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Abstract—Mobile devices are undergoing explosive proliferation today. Although they are gaining more and more capabilities, they still

fall short to execute complex applications. One possible solution to alleviate this limitation is offloading tasks to remote clouds.

However, it may require persistent connectivity to the Internet and thus is not always available or affordable. An alternative solution is

taking advantage of pervasive mobile devices and their pairwise encounters. In this paradigm, complex tasks from mobile devices are

processed in a distributed and collaborative fashion on all mobile devices that are loosely-connected. Working towards this vision, this

paper studies the following problem: given a task that originates at some node in a Disruption Tolerant Network (DTN), how are we to

disseminate the task’s workload during the pairwise contacts among mobile devices to achieve makespan minimization? We first

imagine access to an oracle that has global and future knowledge of node mobility, and we design a provably-optimal centralized

polynomial-time solution as the benchmark for comparison. With the insights obtained from the centralized solution, we then develop a

distributed dissemination algorithm, D2, which maintains certain neighborhood information at individual nodes. D2 makes

dissemination decisions based on the estimations of the potential computational capacities and the future workloads of mobile nodes.

Extensive trace-driven simulations confirm the effectiveness of D2.

Index Terms—Disruption tolerant networks (DTNs), minimummakespan scheduling, workload dissemination

Ç

1 INTRODUCTION

MOBILE computing has experienced serious growth in
recent years, attracting increasing attention from

academic and industrial communities. Central to mobile
computing, mobile devices are undergoing explosive prolif-
eration today. Although these devices are gaining more and
more capabilities, they still fall short to execute complex
applications and services.

When we have to handle a task that requires complex
processing, we usually have two choices. At one extreme is
offloading the task to remote clouds, which may require
persistent connectivity to the Internet and thus is not always
available or affordable [1]. The other extreme is taking
advantage of pervasive mobile devices and their pairwise
encounters. In this paradigm, due to the unpredictable
mobilities and the limited communication ranges of mobile
devices, they can only contact each other opportunistically
within their roaming regions, and are loosely-connected. In
other words, these devices form a type of Disruption Toler-
ant Network (DTN) [2]. This paradigm requires computa-
tional tasks to permit partitioning of the workload into
small pieces, which do not have dependency relations, and
the computing output can be constructed by consolidating

partial outputs from pieces of workload. Tasks that satisfy
this requirement include large matrix-vector products [3],
large file compression [4], etc. For these tasks, disseminating
the workload in the network around us is not only suitable
but also essential to complete them in time.

In this paper, we investigate the problem of disseminat-
ing the workload of a task among a set of loosely-connected
mobile devices to minimize the maximum completion time
(i.e., makespan), and focus on designing an efficient distrib-
uted dissemination algorithm. Unlike the classical mini-
mum makespan scheduling problem [5], we do not have
information about which devices would contribute to the
completion of the task, or from which time a device begins
to participate in the collaboration.

There are two general challenges, i.e., no global knowledge
and no future knowledge, in designing efficient distributed
disseminating algorithms. We use the example in Fig. 1 to
illustrate these challenges. In Fig. 1, there are three mobile
devices (A, B, and C) and two contacts, i.e., A meets B
when the time t is 0:00 and B meets C when t ¼ 5:00). The
workload processing rate of each device is written next to
the respective device, e.g., A can finish 5 units of workload
in one time slot. Suppose that, A, B, and C have 600.00, 0.00,
and 50.00 units of workload, respectively, when t ¼ 0:00.

Fig. 1c shows the results of two different algorithms.
With the Na€ıve algorithm, during each contact, the total
workload is split between two devices based on the ratio of
their processing rates. For example, when t ¼ 0:00, after
workload split, A keeps 200 units of workload for itself and
transfers the other 400 units of workload to B. The make-
span of this algorithm is 40 slots. With the D2 algorithm
developed in this paper, the impact of the future contact
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between B and C is taken into account even when A
meets B. Based on Equ. (1), A transfers 466.32 units of
workload to B and keeps the rest for itself. In this way,
the makespan of D2 is 26.74 slots, which is much shorter
than that of Na€ıve.

In this paper, to gain a better understanding of the prob-
lem, we first study the scenario where we have access to an
oracle that knows global and future knowledge of node
mobility, and we propose a centralized polynomial-time
disseminating algorithm based on the shortest delay tree,
which is derived from the Dijkstra’s shortest path algo-
rithm [6]. The proposed centralized algorithm is proven to
be optimal, and later serves as the comparison benchmark
in trace-driven simulations.

With the insights obtained from the oracle case, we then
develop a distributed dissemination algorithm, D2, which
enables each device to determine its disseminating strategy,
such that all devices can collaboratively complete the task
and achieve the minimal makespan. More specifically, in
each individual node or device, D2 is comprised of four
components: the workload queue manages operations (e.g.,
integration and splitting) on the actual workload; the r-hop
neighborhood information manager stores and updates the con-
tact rate, opportunistic path, and workload information for
every r-hop neighbor of a node; the finish time estimator cal-
culates the expected finish time of a given workload; and
the future workload estimator predicts the expected workload
in a node at a future time point.

We show through trace-driven simulations that the per-
formance, in terms of makespan, of D2 with only 1-hop
neighborhood information is already near-optimal in three
realistic traces, and the performance gap between D2 and
the optimal solution becomes smaller as the amount of
information maintained at individual nodes increases. The
contributions of this paper are summarized as follows:

1) To the best of our knowledge, we are the first to
study the minimum makespan workload dissemina-
tion problem in disruption tolerant networks. We
formulate the problem and identify the challenges in
designing efficient distributed algorithms.

2) With the access to global and future mobility knowl-
edge, we design an optimal centralized polynomial-
time algorithm as performance benchmark.

3) We develop D2 that maintains limited information at
individual devices and makes workload split deci-
sions based on heuristic workload and finish time
estimations.

The remainder of this paper is organized as follows. We
motivate our work in Section 2. Section 3 provides the mod-
els and problem formulation. The optimal benchmark solu-
tion is presented in Section 4. Sections 5 and 6 present the
overview and design details of D2, respectively. We provide
several extensions in Section 7. Performance evaluations are
introduced in Section 8. Before concluding this paper in
Section 10, we go over related work in Section 9.

2 MOTIVATION AND SCENARIO

2.1 Motivation

In an era ofmobile computing, we are surrounded bymassive
mobile devices. Although these devices are gainingmore and
more capabilities, they still fall short to execute complex appli-
cations and services. One solution to alleviate this limitation is
mobile cloud computing [7], i.e., computationally expensive
tasks are offloaded to the remote cloud infrastructure. How-
ever, this solution requires persistent connectivity to the
cloud,which is not always available or affordable [8], [9].

An alternative solution is to pool nearby mobile devices
together for resource sharing and forming an “ad hoc
mobile cloud” [1], [10] or a “cloudlet” [9], [11]. In this para-
digm, complex tasks from mobile devices are then proc-
essed in a distributed and collaborative fashion on all
mobile devices that are loosely-connected. The feasibility of
this idea has been demonstrated in Virtual Cloud Pro-
vider [8], which organizes neighboring mobile devices pur-
suing same interests or goals into a virtual cloud for
distributed computational tasks.

