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Abstract
Generating a small size connected dominating set

(CDS) for message routing in wireless ad hoc networks
is always a challenging problem. In a recent paper, a
local pruning algorithm called restricted rule-k has been
proposed, and succeeds in generating a small size CDS.
In this paper, a statistical analysis on the size of the
CDS generated is presented. For a network of N nodes
(where N → ∞) that are uniformly randomly gener-
ated in a square of size LN × LN (where LN → ∞),
three results are obtained. (1) It is proved that the node
degree distribution of such a network follows a Poisson
distribution. (2) The expected size of a CDS that is
derived by the restricted pruning rule-k is a decreas-
ing function with respect to the node density n̂. For
n̂ ≥ 30, it is found that the expected size is N/n̂. (3) A
tighter lower bound on the expected size of a CDS, for
Poissonian node degree distribution, is deduced. For
a network of node denisty (λ + 1), the lower bound is{

1
λ − λ+1

λ exp(−λ)
}

N which is larger than the lower
bound recently deduced by Hansen et al..

Keywords: Connected dominating sets (CDS), mobile
ad hoc networks (MANET), restricted pruning rule,
wireless networks

1 Introduction

In wireless ad hoc networks, selection of a set of nodes
for efficient message routing is always a crucial prob-
lem. Much research has been done in the last decade
aiming to find an efficient and simple method that can
select such nodes. Amongst them, one promising dis-
tributed algorithm [11] is based on the idea of con-
nected dominating set (CDS) [4]. Simulation and the-
oretical studies have shown that this CDS based algo-

rithm is able to generate a small node set, responsible
for message routing, without adding much computa-
tional overhead on the network [2, 11]. A CDS is a
subset of nodes in which every node not in this subset is
adjacent to at least one node in the subset. Via a CDS,
each node can be ensured to have at least one path to
send or receive messages from other nodes within the
network. Basically, construction of a CDS is not diffi-
cult. The real challenge is how to construct a minimal
CDS. It is an NP-complete problem [1].

Many approximation algorithms have been proposed
in the past few years in order to construct a small CDS.
Basically, those algorithms can be classified into cen-
tralized and decentralized algorithms. For a centralized
algorithm [3, 4], a computationally powerful central
host is normally assumed. It is responsible for running
a construction algorithm based on global information
and then broadcasting the results to the nodes in the
network. As one can imagine that the volume of global
information could be huge when the total number of
nodes is large, and the overhead for gathering informa-
tion could make the algorithm unsuitable for on-line
implementation.

Decentralized algorithms [2, 6, 7, 8, 10, 11], on the
other hand, require only local information — the IDs of
direct neighbors and the neighbors of neighbors. The
overhead for information gathering is minimal. Each
node simply determines whether it is a node of the CDS
in accordance with these local information. Thus, no
central host is required.

A simple and yet efficient decentralized algorithm
has been proposed by Wu & Li in [11] (and later ex-
tended by Dai & Wu in [2]) to tackle such a prob-
lem. In their algorithms, a CDS is constructed by go-
ing through two processes, namely the marking process
and the pruning process. After exchanging information
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with its direct neighbors, each node runs a marking
step. in which a node will mark itself true if it has two
unconnected neighbors. Otherwise, it will mark itself
false. Once the marking process has finished, each true
node runs a pruning step. Each marked node checks to
see if its local condition fulfils the conditions specified
by a pruning rule-k. In accordance with pruning rule-
k, a marked node unmarks itself if there exists a set of
connected nodes whose coverage can cover all its neigh-
bors and at the same time the ID of the marked node is
smaller than the IDs of those connected nodes. If the
connected nodes are restricted to direct neighbors of
the marked node, the pruning rule is called restricted
rule-k.1 Otherwise, it is called unrestricted rule.

