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Abstract—Wireless power transfer (WPT) is an enabling technology that energizes IoT devices as well as sensors at a distance

without power plugs. In this paper, we consider WPT for mobile social networks (MSNs), where power is transferred from one to

another via close proximity contacts among humans with a mobile device. In such a scenario, we introduce the problem of wireless

charger allocation for MSNs, in which for the given number of wireless chargers, a subset of nodes are selected as power source

nodes, and then, power is disseminated from the power sources to the other nodes via direct and/or indirect contacts. To this end, we

first design the weighted connectivity metric for quantifying the importance of nodes and then propose the adaptive wireless charger

allocation (AWCA) algorithm. Our AWCA consists of two phases. In the first phase, wireless chargers are allocated to a subset of

nodes as power sources. In the second phase, power is efficiently transferred over an MSN. For performance evaluation, computer

simulations using real human contact traces are conducted, and the simulation results demonstrate that the proposed AWCA algorithm

achieves its design goals as long as the transmission efficiency is sufficiently high.

Index Terms—Wireless charger allocation, mobile social networks, MSNs, wireless power transfer, WPT.
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1 INTRODUCTION

With the advancement of wireless power transfer (WPT)

technologies, computing devices, including smartphones [1], sen-

sors [2], RFID tags [3], automobiles [4], and unmanned aerial

vehicles [5], can be wirelessly charged without power wiring [6].

This enables a variety of personal/business products and services

including environmental monitoring using battery-free wireless

rechargeable sensors [7]. The wireless charging market is growing

rapidly and will reach 13.78 billion US dollars in 2020 [8].

Much effort has been devoted to theoretical, algorithmic,

and application-oriented research works that exploit the WPT

technologies from the computer science standpoint. Specifically,

wireless charging scheduling [2], [9], [10] minimizing the charg-

ing delay, power control [11], [12] maximizes the utilities while

minimizing energy cost, wireless charger placement [13], [14]

optimizing the charging quality based on the distances among

chargers and sensors, and trajectory planning [15]–[17] to min-

imize the moving cost of mobile chargers. In peer-to-peer energy

sharing [18], [19] for opportunistic networks, some peers (i.e.,

persons with a mobile device) provide others with excessive

energy to prolong a network lifetime.

To the best of our knowledge, there is no work on WPT for

mobile social networks (MSNs). An MSN is one type of contact-

based network constructed from a set of contact events, and a
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Fig. 1. An example of WPT in a MSN.

contact is defined as an event when two persons have a close

proximity interaction. In general, social relations are involved in

these contact events, e.g., students in the same class will have

more contacts with each other than strangers. Here, persons with

computing devices are abstracted as nodes. In an MSN, power can

be wirelessly transferred from one node to another at a contact

in close proximity. For example, real contact patterns among US

high school community members are collected using wireless

sensors in [20]. In this trace, a contact with close proximity is

defined when the distance between two persons is less than three

meters, which is sufficiently close for a wireless charger to transfer

power to another computing device. In this paper, not only direct

power transfers, but also multi-hop power transfers are considered.

Figure 1 shows a snapshot of WPT in an MSN, where shaded

rectangles represent computing devices. Node 1 serves as a power

source node with a wireless charger, and she wirelessly transfers

power to node 2 when they are in close proximity. Later on, say

60 minutes later, node 2 moves to another place and has contact

with node 3. Then, node 2 may transfer power to node 3. That is,

power initiated from node 1 is eventually transferred to node 3 via

multi-hop contacts.

WPT for MSNs benefits many critical scenarios. For exam-

ple, in disaster recovery, vehicle-based mobile wireless chargers

cannot enter a controlled area due to various reasons, e.g., roads
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are destroyed. In such areas, only humans can be the carriers

of wireless chargers. Another application is energy harvesting

for sensor-equipped soldiers in guerrilla missions, where neither

tanks nor aerial vehicles can be deployed. By wirelessly transfer-

ring power, sensors attached to soldiers can be charged without

replacing their batteries during missions. In addition, wireless

crowd charging [21], [22] is a potential business application where

workers with a mobile charger travel to landmarks in a city area

in order to share energy with their customers or sensors with a

mobile device for pay.

In this paper, we introduce a new wireless charger allocation

problem in an MSN, in which wireless chargers are assigned to a

subset of nodes and power is wirelessly transferred to other nodes

via multi-hop contacts. The contributions of this paper are listed

as follows.

• First, we introduce a new wireless charger allocation prob-

lem for MSNs, where wireless chargers are assigned to

important nodes in a network and then power is wire-

lessly transferred to other nodes over a multi-hop contact

network. The goal of this problem is to transfer a certain

level of power from the power source nodes with wireless

chargers to the others within a time constraint. The power

transmission efficiency is assumed to be high, which is

indeed a strong assumption compared with the current

standard. However, our research becomes beneficial when

the physical layer capability improves in the near future.

• Second, we design a new centrality metric, namely the

weighted connectivity centrality, to quantify the importance

of nodes. The proposed metric not only combines the con-

tact frequencies and contact duration, but also the number

of hops and power losses due to multi-hop transfers. By

doing this, the nodes which are tightly connected to the

other nodes via both direct and indirect contacts are selected

as the power source nodes.

• Third, we propose the adaptive wireless charger allocation

(AWCA) algorithm, which consists of two phases. The first

phase is the adaptive wireless charger assignment, in which

the nodes with the highest centrality are iteratively selected

as power source nodes with wireless chargers; the second

phase is the power dissemination, which efficiently transfers

power from the power source nodes to the others. In the

proposed algorithm, power transfer flows are directed in

order to reduce power losses due to unnecessary power

transfers.

• Fourth, we conduct extensive computer simulations using

real human contact traces [20], in which close proximity

contact events among US high school community members

are recorded. The simulation results demonstrate that the

proposed scheme outperforms the baseline protocol with

well-known centrality metrics, e.g., degree, betweenness,

and closeness, in the network science field.

The rest of this paper is organized as follows. In Section 2,

related works are reviewed. In Section 3, the problem of wireless

charger placement in MSNs is formulated. The baseline centrality

metrics for selecting important nodes are provided in Section 4.