Despite the obstaclesmobile devices inevitably have to face
compared to conventional information processing devices,
e.g., resource limitations, and connectivity variability, there
are several benefits to consider this paradigm [9], [10], [12]:

1) In-place processing. Mobile data (e.g., surveillance
video clips, and environmental sensing data) origi-
nates at network edges and can be processed in-
place or nearby devices. In doing so, we can avoid
the expensive data transfer to remote clouds [10],
and meanwhile, the Internet is relieved, since
uploading tasks and related data to remote clouds
may take up a large amount of bandwidth

2) Infrastructure-free collaboration. Utilizing neighboring
devices requires no infrastructure, thus, can be a
backup solution when a collection of devices are
unable to access Internet-based clouds [12].

3) Context-aware service. Most mobile devices have sens-
ing abilities, an ad hoc mobile cloud made up of
these devices will be able to provide context-aware
services [9].

2.2 Scenario

The ad hoc mobile cloud paradigm is attractive in many sce-
narios [9], [10], [11]. For example, mobile clouds can be used

Fig. 1. A motivational example. The processing rate of each device is
written next to the respective device. (a) A meets B when the time t is
0:00. (b) B meets C when the time t is 5:00. (c) Results of applying two
dissemination algorithms, Na€ıve and D2.
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to perform digital signal processing of radio telescope data
from the Arecibo radio observatory [13], or search for evi-
dence of continuous gravitational-wave sources [14]. In
these applications, mobile clouds serve as a complementary
solution to traditional Internet-based computing paradigms.

Besides, in some other scenarios, the ad hoc mobile cloud
seems more appropriate. Here is an example adapted
from [8]. Suppose an American Mike is visiting museums in
China. In a museum, he becomes interested in an artwork
from ancient times; though there is a description of the art-
work, he cannot read it as the description is indistinct and
in Chinese! He takes several pictures of the description and
intends to use a pattern recognition-based software to rec-
ognize the texts, which can be translated into English later.
However, his mobile phone cannot efficiently handle these
pictures due to limited processing capability. As the cost of
data roaming is extremely expensive, he cannot upload the
pictures to remote clouds, either. What can he do? One pos-
sible way is to check for other nearby users that are also
interested in understanding the texts, and collaboratively
finish the recognition task.

In fact, this example is not unusual in place-based activi-
ties (e.g., museum visits, social meeting, and archeological
expeditions in deserts). Collocation increases the probability
of sharing common interests among users, which encourages
them to collaboratively finish tasks through resource sharing.

2.3 Assumptions

In this paper, we consider parallel tasks which satisfy the fol-
lowing two properties. First, workload of a task is fine-grained
and permits arbitrary partitioning. Second, the computing output
can be constructed by consolidating partial outputs from pieces of
workload. Many tasks in reality have these two properties,
e.g., large matrix-vector products, and large file compres-
sion.With these two properties, when two devices encounter
each other, the total workload on them can be freely re-dis-
tributed in any ratio, and the final output can be derived by
gathering partial outputs from each piece of workload.

There are two phases in finishing a task: workload dissemi-
nation and output collection. For the second phase, it is merely
a routing problem in DTNs, and there are plenty of routing
protocols. Hence, when a device finishes the workload allo-
cated to it, the device can send the output to the task source
with some DTN routing protocol (e.g., Spray and Wait [15],
Delegation forwarding [16], and RAPID [17]). Therefore, in
this paper,we focus on the workload dissemination phase.

As there are hundreds of (or even thousands of) giga-
bytes of storage in modern devices; files of several mega-
bytes are no problem. Hence, we do not consider storage
constraints in this work. Given the high transmission speed
of proximity-based communication technologies, e.g., the
typical rate of Bluetooth v1.2 is 1 MB per second [18], we
also assume that all necessary data transfers can be com-
pleted in any contact, and the transmission time is negligi-
ble compared to the relatively long task processing time at
individual devices.

3 PROBLEM FORMULATION

In this section, we introduce the network and task models,
followed by the problem formulation.

3.1 Models

We model the underlying loosely-connected network as a
graphG ¼ ðV;EÞ. The vertex set V represents mobile devices.
Each device i 2 V can process ri units of workload in one
time slot. We assume that the processing rate is constant for
each node. This is reasonable, since a mobile device can
decide how much computing capability it contributes to our
system, based on its battery and load status. Note that, there
are already some mechanisms (e.g., [19]), which motivate
mobile users to participate in crowdsourcing or volunteer
computing applications. We will not discuss the design of
suchmechanisms, as it is orthogonal to the focus of this paper.

The edge set E represents the stochastic contacts between
devices. Two devices i and j can communicate with each
other via wireless interfaces only when they are within the
communication range of each other. The inter-contact time
between i and j is assumed to be exponentially distributed
with contact rate �ij. In other words, the contacts between

two devices i and j follow Possion distribution with contact
rate �ij. This assumption fits well with realistic traces, as

shown in many prior theoretical and experimental
works [17], [20]. Each node is also assumed to contact its
neighbors one by one, since a node does not frequently con-
tact multiple neighbors at the same time. We note that,
though the inter-contact time is assumed to follow exponen-
tial distribution, our dissemination algorithm can also be
extended to scenarios where inter-contact times follow other
distributions, as shown later in Section 7.

3.2 Problem

We are interested in examining the research decisions and
design tradeoffs that may arise when making full use of the
computing power of pervasive mobile devices. To initiate a
tractable study, this paper narrows the scope of this prob-
lem to a manageable extent—we investigate how to dissem-
inate the workload from a single task in an empty DTN,
where by “empty” we mean that: 1) when the single task
originates at its source, all of the other devices do not have
any unfinished workload, and 2) before the single task is
finished, there are no more tasks that would originate in the
DTN. This simplification lets us focus on the main problem;
we also provide remarks on how to support multiple simul-
taneous tasks in our algorithm in Section 7. We hope that
our work can provide some insights for future studies.

In our scenario, we consider a task C that contains W
units of workload. Denote the amount of workload in

device i at time t as Wt
i . Without loss of generality, we

assume that, the task C originates at its source s 2 V at
t ¼ 0. Since we consider the case where there is only one
task, we have

W 0
i ¼ W if i ¼ s;

0 otherwise:

�

The completion time T , also called the makespan [5], is
defined as the time difference between the origin time, i.e.,
t ¼ 0, and the finish time, i.e., the time point when all partic-
ipating devices finish their respective workloads that belong
to C. Different from the classical minimum makespan
scheduling problem [5], which finds an assignment of mul-
tiple jobs to multiple identical machines so that the
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makespan is minimized, we concentrate on designing a dis-
tributed solution with respect to unpredictable communica-
tion delays between mobile devices. Main notations are
summarized in Fig. 2 for quick reference. Our problem can
be stated as follows:

Problem: (Minimum Makespan Workload Dissemina-
tion, MMWD) Given a DTN G ¼ ðV;EÞ, where the process-
ing rate of node i 2 V is ri, and the inter-contact time
between i and j follows exponential distribution with con-
tact rate �ij. For a task C that consists of W units of work-

load and originates at node s 2 V when t ¼ 0, how are we
to disseminate the workload during pairwise contacts to
minimize its makespan T?