Although the Wu & Li decentralized algorithm is
simple and yet efficient in terms of computational com-
plexity, only Dai & Wu in [2] and Hansen et al in [5]
have provided analytical studies on the size of a CDS
derived by such an algorithm. Let N be the total num-
ber of nodes and N →∞, Dai & Wu showed that the
size of a pruning rule k CDS is of constant times larger
than the minimal CDS. Hansen et al considered the
situation that the size of the square (say L2

N ) grows
linearly with N . The expected size of a CDS derived
by restricted pruning rule -k is in an order linear to L2

N

and lower bounded by L2
N/π.

Along the same line of thought, we provide an al-
ternative analysis on the size of a CDS derived by re-
stricted pruning rule-k in this paper. The same as-
sumptions that (i) LN →∞ and (ii) N →∞ have also
been made. Suppose the nodes are uniformly randomly
generated in a square of LN × LN . We would like to
investigate how the size of such a CDS derived by re-
stricted pruning rule-k changes with the node density,
and when it reaches the lower bound as derived in [5].

The contribution of this paper are three folds.

(1) For a network of N nodes that are uniformly ran-
domly generated in a square of size LN ×LN , the
node degree distribution follows a Poisson distrib-
ution when LN , N →∞.

(2) To obtain the probability unmarking of a marked
node that is of degree d node, a procedure based
on the idea of random sampling is proposed. The
change of the probability or unmarking with re-
spect to node degree is revealed.

(3) The expected size of a CDS that is derived by the
restricted pruning rule is thus analyzed. It is found
that the size of a CDS is almost a decreasing func-
tion with respect to the node density. The size of

1In this paper, the terms restricted rule-k and restricted prun-
ing rule-k are used interchangeably.

the CDSs reaches its lower bound when the node
density is greater than or equal to 30.

The rest of the paper will be organized as follow. In
the next section, the algorithm for marking and prun-
ing will be presented. Specially, we restrict our atten-
tion to the latest version of the restricted pruning rule-
k proposed by Dai & Wu in [2]. The idea of analysis is
outlined in Section 3. The main results are followed in
Section 4 to Section 7. In Section 4, the node degree
distribution of a network of randomly deployed nodes
is deduced and shown to be Poissonian. An empirical
procedure to obtain the unmarked probability will be
introduced in Section 5. In Section 6, the expected size
will be analyzed, and a tighter lower bound is derived
in Section 7. Section 8 gives a conclusion of the paper.

2 Pruning Rule

Consider a mobile ad hoc network of N nodes that are
randomly uniformly depolyed within a two dimensional
square of area L×L. Because of the transmission power
of a radio signal, two nodes can communicate with each
other if their distance apart is less than an allowable
transmission range, say r (r ¿ L). In other words,
node x and node y are neighbors to each other if

|Location(x)− Location(y)| < r.

Once a node has been deployed, (i) it generates a
uniformly random ID for itself and broadcasts to other
nodes nearby (if any) about its ID. Then, (ii) it waits
and listens to the signals from nearby nodes about their
IDs and the IDs of their neighbors. (iii) As long as the
IDs have been received, it updates the list of the IDs of
its neighbors and broadcasts this neighbor information
to its neighbors. The listen-update-broadcast cycle is
then repeated for a few more times until there are no
more updates on the neighbor list. The resultant net-
work graph is denoted by V .

When a complete list of neighbor information has
been obtained, each node carries out the following al-
gorithm to determine whether it is a gateway node (i.e.
a node in a connected dominating set) for message rout-
ing. Let id(x) be the ID and N (x) be the set of neigh-
bor nodes of a node located at x. The marker of x is
denoted by M(x).

Wu-Li Marking process [11]: A node located at x
sets its marker to True, i.e. M(x) = T , if there
exists two unconnected neighbor nodes.

Dai-Wu Restricted Pruning Rule k [2]: A
marked node unmarks itself if its neighbor
nodes can be covered by a set of connected
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neighbor nodes whose IDs are larger than node
x. That is to say, M(x) = F , if there exists
x1, x2, · · · , xk ∈ N (x) such that

(i) M(x) = T

(ii) id(x) < id(xj) for all j = 1, 2, · · · , k.