We propose the weighted connectivity metric as well as the AWCA

algorithm in Section 5. The performance of the proposed scheme

is evaluated by simulations using real human contact traces in

Section 6. Section 7 concludes this paper.

2 RELATED WORKS

2.1 Wireless Chargers

Much effort has been devoted to the research on wireless chargers

with different design goals and different physical layer assump-

tions. The authors in [13] design a framework for placing wireless

chargers to supply sufficient power to all devices in a given area.

The work in [11] studies the static charger placement that maxi-

mizes electromagnetic radiation for a given plane. The scheduling

problem is introduced in [2], where a set of static wireless sensors

are selected to minimize the charging delay under the radio

interference. This work is extended to accommodate practical

wireless charging settings by incorporating not only the distance

but also the relative angle between a sensor and a charger’s

orientation [10]. The placement and power allocation of static

chargers are jointly optimized in [12]. In addition, electromagnetic

radiation safety is incorporated into the scheduling design in [9].

In mobile wireless charger scenarios, the energy consumption

of movement and budget constraint are considered and discussed

in [15]. The trajectory of mobile chargers can be optimized by

maximizing the number of nodes charged in a fixed time [16]. The

work in [14] jointly optimizes power allocation and movement

cost. The concept of bundle charging is introduced in [17],

which exploits the broadcasting nature of wireless charging and

allows mobile chargers to visit the anchor point of each bundle

for power transfer. The charging problem with multiple mobile

chargers is studied in [23], [24]. In the work [23], an on-demand

charging scheme by multiple chargers is designed by applying the

fuzzy logic. The charging algorithm proposed in literature [24]

identifies the optimal charging tours of multiple mobile chargers

that minimizes the maximal charging delay.

In some works, human mobility is exploited to wirelessly

charge sensors. In [21], mobile users participate in a crowd-

charging system as workers to charge sensors and/or IoT devices

by reaching the close proximity of their targets. In [22], the

similarity of user characteristics between online social networks

and face-to-face human networks is exploited for socially aware

energy sharing. The works most related to our research are

peer-to-peer energy sharing protocols [18], [19] for opportunistic

networks. In [18], some mobile users receive excessive energy

from others in order to avoid cord-based energy charging from the

electric adapter in a wall. In [19], a single and multi-hop energy

balancing protocol is invented for prolonging a network lifetime.

However, none of them addresses power source allocation issues.

2.2 Opportunistic Networks

Opportunistic networks are sparse ad hoc networks, where links

among nodes are intermittently disconnected and no end-to-

end communication link is available. Thus, data transmission is

possible only when two mobile nodes are within the communi-

cation distance, which typically ranges from 10 to 250 meters.

The limited transmission opportunity forces protocol designs to

exploit nodal mobility, so called the store-and-carry paradigm, in

data routing [25]. At present, opportunistic networks are widely

applied to many critical scenarios, such as anonymous communi-

cations [26], crowdsourcing [27], disaster recovery [28], [29], and

so on.

Mobile social networks (MSNs) are special kinds of op-

portunistic networks, where close proximity interactions among

people are defined as contact events. MSNs are widely studied

in many different fields. In [30], human disease propagation in
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TABLE 1
Notations.

Symbol definition

C , c A set of contact events, contact event c∈C
V , E A set of nodes and a set of links

G A directed graph, G = {G,E}
vi Node vi

e(vi, vj) The link between vi and vj
N(vi) The open neighbor set of vi

w(vi, vj) The link weight between vi and vj
T A time period

Pi The power level of node vi
Pmin The target power level

Pmax The maximum power level

P
(Tx)
i,j The amount of power transferred from vi to vj
γ The transmission efficiency

n The number of wireless chargers

d(vi, vj) The shortest path distance from vi to vj
h(vi, vj) The number of hops from vi to vj
Wx(vi) The node weight of vi with centrality x

an MSN is modeled and critical factors for preventing epidemics

are identified. Targeted vaccination [31] is a network science-

based solution, where a small subset of persons are selected for

vaccination to prevent the spread of disease in an MSN. Malware

containment [32] prevents malicious programs from infecting

mobile devices, e.g., smartphones, at close proximity contacts

among mobile nodes. Community discovery algorithms [33] detect

and/or classify participants in an MSN in order to illuminate the

social structures.

2.3 Dataset

In this paper, we use real contact traces among US high school

community members recorded across three days during an in-

fluenza season in 2012 [20]. Each high school staff member and

student carries a Crossbow TelosB mote, and stationary motes are

deployed throughout the inside of buildings, such as classrooms,

dining halls, and restrooms. The trace collection starts around

7am and ends at 4pm. Each mote broadcasts a beacon every 20

seconds. Using the signal strength of beacons, the close proximity

interactions within three meters between two mobile motes (as

well as between mobile and stationary motes) are recorded as

contact events. If a participant is inside a building, her mote shall

receive the signal from at least one of the stationary nodes. Such

records indicate whether the participants stay indoors or outdoors

during some time instances, and with these records, a contact

between two nodes can be categorized as an indoor or outdoor

contact event.

3 PROBLEM FORMULATION

3.1 Network Model

The network model considered in this paper is trace driven.

A human contact trace contains a set of contact events, where

humans are abstracted as nodes. When two nodes are in close

proximity, e.g., within three meters [20], these nodes are said

to have a contact. Each contact event contains three pieces of

information: two node IDs and the global timestamp at which

a contact event occurs. We define a set of contact events by

C = {c1, c2, c3...}, and each contact ci is defined by a tuple,

(ci.IDs, ci.IDd, ci.gts). Here, ci.gts is a discrete timestamp

bounded between 0 and T . The duration of contact is always

one time step. When two nodes are in proximity for a period

of time, distinct contact events are recorded, each of which has a

subsequent timestamp.