4 THE OPTIMAL SOLUTION WITH GLOBAL

AND FUTURE INFORMATION

In this section, based on the access to the oracle that has global
and future knowledge of device contacts, we present a prov-
ably-optimal centralized polynomial-time solution, which
will serve as the benchmark in performance evaluation. We
also provide an example to better explain our solution.

4.1 Discrete Contact Graph

For a DTN G ¼ ðV;EÞ, if we have the global and future
knowledge of node contacts, the edge between device i 2 V

and j 2 V can be represented by ðt1ij; t2ij; . . . ; tkij; . . .Þ, where

tkij indicates the time point of the kth contact between devi-

ces i and j over a period of time. Fig. 4a shows an example
that we will use throughout this paper. There are five
mobile devices in the DTN, and the processing rate of each
device is written next to the respective circle that represents
it, and the contact opportunities of each pair of devices are
written next to the respective edge that represents it.. Take

the edge between devices 2 and 3 for example, “(3,6)”
means that, devices 2 and 3 could communicate with each
other when the time t ¼ 3 and t ¼ 6.

4.2 Shortest Delay Tree-Based Algorithm (SDTA)

In this subsection, we present the Shortest Delay Tree-based
Algorithm, a provably optimal centralized polynomial-time
solution to the MMWD problem when we have the global
and future knowledge of node contacts. The main idea of
SDTA is to make sure that each device participates in the
dissemination as early as possible, and all participating
devices finish their respective workloads at the same time.
In doing so, the makespan is minimized, since the comput-
ing power of each device is utilized as early as possible.

SDTA consists of four main steps. First, we derive the
shortest delay from the source device to all of the other devi-
ces based on the Dijkstra’s shortest path algorithm [6]; then,
we find out the maximum amount of workload WðtÞ that origi-
nates at the source and can be finished with exactly t time
slots. Third, we determine the minimum makespan based on
the shortest delay tree and W ðtÞ. Finally, we compute the
dissemination plan according to the shortest delay tree and
the minimummakespan.

Without loss of generality, we assume that the task origi-
nates at its source device s. Denote the shortest communica-
tion delay that some workload could be transferred from s
to another device i as d½i�. With the discrete contact graph,
we can obtain the the shortest delays using Dijkstra’s short-
est path algorithm with a few modifications—the only dif-
ference is the relaxation part, which is shown in Fig. 3.
Similar to Dijkstra’s algorithm, we use previous½i� to repre-
sent the direct previous device of i along the shortest path
from s to i. Connecting each device i to previous½i�, we
obtain the shortest delay tree. Fig. 4b shows the shortest
delay tree of the discrete contact graph in Fig. 4a with s ¼ 0.
For example, the shortest delay d½3� from device 0 to device
3 is 2, and previous½3� ¼ 1.

We denote by W ðtÞ the maximum amount of workload
that originates at source s and can be finished within exactly

Fig. 2. Main notations for quick reference.

Fig. 4. An example of SDTA. (a) Discrete contact graph. (b) Shortest delay tree. (c) W ðtÞ is the size of the plane bounded by y ¼ 0, y-axis, y ¼ t, and
the dashed polyline.

Fig. 3. The relaxation part of SDTA.
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t time slots. Without loss of generality, we assume that s ¼ 0
and 0 ¼ d½0� < ::: < d½i� < ::: < d½jV j � 1� (if d½i� ¼ d½j�, we
consider them as a whole). We have the following piecewise
function:

WðtÞ ¼

Pi
k¼0 rk � ðt� d½k�Þ if d½i� � t < d½iþ 1� for

some 0 � i < jV j � 1PjV j�1
k¼0 rk � ðt� d½k�Þ if d½jV j � 1� � t:

8<
:

In Fig. 4, we have 0 � t � 1, WðtÞ ¼ 5t; when 1 < t � 2,
W ðtÞ ¼ 15t� 10; when 2 < t � 3, W ðtÞ ¼ 40t� 60; when
3 < t, WðtÞ ¼ 45t� 75. In fact, as shown in Fig. 4c, WðtÞ is
the size of the plane bounded by y ¼ 0, y-axis, y ¼ t, and the
dashed polyline.

The minimummakespan T can be determined by solving
W ðT Þ ¼ W . In Fig. 4a, suppose that a task with 28 units of
workload originates at its source 0. Based on the above
results onWðtÞ, we have T ¼ 2:2.

Denote the amount of workload that device i should fin-
ish as assign½i�. To achieve the minimum makespan, every
device contributes its computing power as early as possible,
thus, it is not hard to see that,

assign½i� ¼ ri � ðT � d½i�Þ if d½i� < T;
0 otherwise:

�

In our example, we have assing½0� ¼ 11, assing½1� ¼ 12,
assing½2� ¼ 4, assing½3� ¼ 1, and assing½4� ¼ 0.

With the shortest delay tree and the workload assign-
ments, we can determine the dissemination plan as follows:
When two devices i and j have a contact, if previous½j� ¼ i,
node i has some unfinished workload, and device i has not
transferred any workload to j, then device i transfers to j all
of the workload assignments that belong to the subtree
rooted at j. In Fig. 4, when two devices 0 and 1 meet at the
beginning of the first time slot, device 0 transfers
assign½1� þ assign½3� ¼ 13 units of workload to device 1;
when two devices 0 and 2 meet at the beginning of the sec-
ond time slot, device 0 transfers assign½2� ¼ 4 units of work-
load to device 2; when two devices 1 and 3 meet at the
beginning of the second time slot, device 1 transfers
assign½3� ¼ 1 unit of workload to device 3.

4.3 Summary

Since SDTA utilizes the computing power of every device as
early as possible, and makes sure that all of the participating
devices finish their respective workloads at the same time, it
is straightforward to see its optimality.

Theorem 1. For the MMWD problem with an oracle that knows
global and future information of pairwise contacts, SDTA is
optimal in terms of makespan.

Finding the shortest delays in SDTA takes OðjV j2Þ time;
sorting these delays takes OðjV jlogjV jÞ time; searching in
step 3 takes OðlogjV jÞ time; assigning in step 4 takes OðjV jÞ
time; therefore, the overall running time is dominated by

OðjV j2Þ.

5 D2 IN A NUT SHELL

D2 is a distributed dissemination algorithm for the MMWD
problem. In this section, we provide a brief overview of D2

to help the reader grasp the main principle behind our
design. We first introduce its main components, then we
present the workload split rule and information exchange
procedure during a contact.

5.1 Main Components

The global network status and future node contacts are key
to minimizing makespan. However, in DTN environments,
they are hard to know from the perspective of each individ-
ual device. D2 makes dissemination decisions based on esti-
mations of the potential computing power and the future
workload of each device. Fig. 5 shows the main components
in the proposed algorithm.