(iii) N (x) ⊂ N (x1)
⋃N (x2) · · ·

⋃N (xk).

(iv) x1, x2, · · · , xk form a connected graph.

To realize the above pruning rule efficiently, a
marked node (say x) of degree d performs the following
steps in practice. First, sort the IDs of its neighbor in
ascending order. Then, select all nodes with IDs larger
than id(x) and form a graph. Check if the coverage of
the graph can cover the unselected nodes (Step (iii)). If
yes, chek if the graph is connected (Step (iv)). M(x)
change to F if the selected nodes form a connected
graph and can cover all the neighbors of x.

The beauty of this pruning rule is because of its dis-
tributed nature. Only direct neighbor information is
needed. No global information is required. All calcula-
tions are done locally. Each node performs the marking
and pruning processes locally. Besides, the computa-
tional complexity is small. For a node of degree d, the
computational cost a node has to pay is just in an order
of O(d2).2 Consider a graph of finite mean node degree
(say µ) and variance (say σ2), it can be shown by the
Chebyshev Inequality that over (1−m−2) nodes are of
degree in between (µ −mσ) and (µ + mσ).3 In other
words, over (1−m−2) nodes, their computational costs
are just O(m2σ2).

3 Outline of analysis

Although the efficiency of Dai-Wu pruning algorithm
has been demonstrated in [2], little analysis has been
done on the size of a connected dominating set derived
by the restricted pruning rule k algorithm.

Remember that the network graph before the mark-
ing process and pruning rule are performed is denoted
by V and |V | = N . We further let Vcds be the graph of
the virtual backbone induced by the connected domi-
nating set formed after the pruning rule has been per-
formed. We let P (d) be the node degree distribution
of the network graph before the marking process and
pruning rule are performed. P (M(x) = F |deg(x) = d)
is the probability that a node of degree d is unmarked
after the pruning step.

2Theorem 4 in [2].
3In accordance with Chebyshev Inequality,

P (|d− µ| ≥ mσ) ≤ 1

m2
.
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Figure 1: The probability that a node of degree d is
not marked during the marking process.

During the marking process, a node will be marked
if there exists two neighbor nodes of x that are not
neighbor to each other. In other word, the probability
that a node of degree d will be marked in the marking
process is

(1− βd(d−1)/2),

where β is the probability that the distance of two ran-
dom nodes within a unit circle is less than or equal to
the radius.

By conducting a computer simulation that generates
10000 points uniformly randomly in a circle of radius r
and then counts the percentage of pairs of nodes whose
separation is less than r, it can find that β is equal to
0.5852. Then

P (Node x is marked|deg(x) = d) = 0.995

for d = 5. Figure 1 shows the probability that a node
of degree d is not marked during the marking process.
Clearly, one can assume that this probability vanishes
when d > 6.

Suppose a network graph is of Poisson node degree
distribution with large mean node degree. As will be
seen in the next section, the percentage of nodes of
small node degree is very small. One can thus as-
sume that all nodes are marked after the initial mark-
ing process has been performed. As P (deg(x) = d) is
homogenous for all x ∈ V , the expected size can simply
be expressed as follows :

E[|Vcds|] = N

(
1−

∑

d

P (M(d) = F |d)P (d)

)
, (1)

where the factor P (M(d) = F |d) is corresponding to
the probability that a node of degree d is unmarked.
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4 Node degree distribution

Suppose the nodes are randomly and uniformly distrib-
uted and let n̄ be the average number of node within
a unit disk. The average node degree λ will thus be
n̂ − 1. The node degree distribution of V follows a
Poisson distribution.