A mobile social network (MSN) is represented by a directed

graph, denoted by G = (V,E), where V is a set of nodes and E

is a set of edges. Let vi ∈ V be a node with ID i. Node vi is in

V if and only if there exists the corresponding ID in a trace, i.e.,

∃c ∈ C such that c.IDs = i or c.IDd = i. Let e(vi, vj) be the

link from vi to vj . Then, e(vi, vj) ∈ E if and only if ∃c ∈ C

such that c.IDs = i and c.IDd = j. We define an open neighbor

set of vi by N(vi). We can say that vj ∈ N(vi) if and only if

e(vi, vj) ∈ E. That is, nodes vi and vj are connected in G if

they have at least one contact. Note that a graph constructed from

a given trace is directed due to the coarse granularity. A contact

event is detected by individual nodes. Even if node vi detects a

contact with vj at some time step, vj might not detect a contact

with vi at the same time step.

We define the time period, denoted by T , within which contact

events occur. Thus, for all contact events c, 0 ≤ c.gts ≤ T holds.

The link weight of e(vi, vj), denoted by w(vi, vj), is quantified

based on the number of contact events between them and given

time period T . We can formulate w(vi, vj) as Equation 1.

w(vi, vj) =
1

T

T
∑

t=0

r(vi, vj , t) (1)

Here, r(vi, vj , t) equals to 1 if and only if they have a contact

at t, i.e., ∃c ∈ C such that c.IDs = i, c.IDd = j, and c.gts = t.

Otherwise, r(vi, vj , t) is set to be 0. Therefore, the link weight

increases as the contact frequency and contact duration between

two nodes increase.

We define d(vi, vj) as the shortest path distance between vi
and vj . A path consists of a set of links. Let [vi, ..., vk, ..., vj ] be

an η-hop path from vi to vj , where vk is the k-th intermediate

relay node (0 ≤ k ≤ η). By definition, e(vk, vk+1) ∈ E must

hold. Then, d(vi, vj) is defined by Equation 2.

d(vi, vj) =

η−1
∑

k=0

1

w(vk, vk+1)
(2)

Because d(vi, vj) has the non-decreasing property, well-

known algorithms, such as Dijkstra, can be directly applied to

computing the shortest path distance.

The notations used in this paper are listed in Table 1.

3.2 Wireless Charge Model

Each node vi has its power level, denoted by Pi. We define the

target power level by Pmin, as the minimum power level to be

charged after wireless power transfer over an MSN. When power

is wirelessly transferred from node vi to vj at a contact, power loss

occurs. That is, the amount of power received by vj is smaller than

the one transmitted by vi. Such a ratio is called the transmission

efficiency, denoted by γ ∈ [0, 1]. Let P
(Tx)
i,j be the amount of

power transmitted by vi within single time step, then the amount

of power to be charged at vj will be γ · P
(Tx)
i,j .
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Fig. 2. The received power.

The current state-of-the-art [34] achieves 0.7 ≤ γ ≤ 0.9 with

a near field WPT using inductive coupling, where the distance

between two devices is less than 0.5 meter. In addition, we will

have 0.5 ≤ γ ≤ 0.75 with the magnetic resonant coupling when

the distance is shorter than three meters. As we will show later, the

proposed scheme requires γ to be at least 0.8, which assumption

might be slightly strong with the current WPT standard. However,

our research on WPT for DTNs is still beneficial, when the

transmission efficiency becomes sufficiently high in the future.

3.3 Problem of Wireless Charger Allocation

The wireless charger allocation problem for an MSN consists

of two stages. In the first stage, given the number of wireless

chargers, denoted by n, a subset of nodes are selected to allocate

wireless chargers. Such a subset of nodes is denoted by Vs ∈ V ,

and the nodes in Vs are called power source nodes since they

serve as power sources with wireless chargers. The examples of

power source nodes include the mobile users with mobile wireless

chargers who are willing to supply power with the others and

automobile which are dedicated to supply power with the uses

in an MSN. The second stage is power dissemination, in which

power is wirelessly transferred from the power source nodes in

Vs to the others. Note that not only direct power transfer from

vi ∈ Vs to vj ∈ {V \ Vs}, but also multi-hop power transfer is

considered, e.g. power transfer from vi ∈ Vs to vj ∈ V and then

to vk ∈ {V \ Vs}, where \ denotes the set minus operation.

A node is said to be energized if its power level is greater

than or equal to Pmin after power dissemination. The goal of

wireless charger allocation is to maximize the number of nodes

that are energized by power source nodes via direct and/or indirect

contacts. To this end, we introduce the notion of the energized rate

as follows.

Definition 1 (Energized Rate) Let Ṽ ⊆ V be a set of nodes such

that ∀vi ∈ Ṽ , Pi ≥ Pmin. Then, the energized rate is defined by

|Ṽ |

|V | − |Vs|
.

The problem of wireless charger allocation can be formally

defined by Definition 2.

Definition 2 (Wireless Charger Allocation Problem) For the

given number of wireless chargers n and time constraint T , the

wireless charger allocation problem is to maximize the energized

rate.

3.4 The Optimal Wireless Charger Allocation

The definition of the optimal solution is essential in designing

efficient wireless charger allocation algorithms in MSNs. To this

end, several assumptions are made. The power source nodes

have an infinite amount of power, intermediate nodes can store

an unlimited amount of power in their battery, and there is no

power loss due to multi-hop power transfers. Then, the problem

of selecting the optimal wireless power sources can be reduced

to constructing multi-source spanning trees, which is known to be

NP-hard.

Let v
(src)
i be the closest power source node in Vs from node

vi. The shortest path from node vi to v
(src)
i is the one with the

smallest distance, i.e., d(vi, v
(src)
i ). Then, the optimal wireless

charger allocation is defined by Definition 3.

Definition 3 (Optimal Wireless Charger Allocation) The opti-

mal set of power source nodes, denoted by OPT , is defined by

the subset of nodes obtained by Equation 3.

OPT = argmin
Vs







∑

vi∈V

d(vi, v
(src)
i )







(3)

The problem is essentially the same as finding the minimum

number of multi-source spanning trees. In Section 5, we will

design greedy-based algorithms to approximate OPT under the

aforementioned wireless charge model.

3.5 Research Challenges

Different design issues of the wireless charger allocation problem

for MSNs impose the following research challenges.