The r-hop neighborhood information manager. Device i is a 1-
hop neighbor of device j if and only if their contact rate �ij is
positive. Recursively, we can define r-hop neighbor: i is a
r-hop neighbor of j if and only if, i is 1-hop neighbor of
another node, which is a ðr� 1Þ-hop neighbor of j. For exam-
ple, in Fig. 4a, nodes 1 and 2 are 1-hop neighbors of 0; nodes
3 and 4 are 2-hop neighbors of 0. Denote the set of devices
that are within r hop(s) from device i by Nr

i . For each device
k that iswithin r hop(s) fromdevice i, thismanager is respon-
sible for storing and updating the contact rate �ik, the oppor-
tunistic path Pik, and the workload FkðtÞ, which are used by
the other components for estimations. As we shall see in our
simulations, when more neighborhood information is main-
tained at individual nodes, D2 performs better. Section 6.1
providesmore details regarding thismanager.

Finish time estimator. Based on the information main-
tained by the r-hop manager, this component generates and
updates a function T iðwÞ, which returns the expected time
for device i and its neighbors to finish w units of workload.
We note that it is non-trivial to obtain T iðwÞ, since the com-
puting power and the amount of workload in all r-hop
neighbors of device i should be taken into consideration.
Section 6.2 provides more details.

Future workload estimator. This estimator generates and
updates a function FiðtÞ, which returns the expected work-
load in device i in a future time point t, i.e., the domain of
this function is ftjt � t0g, where t0 is the generating time of
this function. Since device i may transfer/receive some
workload to/from other devices during future contacts, it is
also non-trivial to obtain this estimator. We present more
details in Section 6.3.

Fig. 5. Main components of D2.

ZHANG ETAL.: DISTRIBUTEDWORKLOAD DISSEMINATION FOR MAKESPAN MINIMIZATION IN DISRUPTION TOLERANT NETWORKS 1665



Workload queue. This component manages operations on
the actual workload in four aspects: 1) it consolidates partial
outputs from the finished workload to construct an interme-
diate result and sends it to a task source at proper time
points; 2) it stores the unfinished workload and is responsi-
ble for updating Wt

i ; 3) when another node j transfers some
workload to node i, it integrates the new workload into its
own; 4) when node i goes to transfer a certain part of its
workload to another node j, it splits the workload into two
corresponding parts.

Split ruler. When one node encounters another one, from
their viewpoints, in order to minimize the makespan, their
total combined workloads should be re-distributed in such
a way that they finish their separate parts by the same time. We
note that, the functions T iðwÞ and T jðwÞ have already incor-
porated the impact of the computing power and the amount
of workload in their respective r-hop neighborhoods, as we

shall see in Section 6.2. Suppose that, device i with Wt
i units

of workload meets another device j with Wt
j units of work-

load at time t. Denote by xi and xj the amounts of workload
of i and j after workload split, respectively. Then, xi and xj

should satisfy:

xi þ xj ¼ Wt
i þWt

j ;
T iðxiÞ ¼ T jðxjÞ:

�
(1)

We note that, in D2, some pair of devices may need to re-
distribute the workload between them whenever there is a
contact, and a device may receive workloads from multiple
devices, while in SDTA, there is no need for a pair of devices
to re-distribute the workloadmultiple times. This is because,
in DTN environments, a device cannot have accurate global
and future information of node contacts, and thus, every
communication opportunity should be exploited to locally
improve theworkload dissemination performance.

5.2 Information Exchange Procedure

We now present how two devices i and j exchange informa-
tion in a contact at time t. Generally speaking, the goal of
information exchange is to facilitate the construction of the
finish time estimator and future workload estimator. Specif-
ically, after neighbor discovery:

1) Two devices i and j exchange the amounts of their
respective workloads, i.e.,Wt

i andWt
j .

2) Device i generates T iðwÞ based on �ik, rk, and FkðtÞ
of each k 2 Nr

i n fjg; device j generates T jðwÞ based
on �jh, rh, and FhðtÞ of each h 2 Nr

j n fig. Here, “n”
denotes the set minus operation. Without loss of gen-
erality, j sends the function T jðwÞ to i.

3) Device i decides how to split the total workload
among them according to the aforementioned split
rule, and returns the result to device j. The workload
queues then complete the necessary workload trans-
fers between two devices.

4) Devices i generates a new version of FiðtÞ and sends
it to j, then, j updates its maintained version of FiðtÞ
to be the new one; similarly, j generates a new ver-
sion of FjðtÞ and sends it to i, then, i updates its
maintained version of FjðtÞ to be the new one.

5) Device i updates FkðtÞ and Pik for each device

k 2 Nr�1
j , as stated in Section 6.1; device j updates its

corresponding information in a similar way.

6 DESIGN DETAILS OF D2

In this section, we present the design details of main compo-
nents in D2. We also provide a concrete example that helps
the reader to better understand our design.

6.1 The r-Hop Information Manager

This component, i.e., the r-hop manager of a device i main-
tains the following information for each j 2 Nr

i :
Contact rate �ij. The r-hop manager of a device imaintains

two variables, i.e.,Fij and fij, for calculating �ij in a time-aver-
age manner in real time. Fij represents the number of time
slots elapsed sinceD2 took effect; fij represents the number of
contacts between i and j. Thus, �ij ¼ fij=Fij. Fij and fij are
updated whenever imeets j. For example, we start D2 at slot
t0, and imeets j at slots t1, t2; . . . ; tm�1; when theymeet at slot
tm,Fij and fij are updated to ðtm � t0Þ andm, respectively.

Workload FjðtÞ. The r-hop manager of a device i main-
tains a version of the function FjðtÞ, which represents
the amount of workload in device j at slot t. We
note that, device i may get this function from device j or
another device k 2 Nr

i . As we mentioned before, when i

meets j, device i replaces its version of FjðtÞ with the
new one generated by j; in addition, for each device

h 2 Nr�1
j , if the version of FhðtÞ in device j is more recent

than that in device i, then device i updates it. Device j
will also update information similar to that of device i.

Opportunistic path Pij. Opportunistic path and its weight
are defined as follows [21]: An r-hop opportunistic path Pij

between i and j is a sequence of devices i ¼ n0; n1; . . . ;
nr�1; nr ¼ j, where the contact rate �k ð1 � k � rÞ between
nk�1 and nk is positive. Path weight vðPijÞ is defined as the
expected delay from i to j.

We use Fig. 6 to illustrate how we compute vðPijÞ.
Denote the inter-contact time between nk�1 and nk as Xk,
the delay from i to j as Y , and then we have Y ¼

Pr
k¼1 Xk.

As we mentioned before, Xk follows exponential distribu-
tion with parameter �k, i.e., its probability density function

(PDF) is pXk
ðxÞ ¼ �ke

��kx. Therefore, Y follows hypoexpo-

nential distribution [22], and the PDF of Y is:

pY ðyÞ ¼
Xr

k¼1

Yr

h¼1;h 6¼k

�h

�h � �k

� �
pXk

ðyÞ: (2)

Then, the weight of Pij is:

vðPijÞ ¼
Z 1

o

pY ðyÞydy ¼
Xr

k¼1

1

�k
: (3)

For each device j 2 Nr
i , device imaintains a path Pij with

the smallest weight. Such kinds of information are updated

Fig. 6. Opportunistic path and its weight.