Theorem 1 For a mobile ad hoc network V , in which
the mobile nodes are randomly and uniformly distrib-
uted, the node degree distribution P (d) is given by

P (d) = exp(−λ)
λd

d!
, λ = n̂− 1, (2)

where n̂ is the average node density.

(Proof) Let N be the total number of nodes of V ,
and the area of deployment is much larger than a unit
disk. The number of nodes deployed within a unit disk
will then follow a binomial distribution, the probability
that exactly n nodes in a unit disk is

N !
n!(N − n)!

δn (1− δ)(N−n)
.

where

δ =
Area of a unit disk
Deployment Area

.

For large N , n̂ = Nδ and the probability that exactly
n nodes in a unit disk is

exp(−n̂)
n̂n

n!
.

Therefore, the probability of a node having d node
degree (i.e. the number of neighbor nodes) is given
by a Poisson distribution with average node degree
λ = n̂− 1. Q.E.D.

Figure 2 shows two exemplar distributions in which
n̂ equals 20 and 10 respectively.

5 Unmarked probability

Recall that a marked node x unmarks itself if there
exists x1, x2, · · · , xk ∈ N (x) such that

(i) M(x) = T

(ii) id(x) < id(xj) for all j = 1, 2, · · · , k.

(iii) N (x) ⊂ N (x1)
⋃N (x2) · · ·

⋃N (xk).

(iv) x1, x2, · · · , xk form a connected graph.
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Figure 2: The node degree distributions of V for which
the node densities are 20 (λ = 19) and 10 (λ = 9)
respectively.

Consider the condition (i). As we have assumed that
all the nodes are initially marked,

P (M(x) = T ) = 1 ∀ x ∈ V.

Thus, the node degree distribution of a connected dom-
inating set after marking process can be treated as the
same as before marking process.

Consider the condition (ii). For a node of degree
d, it might have 1 neighbor node, 2 neighbor nodes,
3 neighbor nodes and so on, up to d neighbor nodes
that have IDs larger than itself. Since all node IDs
are uniformly randomly generated in a constant range,
say [0, 1], the probability that id(x) < id(y) for all
y ∈ N (x) is ∫ 1

0

(1− u)du =
1
2
.

As a result, the probability that exactly k (k ≤ d)
neighbor nodes that have larger IDs is equal to

(
d
k

)(
1
2

)d

,

for all k = 0, 1, 2, · · · , d.
The final question left behind is this : If there are k

neighbor nodes with larger IDs, will these nodes form a
connected graph, and simultaneously will the rest of the
other d−k nodes be neighbors of these nodes. Unfortu-
nately, it is not an easy question. It all depends on the
locations of these d neighbor nodes. Take a look at the
illustrative examples shown in Figure 4 and Figure 3.
In both cases, k = 6. Even though both sets of neigh-
bor nodes can cover the whole circle, one is connected
(Figure 4) and the other is disconnected (Figure 3).
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Figure 3: Disconnected neighbors that can cover the
whole circle.
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x

Figure 4: Connected neighbors that can cover the
whole circle.

Let Ω(x) be the unit circle centered at location x.
Let X = (x1, x2, · · · , xk) ∈ Ω(x)k be an augmented
random vector, in which x1, x2, · · · , xk ∈ Ω(x). The
graph induced by X is denoted by GX . Furthermore,
we let I(X) be an indicator function defined as follows :

I(X) =
{

1 if GX is connected,
0 if GX is not connected. (3)

The coverage of X is denoted by Cov(X), where

Cov(X) =
Area covered by

⋃k

j=1
(Ω(xj) ∩ Ω(x))

Area covered by Ω(x)
. (4)

Therefore, the probability that (d− k) random nodes
in Ω(x) can be covered by the other k random nodes
in Ω(x) will be given by

P (k, d) =
∫

X∈Ω(x)k

I(X)Cov(X)d−kdX. (5)

The probability that a node of degree d will be un-
marked will thus be given by

P (M(d) = F |d) =
d∑

k=1

P (k, d)
(

d
k

)(
1
2

)d

(6)

and the expected size of CDS is given by

E[|Vcds|] = N (1− exp(λ)A(λ)) , (7)

where

A(λ) =
∑

d

d∑

k=1

P (k, d)
(λ/2)d

k!(d− k)!
.