• Challenge 1: The first challenge is how to model the

centrality of nodes. The importance of nodes should be

quantified based on the amount of power which can be

disseminated via both direct and indirect contacts among

nodes. In addition, the amount of power transferred from

one node to another depends on the contact frequency and

contact duration. Furthermore, transmission efficiency plays

a critical role for multi-hop power transfers. For example,

Figure 2 illustrates the WPT from node vs to v2 via v1,

where circles represent nodes and arrows represent power

transfer from one node to another. The amount of power

that v2 can charge decreases according to the number of

hops and the transmission efficiency, γ. Therefore, the

aforementioned considerations must be incorporated in the

centrality design.

• Challenge 2: The second challenge is how to select the best

node as a power source. When a wireless charger is assigned

to one node in an MSN, the importance of the other nodes

will change. This is because some nodes will be charged by

their closest power source node. To be specific, assume that

node v2 ∈ Vs in Figure 3 is one of the power source nodes.

In this figure, solid lines represent links between two nodes.

The neighbors of v2, i.e., v1, v3, and v4, are most likely

to be energized by v2. Thus, selecting either v1, v3, or v4
as another power source node may not contribute much to

the overall energized rate. Thus, a set of power source nodes

should be iteratively selected to maximize the energized rate

for all nodes.

• Challenge 3: The third challenge is how to efficiently trans-

fer power from the power source nodes to the others. Since

there is power loss when power is wirelessly transferred

from one node to another, all the loops must be eliminated.

Otherwise, transferred power decreases unnecessarily. Re-

moving loops does not mean that power transfer flows must

be a spanning tree. In fact, a spanning tree will reduce the

opportunities of power transfers. Therefore, power transfer

flows starting from a set of power source nodes must be

carefully constructed.
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4 BASELINE METRICS

As the baseline of the node weight, centrality-based metrics are

considered, including degree, betweenness, and closeness, which

are widely used in network science [35]. In general, the nodes with

higher weight are considered to be important nodes.

4.1 Degree Centrality

The degree centrality prioritizes the nodes tightly connected to

their neighbors. Recall that w(vi, vj) is the link weight from node

vi to vj . The degree centrality of node vi, denoted by Wdeg(vi),
is defined by Equation 4.

Wdeg(vi) =
∑

vj∈N(vi)

w(vi, vj) (4)

Since node weights are locally computed in the degree cen-

trality, indirect relationships among nodes are not considered.

4.2 Betweenness Centrality

The betweenness centrality quantifies how often a node is involved

in the shortest path of two other nodes. Note that the shortest path

is defined as the path with the smallest distance formulated in

Equation 2. Let σs,t be the total number of shortest paths from

node vs to vt and σs,t(vi) be the number of shortest paths in

which node vi is an intermediate node. The betweenness centrality

of node vi, denoted by Wbtwn(vi), is defined by Equation 5.

Wbtwn(vi) =
∑

s 6=t 6=i,s,t∈V

σs,t(vi)

σs,t

(5)

While the betweenness centrality considers the indirect rela-

tionship among nodes, computing the betweenness of all the nodes

takes a long time, i.e., O(|V |3) [35].

4.3 Closeness Centrality

The closeness centrality defines how close a node is to the other

nodes in terms of the shortest path distance. The closeness cen-

trality of node vi, denoted by Wclose(vi), is obtained as follows.

Wclose(vi) =
|V | − 1

∑

vj∈{V \vi}

d(vi, vj)
(6)

When two nodes, vi and vj , are disconnected, d(vi, vj) is ig-

nored. The closeness centrality considers the indirect relationship

among nodes, and its computation is relatively faster than that of

betweenness. This metric, however, does not work well when a

graph is not strongly connected, which is typically the case of

MNNs.

In addition, the effect of multi-hop power transfer is not

considered in any of the aforementioned centrality models.

Example 1 An example of each centrality is presented using

Figure 3. The real value at each solid line indicates the link weight

between two nodes. For simplicity, the graph is undirected, i.e.,

the links are bidirectional. When n = 2, the degree centrality will

return nodes 2 and 3 as power source nodes, since Wdeg(v3) is

the highest and Wdeg(v2) is the second highest among Wdeg(vi)
for all 1 ≤ i ≤ 10. The issue is that nodes 2 and 3 are neighbors

Fig. 3. A graph of an MSN.

Start

End

Graph construction 

from a trace

Wireless charger assignment phase

(Algorithm 1)

Wireless power dissemination phase

(Algorithm 2)

The AWCA algorithm

Fig. 4. The flowchart of the AWCA algorithm.

to each other, and the nodes at the right side of the corresponding

component may not receive sufficient power from them.

The betweenness centrality will select nodes 4 and 5, since

these two nodes are involved in many of the shortest paths between

each pair of nodes. The number of shortest paths is σs,t = 58 for

all 1 ≤ s ≤ 10 and 1 ≤ t ≤ 10 with s 6= t. We will have

σs,t(v4) = σs,t(v5) = 32, which is much larger than those of the

other nodes. Nodes 4 and 5, however, are neighbors to each other.

In addition, w(v5, v6) and w(v6, v8) are small, and as a result,

node v5 may not be able to charge nodes v6, v7, and v8.

The closeness centrality will have nodes 9 and 10 as power

source nodes, which is apparently a bad selection. As shown in

Figure 3, nodes 9 and 10 are isolated, which makes the denomi-

nator of Equation 6 small. Therefore, the closeness centrality does

not work out well when a graph is not strongly connected.

5 ADAPTIVE WIRELESS CHARGER ALLOCATION

5.1 Overview

In this paper, we first design the weighted connectivity centrality

that quantifies the extent to which each node can directly and

indirectly transfer power to the other nodes. In the proposed

metric, not only the distance among nodes, but also the number

of hops and expected power flow are incorporated. Hence, the

connectivity is weighted. Then, we propose the adaptive wireless

charger allocation (AWCA) algorithm, which consists of two

phases: the wireless charger assignment phase and the wireless

power dissemination phase. In the wireless charger assignment

phase, a set of n nodes are selected as power source nodes.

