Pitch JJ PU SS SQ SU
JxD 28.5152 120.4667 73.1589 65.2134 75.2715
DxN 37.0191 75.8154 304.6321 314.3645 168.0158
NxJ 47.8124 146.1982 287.8842 65.2134 147.1741

(G) Roll JJ PU SS SQ SU
JxD 45.5764 132.1708 133.0344 204.7261 159.7833
DxN 36.0883 43.6229 304.6321 98.4889 106.9023
NxJ 61.8827 135.1469 175.6078 204.7261 119.8945

(G) Yaw JJ PU SS SQ SU
JxD 53.5918 40.8197 194.9447 30.7168 107.6607
DxN 67.8164 65.4857 304.6321 63.7893 114.0996
NxJ 46.1869 49.1422 92.7353 30.7168 88.9827

(M) Vector JJ PU SS SQ SU
JxD 5311.0764 12930.0587 35633.2158 4855.2263 8325.1804
DxN 8408.7165 23327.4120 56890.9173 36268.9604 24798.5105
NxJ 10798.6265 19387.0682 74616.9410 40411.0566 39255.2597

fact that the action shares many similarities between the
actions we currently have whilst at the same time containing
certain features that can make it distinguishable. This allows
for future actions to be more easily recognized.

TABLE 2. JUMPING KNEES

(A) Vector JJ PU SS SQ SU
JNxD 448.2305 4247.0406 5325.2449 1894.4237 8969.9414
JNxN 1687.7892 3333.4114 16961.1449 8733.7938 15963.8875
JNxJ 38.9451 2848.6439 4652.6753 1610.5577 4029.9876

(G) Pitch JJ PU SS SQ SU
JNxD 36.9305 101.1439 215.6683 321.4366 184.8711
JNxN 51.5676 73.0009 64.8086 61.7337 76.0791
JNxJ 12.6811 172.0071 217.9381 321.4366 179.4237

(G) Roll JJ PU SS SQ SU
JNxD 48.2583 75.5987 218.336 66.8399 70.1634
JNxN 62.7086 63.7738 78.8307 73.0001 68.8761
JNxJ 10.8158 91.9781 135.5114 66.8399 93.9976

(G) Yaw JJ PU SS SQ SU
JNxD 74.2453 113.7198 205.3022 87.5820 112.7518
JNxN 82.1154 74.2333 102.5962 95.7560 81.5021
JNxJ 35.7603 100.1559 97.4966 87.5820 92.4320

(M) Vector JJ PU SS SQ SU
JNxD 5651.5856 34626.2761 43302.0076 11220.0451 65434.7465
JNxN 11290.5332 25854.8222 10724.1603 47154.8415 97068.5102
JNxJ 132.3367 21145.1436 33767.3311 11099.2611 27477.8490

5. Conclusion

Inspired by the increase in sensor application to tech-
nology as well as the sudden attention to user health, using
mobile and wearable device for action recognition becomes
an important research. These techniques of data analysis
as well as using dynamic time warping will lead us to
new health applications where we may be able to monitor
human caloric usage based on specific exercises with higher
accuracy rather than relying only on what we currently are
limited to.

The creation of a sensor logging application is the first

step in classifying human actions. With the use of dynamic
time warping, we are able to take two different time series
and generate a euclidean distance which allows us to create a
numerical range for future classification of actions as well as
differentiation between current actions within our database.
With the incorporation of a new foreign exercise which was
previously not one of our recognized actions, we are able to
show that there are recognizable differences in new actions.
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