1666 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016



as follows: When i meets j, for all k 2 Nr
i nNr�1

j , i keeps Pik

unchanged; for all k 2 Nr�1
j nNr

i , i initializes Pik by catenat-

ing i and Pjk (denoted as iþ Pjk); for all k 2 Nr�1
j \Nr

i , if the

weight of Pik is larger than iþ Pjk, i replaces Pik with iþ Pjk.
We make two remarks. First, denote by R the network

diameter that represents the hop count of the longest short-
est path among any two devices in the network. We note
that, even if D2 maintains R-hop information at individual
devices, it does not imply that each device knows global
network status, since D2 does not maintain the information
between any two neighbors of a device.

Second, D2 updates network status information via pair-
wise communication. There are several reasons for this
choice. First, even if we leverage long-distance communica-
tion to collect global network status and push it to all partici-
pating devices, information about future contacts between
mobile devices remains unknown. Besides, the underlying
DTN environment could be highly dynamic and very large
in terms of number of devices. Whenever any device arrives
or leaves, the network information should be updated,
whichmay cause too frequent long-distance communication.
Third, D2 aims to provide a low-infrastructure service. With
its current design, D2 assumes no infrastructure; otherwise,
D2 would require all participating devices to keep their
long-distance communication interfaces on all the time.

6.2 Finish Time Estimator

In this section, we present how device i generates its finish
time estimator. We first consider two special cases, then
extend the results to the general case.

Special case 1: r ¼ 1, andN1
i contains only one device.Denote

the only 1-hop neighbor of i as j, and the current time as t.
Suppose that device i has w units of workload; based on its r-
hop manager, device i knows �ij, rj, and FjðtÞ. If
FjðtÞ=rj > w=ri, device j would be helpless, thus,
T iðwÞ ¼ w=ri. Otherwise, we have the following theorem (the
proof can be found in the supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2015.2480075):

Theorem 2. When r ¼ 1, device i hasw units of workload and has
only one 1-hop neighbor j; ifFjðtÞ=rj < w=ri, then we have:

T iðwÞ ¼
1

ri þ rj

�
wþFjðtÞ þ

rj
�ij

�
e
��ij

rj
FjðtÞ � e�

�ij
ri
w
��

:

Special case 2: r ¼ 1, and N1
i contains only two devices, say

j and k. Similarly, we have:

Theorem 3. When r ¼ 1, device i has w units of workload and
only has two 1-hop neighbors, j and k; if FjðtÞ=rj < w=ri
and FkðtÞ=rk < w=ri, then we have:

T iðwÞ ¼
1

ri þ rj þ rk

�
wþFjðtÞ þ

rj
�ij

�
e
��ijðrjþrkÞ

rj �rj FjðtÞ

� e
��ijðrjþrkÞ

ri �rj w
�
þFkðtÞ þ

rk
�ik

�
e
��ikðrjþrkÞ

rk �rk FkðtÞ

� e
��ikðrjþrkÞ

ri �rk w

��
þ Dði; j; kÞ:

Here, Dði; j; kÞ denotes a complicated function with
parameters related to i, j, and k. It is negligible compared

with the other terms in T iðwÞ, thus, it is ignored in D2. As
we shall see shortly in trace-driven evaluations, D2 with
this approximation already achieves a near-optimal perfor-
mance in a variety of settings.

We then extend Theorem 3 to the scenario of multiple 1-
hop neighbors:

Corollary 1. When r ¼ 1, device i has w units of workload and
has n 1-hop neighbors, say i1; i2; . . . ; in; if FikðtÞ=rik < w=ri,

81 � k � n, then we have:

T iðwÞ ¼
1

ri þ
Pn

k¼1 rik

�
wþ

Xn

k¼1
FikðtÞ þ

Xn

k¼1

�
rik
�iik

e
�
�iik

�Pn

k¼1
rik

�
rik

�rik
Fik

ðtÞ � e
�
�iik

�Pn

k¼1
rik

�
ri �rik

w
�0

BB@
1
CCAþ Dði; i1; . . . ; inÞ:

The general case. Theoretically, we can obtain T iðwÞ for the
general case with similar analyses. However, the delay from

device i to another device h 2 Nr
i nN1

i follows hypoexpo-
nential distribution (see Equ. (2)), which greatly complicates
the computation of T iðwÞ. Therefore, we resort to some heu-
ristic solution.

Fortunately, the mean of the hypoexponential distribu-
tion in Equ. (2) is

Pr
k¼1 1=�k (as indicated in Equ. (3)), which

motivates us to approximates this hypoexponential distri-
bution with an exponential distribution with parameter

�ih ¼ 1=vðPihÞ;

and treats each device h 2 Nr
i nN1

i as a 1-hop neighbor of i.
Then, we can apply Corollary 1 to this case.

It is better to explain the general case with an example. In
Fig. 7, suppose that D2 maintains 4-hop information at indi-
vidual nodes. We note that, as we mentioned in Section 6.1,

for each node j 2 N4
i , node i maintains a path Pij with the

smallest weight. Therefore, node i and its 4-hop neighbors
form a tree rooted at i.

Take n2 for example. Since the delay between i and n2

follows hypoexponential distribution, which is very compli-
cated in deriving the finish time estimator. As we have said
above, we use an exponential distribution with contact rate
�i2 to approximate the actual distribution, where �i2 defined
as follows:

�i2 ¼
1

1
�i1

þ 1
�12

:

Similarly, we get the contact rate parameters for the other
seven 2-hop, 3-hop, and 4-hop neighbors. After that, we can
treat all these eight neighbors as 1-hop neighbors of i, and
apply Corollary 1.

Fig. 7. An example of the general multi-hop case.
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6.3 Future Workload Estimator

Suppose that device i meets another device at slot t0; after

workload split, i has W
t0
i units of workload. We now

present how to generate FiðtÞ from the viewpoint of
device i.

FiðtÞ changes over time due to the following reasons:
(1) i processes the workload at rate ri, which is indicated by
the slope of the oblique line in Fig. 8a; (2) i transfers some
of its workload to another device in a contact, i.e., the sud-
den drop in Fig. 8a; (3) i receives some workload from
another device in a contact, i.e., the sudden rise in Fig. 8a.
Since device i cannot know the occurrence time and
sequence of these contacts, or the amount of workload that
is transferred in these contacts, it is extremely hard for i to
accurately predict FiðtÞ. To be practical, D2 uses a straight
line, as shown in Fig. 8b, to approximate the workload curve

in Fig. 8a. Since we already know Fiðt0Þ ¼ W
t0
i , to represent

this line, We need to estimate when the line intersects with

the x-axis, i.e., tie in Fig. 8b.
To locally minimize the makespan, after workload split,

two devices should finish their respective workload by the
same time. Therefore, if there are sufficient communication
opportunities, all of the devices within r hops from i would
finish their respective workload by the same time. For each
device j 2 Nr

i , since imaintains a version of FjðtÞ, by letting

FjðtjeÞ ¼ 0, i could estimate the finish time of j. Then, tie is

estimated as the average of tje over all j 2 Nr
i , that is,

tie ¼ ð
P

j2Nr
i
tjeÞ=jNr

i j. Therefore, the future workload estima-

tor in Fig. 8b can be represented by

FiðtÞ ¼
tie � t

tie � t0
W

t0
i :

6.4 A Concrete Example

Fig. 9 shows the details of applying D2 to the example in
Fig. 4. Without loss of generality, we assume that D2 took

effect at slot -43, and a task arrives at slot 0. D2 maintains
only 1-hop information at individual devices.