After selecting one power source node, the importance of the

other nodes is most likely to be changed, since the nodes close

to power source nodes become less important. Thus, the power

source nodes are iteratively selected using the weighted connec-

tivity metric. In the wireless power dissemination phase, power is

wirelessly transferred over an MSN. To avoid unnecessary power
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transfers, the directed flow rooted at a set of power source nodes is

constructed based on the shortest path distances, and then, power

is wirelessly disseminated from the power source nodes to the

others via contacts.

The flowchart of the proposed AWCA is presented in Figure 4.

First, a graph is constructed form a mobility trace. The wireless

charger assignment phase uses the weighted connectivity central-

ity as a building block. Then, the power dissemination phase is

performed. Each component of our AWCA algorithm addresses

the challenges listed in Section 3.5.

5.2 Weighted Connectivity

The proposed weighted connectivity centrality quantifies how

much power nodes can transfer to other nodes, and the connec-

tivity is weighted by two factors, i.e., the number hops and the

expected power flow level.

The first consideration is the effect of the number of hops.

The amount of power which can be transferred from vi to vj at a

distance exponentially decreases as the number of hops between

them increases. Let vk be the k-th intermediate node in the shortest

path from vi to vj , where the bases are v0 = vi and vh(vi,vj) =
vj . For simplicity, let Pmin = 0 and Pmax = ∞. At the first

hop, the amount of power transferred from v0 to v1 is bounded

by γ · P
(Tx)
0,1 · w(v0, v1) · T . For the second hop, we will have

min{γ2 · P
(Tx)
0,1 · w(v0, v1) · T, γ · P

(Tx)
1,2 · w(v1, v2) · T}. This

implies that the amount of power transferred from vi to vj is

dominated by the one at the first hop. Let P̃
(Recv)
i,j be the expected

amount of power transferred from vi to vj . Then, we may derive

the upperbound of P̃
(Recv)
i,j by Equation 7.

P̃
(Recv)
i,j = min

0≤k≤h(vi,vj)−1
{γh(vi,vj)−k · P

(Tx)
k,k+1 · w(vi, vj) · T}

≤ γh(vi,vj) · P
(Tx)
i,j · w(vi, vj) · T (7)

The above equation indicates that γh(vi,vj) can be the weight-

ing factor for the number of hops. Therefore, the shortest path

distance between vi and vj can be weighted by
γ
h(vi,vj)

d(vi,vj)
. That

is, the shorter distance leads to higher connectivity, but the larger

number of hops reduces the connectivity. Note that if vi and vj
are disconnected in a graph, d(vi, vj) will be infinite, and thus,

the connectivity from vi to vj does not increase the centrality of

vi.

The second consideration is the expected power flow. Consider

the connectivity from vi to vj . When vj is a neighbor of a power

source node, i.e., ∃vs ∈ Vs such that vj ∈ N(vs), node vj should

not increase the centrality of node vi, since selecting vi as a power

source node most likely does not contribute to charging vj . Thus,

the connectivity from vi to vj should be deprioritized by a given

weight based on the expected power flow of vj . We define P̃j as

the expected power flow of vj with Pmin = a for some non-

negative constant a and Pmax = ∞, which can be computed

as follows. Let vs be the closest power source node to vj , i.e.,

vs := argmin
vk∈Vs

{d(vk, vj)}, and vk be the k-th intermediate node

in the shortest path from vs to vj . Then, P̃j is approximated by

Equation 8.

P̃j = max{(wmin · T − (h(vj , vs)− 1) · Pmin) · γ
h(vj ,vs), 0}

(8)

Algorithm 1 Assignment(G = (V,E), n, Pmin, γ)

1: Initialize an empty set, Vs ← ∅
2: Initialize a set, V ′ ← V

3: for from k = 1 to n do

4: For each vi ∈ V ′, node vi computes Wwc(vi)
5: vs ← argmax

∀vi∈V ′

{Wwc(vi)}.

6: Add vs to Vs

7: Remove vs from V ′

8: for each node vi in V do

9: vi computes P̃i

10: vi computes dmin(vi)← min
∀v∈{Vs∪vs}

{d(vi, v)}

11: Return Vs

Here, wmin is the weight of the bottleneck link defined

by wmin := min
0≤k<h(vj ,vs)

{w(vk, vk+1)}. Note that Pmin is

deducted at each hop. This is because an intermediate node can

transfer power to another only when its power level is greater than

Pmin.

Since the amount of power transferred from vs to vj is

dominated by the bottleneck link, the link with the minimum

weight is computed in the above formula.

Let βi,j be the weighting factor regarding the expected power

flow of vj . We may formulate βi,j with Equation 9.

βi,j =











(

Pmin

P̃j

)α

if P̃j ≥ Pmin

1 otherwise.

(9)

Here, α is a constant, which is set by simulations. For instance,

the connectivity from vi to vj quadratically decreases, when α =
2.

We define Wwc(vi) as the centrality of node vi. By combin-

ing the aforementioned observations, Wwc(vi) is formulated by

Equation 10.

Wwc(vi) =
∑

vj∈{V \{Vs∪vi}}

βi,j · γ
h(vi,vj)

d(vi, vj)
(10)

Remark The proposed weighted connectivity centrality in Equa-

tion 10 will approximate the optimal solution in Equation 3.

First, the two factors, βi,j and γh(vi,vj), can be removed from

Equation 10 if the amount of power stored in relay nodes is

unlimited and there is no power transmission loss. The distance

from a power source to the other nodes is the inverse of the

centrality. Therefore, the set of n nodes with the highest Wwc

will approximate the set of n nodes in OPT .

5.3 Wireless Charger Assignment Phase

Before the wireless charger allocation, the link weights among

nodes are computed from given graph G = (V,E). Note that a

certain amount of information about the contact graph is assumed

to be available to each node when it comes to MSNs. This is

because everyday social interactions shall generate similar contact

patterns among the nodes in an MSN, e.g., a contact graph from

Monday to Friday in a high school.