Unfortunately, there is no simple close form solution
for the probability P (k, d), Equation (5). We obtained
the values empirically by the procedure depicted in Fig-
ure 5.

This procedure eventually generates a matrix PC of
dimension 25 × 10000 and its kjth element, i.e. PCkj

in Step 2.1.5, corresponds to the value I(X)Cov(X) of
the jth set of random k nodes. The value P (k, d) can
then be obtained accordingly, i.e.

P (k, d) =
1
M

M∑

j=1

PCd−k
kj (8)

for all k ≤ d. The unmarked probability of a node of
degree d can be obtained.

Figure 6 shows the unmarked probability P (M(d) =
F |d) against node degree d. It is found that the mini-
mum unmarked probability is attained at d equals to 5,
which is equal to 0.3722. (It is due to the fact that there
is a small chance for a 5-node induced graph to form a
connected induced graph.) The unmarked probability
reaches 0.9661 when d = 25. Further noted from the
figure that the value of P (M(d) = F |d) increases as d
increases and then approaches 1 when d is large.
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Step 0: Initialize OL,CN, PC ∈ R25×10000.

Step 1: Let Ω0 be the unit disk centered at
(0, 0) and then uniformly randomly generate
x1, x2, · · · , x10000 inside Ω0.

Step 2: For k = 1, 2, · · · , 25,

Step 2.1: For j = 1, 2, · · · , 10000

2.1.1: Uniformly randomly generate
y1, y2, · · · , yk inside Ω0,

2.1.2: Set NI equals the number of xis that
are located inside

⋃k
κ=1 Ω(yκ)

⋂
Ω0.

2.1.3: Set OLkj equals NI/10000.
2.1.4: Set CNkj equals 1 if y1, · · · , yk form a

connected graph.
2.1.5: Set PCkj equals OLkj × CNkj .

Figure 5: Procedure for obtaining the probability
P (k, d), Equation (5).
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Figure 6: The probability that a node of degree d will
be unmarked after the pruning process.
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Figure 7: Expected size of a CDS derived by restricted
pruning rule. The solid line with squares corresponds
to the lower bound (λ + 1)−1.

6 Expected size of CDS

In accordance with the formulae derived earlier for the
average number of marked nodes (Equation (1)) and
the theorem about the nature of node degree distribu-
tion (Theorem 1), the expected size of a CDs derived
restricted pruning rule can be expressed as follows :

E[|Vcds|]
N

= 1− exp(−λ)A(λ), (9)

where

A(λ) =
∑

d

P (M(d) = F |d)
λd

d!
.

λ corresponds to the average node degree.
Then, the expected size of a CDS derived is evalu-

ated by putting the values of P (M(d) = F |d) as shown
in Figure 6 and different values of λ into the Equa-
tion (9). Figure 7 shows the expected size of CDS
against λ. (For convenience, we simply let P (M(d) =
F |d) = 0.9661 for d > 25.) The solid line with squares
corresponds to the lower bound (λ+1)−1. (Please refer
to Appendix A for the derivation of this lower bound,
and a discussion on the lower bound of Equation (9).)

Clearly, the size is about 0.55% of the original net-
work size when λ = 6. The factor matches the result
obtained in [2] for the same λ and N = 200. (Please
refer to Appendix B for the reason why the comparison
is only made for λ = 6, not for other values of λ in their
paper.) In accordance with Figure 7, one can also see
that the size of a CDS drops as the λ increases. Even-
tually, it drops to Hansen et al Lower Bound when λ
is close to 30.
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Figure 8: Comaprison between Hansen et al and our
lower bounds.