In Fig. 9a, F01 ¼ 40, f01 ¼ 10, so �01 ¼ 1=4; F02 ¼ 42,
f02 ¼ 21, so �02 ¼ 1=2; F13 ¼ 39, f13 ¼ 13, so �13 ¼ 1=3;
F14 ¼ 42, f14 ¼ 21, so �14 ¼ 1=2; F23 ¼ 40, f23 ¼ 10, so
�23 ¼ 1=4; F34 ¼ 38, f34 ¼ 19, so �34 ¼ 1=2. Each device has
no workload from the viewpoint of any other device. A task
with 60 units of workload arrives at device 0.

In Fig. 9b, during the contact between devices 0 and 1,
device 0 takes device 2 into consideration when generating
T 0ðwÞ, where F2ðtÞ ¼ 0 from the perspective of device 0.
Based on Theorem 2, we have

T 0ðx0Þ ¼
1

5þ 20

�
x0 þ 0þ 20

1=2

�
e�

0
20 � e�

x0
10
�
Þ

¼ 1

25
ðx0 þ 40

�
1� e�

x0
10
��

:

Similarly, device 1 takes devices 3 and 4 into account
when generating T 1ðwÞ, where F3ðtÞ ¼ F4ðtÞ ¼ 0 from the
perspective of device 1. Based on Theorem 3, we have

T 1ðx1Þ ¼
1

10þ 5þ 5

�
x0 þ 0þ 5

1=3

�
e�

10�0
75 � e�

x1
15

�

þ 0þ 5

1=2

�
e�

10�0
75 � e�

x1
10

��

¼ 1

20

�
x0 þ 25� 15e�

x1
15 � 10e�

x1
10

�
:

Based on the workload split rule (see Equ. (1)), we have
x0 þ x1 ¼ 55 and T 0ðx0Þ ¼ T 1ðx1Þ. After solving these equa-

tions, we get W 1
0 ¼ x0 ¼ 26:5 and W 1

1 ¼ x1 ¼ 28:5. Since the
last contact between them occurs at slot -3, �01 is updated to
ð10þ 1Þ=ð40þ 4Þ ¼ 1=4. Also, during the contact between
devices 3 and 4, since the last contact between them occurs
at slot -5, �34 is updated to ð19þ 1Þ=ð38þ 6Þ ¼ 5=11.

In Fig. 9c, during the contact between devices 0 and 2,
since device 1 cannot help device 0, we have T 0ðwÞ ¼ w=5:0.
Device 2 takes device 3 into account when generating

T 2ðwÞ. We then have W 2
0 ¼ 4:2 and W 2

2 ¼ 17:3 after work-
load split. Since the last contact between them occurs at slot
-1, �02 is updated to 22=45. During the contact between devi-

ces 1 and 3, by similar analyses, we get W 2
1 ¼ 13:5 and

W 2
3 ¼ 5:0 after workload split. Since the last contact between

them occurs at slot -4, �13 is updated to 14=45.
Fig. 9d shows the workload split results at slot 3. The

makespan of D2 is 3.24 time slots. For comparison, Fig. 10
presents the results of applying the Na€ıve scheme to the

Fig. 8. Future workload estimator. (a) FiðtÞ 	 t. (b) FiðtÞ ¼ ðtie � tÞ=
ðtie � t0Þ �Wt0

i .

Fig. 9. The makespan of D2 is 3.24 slots. Each solid line represents a contact. Each arrow shows the change of workload or contact rate. (a) t ¼ 0:00.
(b) t ¼ 1:00. (c) t ¼ 2:00. (d) t ¼ 3:00.
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same example. As we mentioned before, the Na€ıve scheme
splits the workload between two devices, based on the ratio
of their processing rates. For example, during the contact
between devices 0 and 1 at slot 1, since r0 ¼ 5 and r1 ¼ 10,
devices 0 and 1 get 18.3 and 36.7 units of workload, respec-
tively. The makespan of this scheme is 3.52 slots, which is
about 108.6 percent of that achieved by D2.

7 DISCUSSION

In this section, we discuss several extensions of D2.
Incorporating redundant computing into D2. As we men-

tioned before, the underlying network environment below
D2 is often highly dynamic and intermittently-connected.
There is no centralized server that performs admission con-
trol. Therefore, it is possible for malicious devices to partici-
pate in the system. Malicious devices may claim some
workload but do not send the corresponding output back.
To mitigate the effect of malicious devices, we can incorpo-
rate redundant computing into D2: for each piece of work-
load, D2 employs multiple devices to compute it and uses
the majority of the outputs returned by these devices.

Multiple simultaneous tasks. It is not hard to support multi-
ple simultaneous tasks inD2.We can partition the computing
capability of a device intoK parts, which can be achieved by
temporal resource partitions [23], and allocate each part to a
task, whereK is themaximumnumber of simultaneous tasks
a node can handle. In doing so, themobile devices that would
like to join a task form a “virtual” DTN, in which we can run
D2 for that task. For a mobile node i, if there are more thanK
tasks that are interesting to i, how should we chooseK tasks
for i? Although we could strategically select K tasks for i to
maximize the overall performance, we want to expose this
flexibility to the node i, and the node i can prioritize any K
tasks based on its interests.

Extending D2 to scenarios where the inter-contact time does
not follow an exponential distribution. In the following, we
show how to modify D2 to deal with the case where the
inter-contact time between two devices i and j follows a
continuous uniform distribution with the minimum and
maximum values being 0 and uij, respectively. D2 can be
easily extended to the other scenarios via similar analyses,
as follows.

Remember that, the key idea of D2 is to estimate the
potential computing power of a device and its r-hop neigh-
bors, which is taken into account when workload is split
between two devices in a pairwise contact. For different
inter-contact time distributions, we only have to get the
weight of an opportunistic path and the finish time estima-
tor. For the opportunistic path, its weight can be derived
from the fact that the sum of multiple uniform distributions
follows the Irwin Hall distribution [24].