As defined in Section 3.1, the link weight w(vi, vj) between

vi and vj can be obtained by Equation 1 for each pair of nodes in

V . In addition, the shortest path distance defined by Equation 2 as
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well as the number of hops from one node to all the other nodes

can be easily computed from G = (V,E) by any graph algorithm,

such as Dijkstra.

For a given number of wireless chargers n, a subset of n

nodes in V are selected as power source nodes as presented in

Algorithm 1. Let Vs and V ′ be sets, which are initialized by

an empty set ∅ and by V , respectively. From lines 3 to 10,

a set of nodes are repeatedly added to Vs. To this end, each

node except the ones in Vs computes its centrality, i.e., the node

centrality, as shown in line 4. Recall that Wwc(vi) is computed

by Equation 10. At line 5, the node with the highest centrality

is selected, which is denoted by vs. Then, vs is included into

Vs and removed from V ′ as shown in lines 6 and 7. In order to

update the influence of the newly selected power source node,

all the nodes in V ′ update their expected power flow P̃i by

Equation 8 at line 9. In addition, each node vi computes the

shortest path distance to the closest power source node by com-

puting dmin(vi) ← min∀v∈{Vs∪vs}{d(vi, v)}, which is used to

construct directed power transfer flows in the power dissemination

phase.

At the end of this process, n nodes are selected and wireless

chargers are assigned to them.

Example 2 An example of how AWCA selects two power source

nodes in Figure 3 is presented. Assume that γ = 0.8, Pmin = 50,

Pmax = 100, P
(Tx)
i,j = 3 for 1 ≤ i, j ≤ 10, and the time period

is T = 1000. At the beginning, the expected power flow of all

the nodes is 0, and thus, the connectivity is not weighted by βi,j .

Thus, node 3 is selected as the power source node, as Wwc(v3)
has the highest value among all the nodes. After node 3 is selected,

the expected power flows from node 3 are computed, as shown in

Figure 5, where shaded circles represent the power source nodes.

Nodes 1, 3, 4, 5, and 6 are expected to be fully charged by node

2. However, the expected power flows of nodes 7 and 8 remain 0.

In the second iteration, the connectivity from each node to any of

nodes 1, 2, 4, 5, and 6 will be less weighted, since βi,j is very

small for 1 ≤ i ≤ 10 and j ∈ {1, 2, 4, 5, 6}. As a result, node 7

will be selected as another power source node. At the end of this

process, wireless chargers are assigned to nodes 3 and 7, and the

expected power flows are shown in Figure 6. Except nodes 9 and

10, which are isolated from the other nodes, all the nodes will be

charged with sufficient power from nodes 3 and 7.

We derive the complexity of the proposed AWCA by Theo-

rem 1.

Theorem 1 The complexity of AWCA is O(|V |3).

Proof: The complexity of AWCA can be derived as follows.

First, the shortest path hops and the shortest path distances must

be computed, which takes O(|V | log |V | + |E|) by the Dijkstra

algorithm. Here, |E| is the number of edges, which is bounded

by O(|V |2). These computations are repeated up to |V | times.

Thus, identifying the node with the highest weighted connectivity

centrality requires |V |3. In addition, after one power source is

selected, the expected power flow is computed for each node.

Since the shortest path from one node to the other nodes is already

computed, each node needs O(|V |) to estimate the amount of

power that it will receive from the closest power source node.

Thus, computing expected power flow for all the nodes takes

O(|V |2). The power source selection repeats n times. Here, n

is a constant and selecting multiple power source nodes does not

Algorithm 2 Dissemination(G = (V,E), C)

1: /* Initialization. */

2: Each node vi computes Nout(vi)
3: /* Contact event handling */

4: for each c in C do

5: vi ← c.ID1 and vj ← c.ID2

6: if Pi ≥ Pmin + P
(Tx)
i,j and Pj < Pmax then

7: Pi ← Pi − PTx
i,j

8: Pj ← min{Pj + γ · P
(Tx)
i,j , Pmax}

9: Call a subroutine, Notify(vj)

10: /* Node vi does the following. */

11: Notify(vi):

12: if Pi ≥ Pmin and Nout(vi) = ∅ then

13: for each vj in N(vi) do

14: if vi ∈ Nout(vj) then

15: Remove vi from Nout(vj)

increase the complexity. The outgoing neighbor set at each node

can be computed in O(|V |), as only local information is used.

Therefore, the complexity of AWCA is O(|V |3).

5.4 Wireless Power Distribution Phase

Before wireless power distribution, the outgoing neighbor set at

each node is initialized in order to remove loops from G =
(V,E). Let Nout(vi) be the outgoing neighbor set of node vi,

which is a subset of its open neighbor set, i.e., Nout(vi) ⊆ N(vi).
Node vj ∈ N(vi) is included in Nout(vi) if and only if

dmin(vi) < dmin(vj) for vj ∈ N(vi), and the tie can be broken

by their node IDs. That is, vi is closer to some source node than

vj , and thus, vi transfers power to vj with a high probability. Each

node vi can locally compute Nout(vi). By doing this, the power

transfer flows from the power source nodes in Vs remove all the

loops.

For a given set of nodes V and contact events C =
{c1, c2, c3, ...}, wireless power transfer over an MSN is conducted

as demonstrated in Algorithm 2. Here, all the events in C are kept

in a priority queue with the priority being global timestamps. That

is, each contact c is executed in the increasing order of c.gts, and

the tie can be broken by the IDs of two nodes, c.ID1 and c.ID2.

Lines 4 to 9 outline how each event is processed. When node

vi detects a contact with vj , node vi will determine whether or not

it transfers power to vj based on two conditions. One is whether

vi will still have a sufficient power level after vi transfers power to

vj ; the other is that vj’s power level is smaller than the maximal

capacity, i.e., Pi ≥ Pmin + P
(Tx)
i,j and Pj < Pmax. Note that

node vj may transfer power to another node, unless it is located

at the edge. Hence, vj should be charged from vi even if vj’s

power level exceeds Pmin. If both conditions are met, then vi’s

power level is decremented and vj’s power level is incremented by

P
(Tx)
i,j as shown in lines 7 and 8. Note that the graph is directed,

and thus, only node vi transfers power to vj in this contact event.