7 A tighter lower bound

A tighter lower bound for Poissonian P (d) can indeed
be derived from the Equation (9). Consider a marked
node of degree d. One condition that a marked node
will be staying marked, after the pruning process, is
when its ID is larger than all its neighbors. This prob-
ability is given by (d + 1)−1 for a marked node with d
neighbors. Hence,

E[|Vcds|]
N

≥ exp(−λ)
∑

d≥1

λd

(d + 1)!
.

Since ∑

d≥1

λd

(d + 1)!
=

exp(λ)− 1− λ

λ
,

E[|Vcds|] ≥
{

1
λ
− λ + 1

λ
exp(−λ)

}
N.

It is larger than (λ+1)−1N for all λ ≥ 3. Figure 8 com-
pares the difference between Hansen et al lower bound
and ours lower bound. It is clear that there is no sig-
nificant difference when λ is large.

8 Conclusion

In this paper, we have provided some analytical results
on the size of a CDS derived by the restricted prun-
ing rule-k algorithm. For a network of N nodes that
are uniformly randomly generated in a square of size
LN ×LN , we have shown that the node degree distrib-
ution follows a Poisson distribution when LN , N →∞.

To argue that the node degree distribution of the net-
work does not change much after the marking process
has been performed, we has discussed with an aid the
probability of a node being marked in the marking
process and shown that such a probability tends to
vanish when the node density is high.

After that, we have derived an equation to evaluate
the expected size of a CDS, in terms of the network
node degree distribution and the unmarked probabil-
ities. As there is no close form solution for the con-
nected probability and the coverage of a graph induced
by random nodes within a circle, a computer simu-
lated procedure based on the idea of random sampling
has been developed to obtain such probabilities. The
probability that a node of degree d will be unmarked
is obtained and hence the expected size of a CDS can
be obtained. Finally, the expected size of a CDS de-
rived by the restricted pruning rule-k is analyzed with
respect to different node densities.

It is found that the size is almost a decreasing func-
tion with respect to the node density. The size reaches
its lower bound when the node density is larger or equal
to 30. That is to say, the CDS derived by the restricted
pruning rule-k algorithm in a high node density sit-
uation is a minimal CDS. The results are consistent
with the existing results previously obtained in [2] and
[5]. More important, our results have filled in the gap,
6 ≤ λ ≤ 30, that has not been investigated before. A
tighter lower bound on the expected size has also been
deduced.
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A Hansen et al Lower Bound

Instead of running extensive computer simulations,
Hansen et al in [5] have presented a theoretical analysis
on the size of a CDS derived by the restricted pruning
rule. In one of their theorems4, they show that

Size of a CDS ≤ l2N
π

for lN →∞. Here lN is the length of the square where
the mobile nodes are deployed.

For an ad hoc network consisting of N nodes, l2N/π
is equal to the total number of nodes over the node
density. As node density is equal to the average node
degree plus 1, i.e.

n̂ = λ + 1,

4Theorem 5 in [5].

the lower bound of the expected size of a CDS derived
by restricted pruning rule is depended on the average
node degree of the Poissonian node degree distribution :

E[|Vcds|] ≥ N

λ + 1
. (10)

It is a lower bound independent of the graphical struc-
ture of the network.

B Dai & Wu Result [2]

In our analysis, we assume the network is of Poisson
node degree distribution. For a network of N nodes
deployed in a square of size L× L, and each node has
transmission range r, it happens when r ¿ L and

r

L
=

√
λ + 1
πN

.

This condition is equivalent to λ ¿ N for L is finite.
Therefore, only when λ is small, the node degree dis-
tribution is close to a Poisson distribution.

The simulated results in [2] for the expected size of a
CDS at λ = 6 is consistent with our result obtained in
this paper. On the contrary, the node degree distribu-
tion of a large λ network could hardly follow a Poisson
distribution. Comparison between their results and the
result presented here could not be made.
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