For the finish time estimator, we present how to deal
with the first special case as in Section 6.2: r ¼ 1, and N1

i con-
tains only one device.We have the following theorem:

Theorem 4. When the inter-contact time follows an uniform dis-
tribution ½0; uij�, r ¼ 1, device i has w units of workload and
has only one 1-hop neighbor j; if FjðtÞ=rj < w=ri, then we
have:

T iðwÞ ¼
1

riþrj

�
wþ rjw

ri
þ

F2
j ðtÞ

2rjuij
� rjw

2r2
j
uij

�
if w

ri
� uij;

1
riþrj

�
wþ rjuij

2 þ
F2
j ðtÞ

2rjuij

�
if w

ri
> uij:

8><
>:

The proof can be found in the supplemental material,
available online. For the finish time estimator in the general
case, we can obtain it with similar analyses.

8 PERFORMANCE EVALUATION

In this section, we conduct extensive trace-driven simula-
tions to evaluate D2 under different settings and reveal
insights of the proposed design performance.

We introduce four algorithms for comparison:

� RAN: in each pairwise contact, the total workload is
randomly split between two devices.

� Na€ı ve: in each pairwise contact, the total workload is
split between two devices based on the ratio of their
processing rates.

� mNa€ı ve: in each pairwise contact, the total workload
is split between two devices based on the ratio of the
sums of their r-hop neighborhood processing rates.

� SDTA: the polynomial-time optimal algorithm that
has access to global and future knowledge.

We also discuss the performance of D2 under different
settings with respect to the total number of devices, the
average number of 1-hop neighbors, the average contact
rate, and the amount of the network information main-
tained at individual devices. We also show how D2 per-
forms in scenarios where the inter-contact time follows a
uniform distribution.

8.1 Experiment Setup

Our evaluations are conducted on three realistic traces and
two synthetic traces. Fig. 11 summarizes the realistic traces,
where mobile users with Bluetooth-enabled devices periodi-
cally detect their peers nearby, and record contacts over sev-
eral days. The reason for choosing these three traces is that,
the movement of devices in them follows exponential distri-
butions, as evidenced by previous studies [25] and [21],
respectively. After some preprocessing on the raw data, we
find that there are few contacts during the nighttime. In order
to have a meaningful and usable underlying network, we
only use trace data that was collected during the daytime.

Fig. 10. The makespan of applying the Na€ıve scheme to the example in
Fig. 9 is 3.52 slots.

Fig. 11. Brief summary of three realistic traces.
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We also generate two other synthetic traces, which are
denoted by Synthetic-Exp and Synthetic-Uni, respectively.
In the Synthetic-Exp trace, there are N mobile devices; the
inter-contact time between two devices follows an exponen-
tial distribution, with � being uniformly generated from the

range ½12AvgL; 32AvgL�; the number of 1-hop neighbors of

each device is uniformly generated from the range
½AvgD� 5; AvgDþ 5�. Most of the settings in the Synthetic-
Uni trace are the same as those in the Synthetic-Exp trace,
except that the inter-contact time in the Synthetic-Uni
trace follows a uniform distribution ½0; U �. The defaults
are set as AvgD ¼ 10, AvgL ¼ 0:0001, U ¼ 5 hours, and
N ¼ 100. Here, if a device j is said to be a “1-hop
neighbor” of another device i, we mean the inter-contact
rate between them is positive (see Section 5.1). Therefore,
the number of “1-hop neighbors” of i in a trace is also the
total number of devices that i encounters for at least one
time in that trace.

In our evaluations, the first 20 percent of each trace is the
warmup period for mobile devices to collect and accumu-
late network information. Both of mNa€ı ve and D2 maintain
r ¼ 1 hop information at individual nodes—unless other-
wise noted. W units of workload originate at a random
node in the remaining part of each trace. The processing
rates of mobile devices are uniformly generated in the range
from 1 toMaxCap. The result is averaged over multiple exe-
cutions for convergence.

8.2 Performance Comparison

Impact of workload. Fig. 12 shows the comparison results with
different workloads while keeping MaxCap ¼ 10 in four
traces. As we have mentioned in Section 4, SDTA is the opti-
mal solution for the offline problem, and is used as the opti-
mal benchmark in our simulations. In general, D2 achieves
the second best performance in all four figures;mNa€ı ve out-
performs Na€ı ve and RAN, since mNa€ı ve utilizes 1-hop
neighborhood information in deciding how to split the

workload, while neither of Na€ı ve and RAN does; and RAN
has the worst performance.

In four figures, the makespan of D2 is at most 149, 125,
113, and 172 percent of that of SDTA, respectively, and the
proposed algorithm always maintains a 10-70 percent per-
formance advantage over the other three algorithms, i.e.,
mNa€ı ve, Na€ı ve and RAN. This is because, in D2, a mobile
node exploits the distribution of the inter-contact time to
predict the potential help from its r-hop neighbors; thus, the
workload splitting decision is made more reasonably.

We note that the performance gap between D2 and the
other four algorithms except SDTA increases when the
amount of workload increases. The reason behind this phe-
nomenon is that, both the finish time estimator and future
workload estimator would be more accurate when the com-
putation task exists longer than before.

Impact of processing rate. Fig. 13 shows the impact of proc-
essing rate. In four traces, not surprisingly, D2 achieves the
second-best makespan in four traces. When the processing
rates of the mobile devices increase, the makepan of every
algorithm becomes smaller.

We also observe that the decrease of makespan in
Figs. 12a and 12b is greater than that in 12c and 12d. For
example, when MaxCap increases from 5 to 50, the make-
span of D2 decreases by 78 and 16 percent in the Intel and
Infocom06 traces, respectively. This is due to the relatively
small scale of the Intel trace: all devices in this trace proba-
bly participate in finishing the task, even when
MaxCap ¼ 10, while only a part of the devices in the Info-
com06 trace take part in processing the task, and the num-
ber of participating devices becomes smaller when MaxCap
increases. From this viewpoint, the impact of MaxCap on
the Intel trace is greater than that on the Infocom06 trace.

8.3 Sensitivity Analyses

Fig. 14 shows the impact of the scope of network informa-
tion maintained at individual devices in the infocom06 and

Fig. 12. Dissemination with different workloads while keeping MaxCap ¼ 10. (a) Intel trace. (b) Cambridge trace. (c) Infocom06 trace. (d) Synthetic-
Exp trace.

Fig. 13. Dissemination with different processing capacities. (a) Intel trace (W ¼ 200; 000). (b) Cambridge trace (W ¼ 350; 000). (c) Infocom06 trace
(W ¼ 500; 000). (d) Synthetic-Exp trace (W ¼ 500; 000).
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Synthetic-Exp traces. We see that, D2 performs better when
more information is maintained at individual devices in
both traces. When the amount of workload is 1,000,000, for
example, in Fig. 14a, the makespans achieved by D2ðr ¼ 1Þ
and D2ðr ¼ 4Þ are about 106.9 and 101.6 percent of the
makespan obtained by SDTA; while in in Fig. 14b, the make-
spans achieved by D2ðr ¼ 1Þ and D2ðr ¼ 5Þ are about 170.2
and 131.1 percent of the makespan obtained by SDTA. It
seems the gap between D2ðr ¼ 1Þ and SDTA is smaller in
Fig. 14a than in Fig. 14b. This is because, the network scale
of Fig. 14b is larger than that in Fig. 14a, which implies, 1-
hop neighborhood information exposes a smaller part of
network status in Fig. 14b than that in Fig. 14a.