If the contact is bidirectional, then vj also detects another contact

event with vi at the same timestamp. At line 9, a subroutine, i.e.,

Notify(vi), is called to avoid unnecessary power transfers.

From lines 11 to 15, the Notify(.) subroutine is defined.

Node vi checks whether or not it has already received sufficient

power and there is no outgoing neighbor, i.e., Pi ≥ Pmin and

Nout(vi) = ∅. If Nout(vi) is empty, vi has no neighbor to

transfer power. Thus, once vi accumulates sufficient power, there
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Fig. 5. The state at after the first iteration of AWCA. Fig. 6. The state at after the second iteration of AWCA.

Fig. 7. The power transfer flows of AWCA.

is no need for vi to be charged from the nodes close to the

power sources. When these conditions are met, node vi notifies

vj ∈ N(vi) to remove itself from its outgoing neighbor set

Nout(vj).

Example 3 Figure 7 illustrates the shortest distance of each node

to the closest power source node, after the power source selection

algorithm described in Example 2 is completed. Since nodes 3 and

7 are the power source nodes, power transfer flows are rooted at

either node 3 or 7. Note that the power transfer flow structure is

not a tree, and some nodes can be charged from more than one

node.

6 PERFORMANCE EVALUATION

In this subsection, the proposed AWCA scheme is implemented

along with the baseline centrality metrics, and computer simula-

tions using real contact traces are conducted.

6.1 Simulation Configuration

In the day-1 contact trace of [20], contacts among 444 high school

staff and students with a sensor mote are recorded throughout a

day, approximately 7.8 hours, or 1400 time steps. A subset of

nodes ranging from 200 to 400 is randomly selected out of 444

nodes in the trace, and a contact graph is generated. The link

weight of each pair of two nodes is computed by Equation 1 using

the contact events recorded in the trace with the period of time

being T = 1400. Note that due to the coarse granularity of the

trace, the link between two nodes is directed. Even if the link

from node vi to vj exists, the one from vj to vi might not exist.

However, it does not affect our algorithms. The percentage of

wireless chargers (i.e., the power source nodes) with respect to the

number of nodes ranges from 2% to 10% with the default value

being 5%. Unless specified, the transmission efficiency γ is set to

be 0.8.

According to [15], the amount of power that a mobile wireless

charger consumes to energize a sensor is approximately 0.9J per

60 seconds, where J indicates Joule. Since one time step in the

trace corresponds to 20 seconds, the amount of power transferred

from one node to another in one time step is set to be 0.3J , i.e.,

P
(Tx)
i,j = 0.3 for all vi, vj ∈ V . The target power level is set

to be Pmin = 5J , and the maximal amount of power that each

intermediate node can store is set to be Pmax = 2 · Pmin. Note

that it is known that 2J is sufficient for a sensor to operate for a

reasonable period of time [2]. In addition, a sensor can be charged

in 155 seconds [7], which corresponds to 7.75 time steps in the

trace. Thus, the simulation parameters regarding wireless charging

are reasonable. The power source nodes are assumed to have an

unbounded amount of power.

The value of α, which is a protocol specific parameter of

AWCA, is set to be 2. The simulation is conducted 1000 times

by selecting different subsets of nodes in the trace.

6.2 Evaluation Metrics

In the simulations, four evaluation metrics, the energized rate,

average power level, charging delay, and the number of multi-

hop power transfers are considered. The energized rate is the most

important metric in this paper as provided in Definition 1. The

average power level of non-power source nodes is obtained by∑
∀vi∈{V \Vs} Pi

|V |−n
. The charging delay is defined as the required

time (minutes) that vi’s power level reaches the target power

level, Pmin. The number of multi-hop power transfers is defined

as the number of power transfers between two nodes, vi and vj in

{V \ Vs}. This metric indicates the extent to which the power is

wirelessly transferred to nodes at more than two hops away from

the power source nodes.

6.3 Simulation Results

Figure 8 shows the energized rate of different algorithms with

respect to the number of nodes, where n = 5% and γ = 0.8.

As shown in the figure, the energized rates of all the algorithms

increase as the number of nodes increases. This is because there

are more contact events when there exists a larger number of nodes

in an MSN. The proposed AWCA algorithm achieves a higher

energized rate than the others by up to 20%. The betweenness

centrality results in a slightly higher energized rate than the degree

centrality does. The closeness centrality has a lower energized rate

among the others, especially when the number of nodes is low.

The primary reason for this is that a contact graph is not strongly

connected when the number of nodes is low, and as a result, the

node weight does not work well. The difference of the energized

rate becomes small when the number of nodes equals to 400. This

is because most of the nodes are eventually energized when the

number of contact events is sufficiently large.

Figure 9 illustrates the energized rate of different algorithms

with respect to the percentage of power source nodes, where

|V | = 300 and γ = 0.8. Our AWCA presents the highest

energized rate compared to all by up to 30%. The difference of the
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Fig. 8. The energized rate vs. the number of nodes.
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Fig. 9. The energized rate vs. the percentage of power source nodes.
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Fig. 10. The energized rate vs. the transmission efficiency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  60  120  180  240  300  360  420  480
C

D
F

Time (minutes)

Degree
Betweenness

Closeness
AWCA

Fig. 11. The CDF of the energized rate.
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Fig. 13. The average power level vs. the number of nodes.

resulting energized rate becomes smaller when the percentage of

power source nodes reaches 10%, i.e., 30 nodes among 300 nodes.

This is because the role of multi-hop power transfer becomes less

important when more nodes serve as power sources.

Figure 10 demonstrates the energized rate of different algo-

rithms with respect to the percentage of transmission efficiency,

where |V | = 300 and n = 5%. The energized rate of all the

algorithms slightly increases when the transmission efficiency

increases. This implies that the effect of a power loss does not

impact much compared to contact opportunities and the percentage

of power source nodes as long as γ ≥ 0.8. The energized rate of

the AWCA algorithm always results in the highest among all the

algorithms by approximately 10%. The degree, betweenness, and

closeness centrality metrics yield a similar energized rate, since

none of them consider the power loss for multi-hop power transfer.