We also find that, the marginal benefit of maintaining
more information is small. This is because each device does
not maintain the pairwise information among its r-hop
neighbors. When r increases, the estimation accuracy of D2
would reduce. The observation could be used to strike a bal-
ance between the performance and the overhead of D2.

Figs. 15a, 15b, and 15c present the evaluation results of
the impact of the number of devices (N), average node
degree (AvgD), and average contact rate (AvgL), respec-
tively. In these figures, we use the Synthetic-Exp trace, since
in this way, we can flexibly change the parameters and
observe its impact. In Fig. 15a, we notice that, when the
number of mobile devices increase, the makespan of every
algorithm decreases, as more devices mean more comput-
ing power. We notice in Fig. 15b that, when the number of
nodes that a device encounters for at least one time in the
trace increases, the makespan of every algorithm decreases;
this is because the workload can be spread more quickly as
each device has more neighbors on average. In Fig. 15c,
when the average contact rate increases, i.e., the average
inter-contact time decreases, there are more transfer oppor-
tunities for mobile devices to locally improve workload dis-
tribution, which is beneficial for makespan minimization.

Fig. 15d shows the impact of random prediction error. In
D2, we assume that the computational capacity of each
mobile node is constant over time. However, in practise, this
assumption may not hold. To see how D2 responds to incon-
stant processing capacities, we conducted the following eval-
uations: during each run of D2, we make p percent of all
mobile nodes have variable capacities, i.e., for a mobile node
with a variable processing capacity r, in each discrete time
slot, r switches to a different value between 1 and MaxCap.
Fig. 15d shows the impact of the percentage p on the task
makespan. Of course, when the percentage increases, more
nodes have variable capacities, thus, the estimations in D2
become less accurate, which finally translates into the make-
span increase. However, fortunately, even when there are 10
percent nodes with inconstant capacities, the makespan
achieved by D2 is still within 115.9 percent of the makespan
obtained when there are no inconstant capacities. This sug-
gests thatD2 is robust in settingswith variable capacities.

8.4 Uniformly Distributed Inter-Contact Time

We have mentioned in Section 7 that, we only have to mod-
ify a part of the r-hop manager and the finish time estimator
in extending D2 in respect to the uniformly distributed
inter-contact rates.

Fig. 16a shows how the aforementioned five algorithms
perform in the Synthetic-Uni trace. We find similar observa-
tions as in Fig. 12, except that the average makespan in this
trace is smaller than that in Fig. 12d. The main reason is
that, in the Synthetic-Uni trace, the inter-contact time
between two mobile nodes follows a uniform distribution
½0; U �; in other words, the inter-contact time between any
two nodes is at most U . This upper bound would make the
estimations in D2 not too far away from the true values.

We also plot the impact of the upper bound U in Fig. 16b.
When U increases, the inter-contact time would increase as
well; therefore, for a mobile node, the potential help from

Fig. 14. Impact of the amount of network information maintained at indi-
vidual nodes. (a) In Infocom06 trace. (b) In Synthetic-Exp trace.

Fig. 15. Sensitivity results. (a) Impact of N (Synthetic-Exp). (b) Impact of AvgD (Synthetic-Exp). (c) Impact of AvgL (Synthetic-Exp). (d) Impact of the
percentage of nodes with inconstant computational capacities (Infocom06).

Fig. 16. Workload dissemination in the Synthetic-Uni trace. (a) Impact of
W . (b) Impact of U.
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its neighbors would get less, which finally translates into the
increase in the makespan.

In summary, our simulations show that D2 performs well
in a variety of settings. In future work, we believe a more
sophisticated estimation of the potential computational
capacity and the future workload of each node will improve
our results, and perhaps bring us closer to a guaranteed
performance.

9 RELATED WORK

Our work is inspired by some previous studies on job
scheduling in grid computing [29], [30]. Rossi et al. [31] pro-
posed a meta-heuristic for scheduling a fixed set of jobs
such that the difference between the completion time and
the submission time of each job is less than or equal to a
given threshold. Singh et al. [32] presented a multi-objective
genetic algorithm for minimizing resource provision cost
and optimizing application performance. Kim et al. [33]
focused on designing a decentralized load balancing algo-
rithm for a content-addressable network to match incoming
jobs to available system resources. In these studies, each
task has a fixed size and a fixed completion deadline; differ-
ent from them, we assume that a task is fine-grained and
permits arbitrary partitioning. Besides, these prior studies
focused task scheduling atop organizationally-owned
resources for various objectives; different from these stud-
ies, our paper extends the underlying environments to
weakly-connected networks composed of mobile devices.

Similar to our work, some other studies focused on paral-
lelism-based divisible workloads [3], i.e., workload is arbi-
trarily divisible. Cheng and Robertazzi [34] and
Kim et al. [35] investigated the optimal workload schedul-
ing for makespan minimization in linear and tree networks,
respectively. Drozdowski and G»azek [36] provided analyti-
cal results for a similar problem in a three-dimensional
mesh of processors. Different from these works, which
assumed static networks with known network latencies, we
study the minimum makespan scheduling problem in a
highly dynamic environment where computing devices are
intermittently connected.

Flooding-based epidemic routing [37] was proposed to
cope with the intermittent connectivity; however, this incurs
an extremely high forwarding cost. Some recent work [15],
[16] reduces this cost through intelligent relay selection.
Intentional routing [17] translates an administrator-speci-
fied routing metric into per-packet utilities, and replicates
packets to locally maximize the marginal utility. Multicast-
ing in DTNs is considered in [20], [38], and most of them
focus on tailoring unicast routing protocols to multicasting
scenarios. In comparison, while these routing protocols
mainly focus on message delivery ratio and delay, our work
seeks to minimize the computation makespan by making
full utilization of the computing power around us, which
also helps us achieve economic efficiency and relieve the
congested Internet.

Previous research on data dissemination and packet
routing in DTNs also informed our study. Data dissemi-
nation via flooding is implemented in [39]. The publish/
subscribe-based dissemination is investigated in [40].
User interests and preferences are considered in [21]

and [41], respectively. Most of them focus on maximizing
the number of users that receive the target data; in con-
trast, this paper differs from them primarily in its goal—
to design a distributed workload dissemination algorithm
that minimizes the makespan. Besides, the workload can
be locally “consumed,” while data packets must be
forwarded.

10 CONCLUSIONS

In this paper, we advocate taking advantage of the comput-
ing power around us to cope with the resource-constrained
nature of mobile devices. We study the problem of mini-
mum makespan workload dissemination over an weakly-
connected network, for which we propose a distributed dis-
semination protocol, D2. With D2, each node maintains lim-
ited neighborhood information and updates and
propagates it whenever there is an opportunity for commu-
nication. This kind of information is used to predict the
potential computing capacities and future workloads of
nodes, based on which workload is strategically split
between two nodes in a contact, in an effort to minimize
makesapn. Extensive simulations confirm the effectiveness
of D2.
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