Figure 11 presents the cumulative distribution function (CDF)

of the energized rate of different algorithms with respect to the

time (minutes), where |V | = 300, n = 5%, and γ = 0.8.

The figure indicates the percentage of the energized nodes out

of all the nodes except power source nodes at given time steps.

As can be seen in the figure, the CDF of all the algorithms

increases at 120 minutes after the simulation starts. In other words,

most of the nodes are not energized within 120 minutes due to

few contact opportunities. The energized rate of the proposed

AWCA increases quicker than that of the others, which implies

that AWCA efficiently transfers power. Note that the energized

rate cannot reach 100%, since the number of contact events is

limited within T = 1400 (approximately 7.8 hours) and some

nodes are isolated, i.e., some nodes never come in contact with

others. Figures 8 to 11 demonstrate that our AWCA successfully

achieves wireless power transfer over an MSN.

Figure 12 gives the probability distribution function (PDF) of
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Fig. 14. The average power level vs. the percentage of power source
nodes.
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Fig. 15. The average power level vs. the transmission efficiency.
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Fig. 16. The delay vs. the number of nodes.
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Fig. 17. The delay vs. the percentage of power source nodes.
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Fig. 18. The delay vs. the transmission efficiency.
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Fig. 19. The number of multi-hop transfers vs. the number of nodes.

different algorithms with respect to the power level at each node

in {V \ Vs}, where |V | = 300, n = 5%, and γ = 0.8. As can be

seen in the figure, the probability density is high at power levels

5 and 10. According to the power dissemination phase, a set of

power transfer flows rooted at power source nodes are constructed.

Thus, the nodes at the edge stop receiving power when their power

levels exceed the target power level, i.e., Pi ≥ Pmin = 5J . On

the other hand, the nodes close to any of the power source nodes

will receive as much power as possible to transfer power to others,

and as a result, their power level reaches the maximum capacity,

i.e., Pmax = 10J . This is why the probability densities at 5 and

10 are high compared to the other power levels.

Figure 13 depicts the average power level of different algo-

rithms with respect to the number of nodes, where n = 5% and

γ = 0.8. While the target power level Pmin is set to be 5J ,

relay nodes must store a larger amount of power than Pmin to

transfer power to other nodes. A trend similar to that in Figure 8

is observed, i.e., for all the schemes, the average power level

increases as the number of nodes increases. Again, our AWCA

always achieves the highest average power level among all the

algorithms.

Figure 14 shows the average power level of different algo-

rithms with respect to the percentage of power source nodes,

where |V | = 300 and γ = 0.8. It is intuitive that having more

power source nodes lead to more opportunities for power transfers.

As a result, the average power level increases when the percentage

of power source nodes increases. The proposed AWCA always

results in a higher average power level than the others.

Figure 15 illustrates the average power level of different

algorithms with respect to the transmission efficiency, where
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|V | = 300 and n = 5%. For all of the algorithms, the average

power level slightly increases when the transmission efficiency

increases. Unlike the other factors, the impact of the transmission

efficiency is not significant. As shown in the figure, AWCA always

presents a higher average power level than the other algorithms by

at least 1.5J .

Figure 16 illuminates the charging delay of different algo-

rithms with respect to the number of nodes, where n = 5%

and γ = 0.8. It is intuitive that the charging delay decreases

as the number of nodes increases. Our AWCA incurs the smallest

charging delay when the number of nodes is greater than or equal

to 300. AWCA and the betweenness result in a similar delay

when the number of nodes is smaller than 300. This indicates

that AWCA efficiently exploits multi-hop power transfers even

when the number of contact events is low. On the other hand,

the degree and closeness centralities incur a longer charging delay

than AWCA does.

Figure 17 presents the charging delay of different algorithms

with respect to the percentage of power source nodes, where

|V | = 300 and γ = 0.8. The delays of AWCA and the

betweenness centrality are very close to each other when the

percentage of power source nodes equals to 2%. When n ≥ 4%,

AWCA achieves faster charging than the betweenness by 10%.

In addition, AWCA incurs much smaller charging delay than the

degree and closeness do.

Figure 18 demonstrates the charging delay of different algo-

rithms with respect to the transmission efficiency, where |V | =
300 and n = 5%. The figure implies that a higher transmission

efficiency reduces the charging delay. The delay of our AWCA is

always the shortest among all of the algorithms. To be specific,

AWCA achieves approximately 8% faster charging than the be-

tweenness and 15% faster charging than the degree and closeness.

Figure 19 gives the number of multi-hop power transfers of

different algorithms with respect to the number of nodes, where

n = 5% and γ = 0.8. As can be seen in the figure, the number

of multi-hop power transfers increases as the number of nodes

increases. Among all the algorithms, the proposed scheme results

in the largest number of multi-hop power transfers. This indicates

that our AWCA algorithm effectively utilizes a multi-hop MSN.

7 CONCLUSION

In this paper, we first introduce a new research problem, namely

wireless charger allocation in mobile social networks (MSNs), in

which wireless chargers are allocated to a set of important nodes

in a network, and then power is wirelessly transferred to other

nodes via a multi-hop contact network. To this end, the weighted

connectivity centrality is designed to quantify the extent to which

each node can directly and indirectly transfer power to the others.

The proposed metric combines not only the shortest path distance,

but also the number of hops with the consideration of transmission

power loss and the expected power flow. Then, we propose

the adaptive wireless charger allocation (AWCA) algorithm that

adaptively selects the nodes with the highest centrality as power

source nodes and effectively transfers power from the power

source nodes to the others in an MSN. To evaluate the performance

of the proposed algorithm, extensive simulations using real human

contact traces are conducted. The simulation results demonstrate

that the proposed AWCA outperforms the baseline algorithms

with common centrality metrics in terms of the energized rate,

average power level, and charging delay. Our research on WPT in

DTNs will be more effectively exploited, when the physical layer

capability in terms of the transmission efficiency improves in the

near future.
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