Appendix
A. Proof of Theorem 1

Theorem 1: For two overlapped communities C;, C]
and an arbitrary relay set S (SCC;NCy), we have:
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Proof: According to Definitions 3 and 4, we have
that B;;/(S) is exactly the expected delivery delay
from [ to I’ via the first encountered node in S. Since
the time interval that each node v in S encounters [
follows the exponential distribution with parameter
Av,i, the probability density function of node v be-
coming the first node meeting [ is Ay [[,cqe "
The delivery delay from [ to I’ via node v is ¢ plus
D, =1/X, . Then, we have:
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B. Proof of Theorem 2

Theorem 2: Optimal Opportunistic Routing Rule:
the message sender always delivers messages to the
encountered relay that has a smaller minimum ex-
pected delay to the destination than itself. Concretely,
a relay u belongs to the optimal relay set R; for the
delivery from ¢ to d, if and only if, D, q<D; 4, i.e.

WER; <= Dy q<Djq (2)

Proof: We first prove u € R; = Dy, 4 < D; 4 by
contradiction. Assume that u€ R; while Dy.qa>D; 4.
Then, we construct a new relay set R~ =R;—{u}. By
computing D; 4(R;) and D; 4(R~), we have:
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Then, by comparing D; d( ;) and D; 4(R™), we have:
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That is:
D;.a(Ri)>D; o(R™) <Dy,g>D; a(Ry). (6)

On the other hand, we have D, 4 >D, ;= Di,d(Ri),
according to the assumption. Thus, we can get

D;4(R7) < Di’d(f%i) from Eq.(6). This is a contradic-
tion in that R; is the optimal relay set to minimize
D; 4 (if there are multiple relay sets to minimize D; 4,
we always select the one with the smallest set size in
this paper). Therefore, the assumption is wrong, and
we should have D,, 4 <D; 4.

Likewise, we can get D, s<D;q=u¢€ R; by the
contradiction method. Assume that D, 4 < D; 4 and
meanwhile uZR;. Then, we construct a new relay set
R*=R;+{u}. By computing D; 4(RT), we have:
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Then, by comparing D; 4(R") and Di7d(}~%i) in Eq.(3),
we have:
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That is:
Dia(RT) < D; 4(R;) ©Dy a<D;.a(R;). )

On the other hand, we have D, 4 <D, = Di,d(éi)
according to the assumption. Thus, we can get
D; a(RT) < D; 4(R;) from Eq.(9). This is a contradic-
tion in that R; is the optimal relay set to minimize
D; 4. Therefore, the assumption is wrong, and we
should have ueR;. |

C. Proof of Theorem 3

Theorem 3: Assume that community C; has m over-
lapped communities Cj,,---,C},,. Then, the optimal
relay set R, of home [, and the optimal betweenness
sets S 1 (1<i<m) satisfy:

1) if U%U i—1 Sll ., then U¢Rl,

2) S” C R;, otherwise S” NR,=0 for Vie[1,m)].

Proof: 1. Since v¢(J;~, S, means velJ2, (C; N
Cli_gl,li)/ then without loss of generality, we assume
veCyNCy,—S;, and v€ R; to prove the first property
by contradiction. Firstly, we construct a new relay set
R~ for the message delivery from [ to d via [y, - - -
Let R~ = R, — (G nay )+§” , and then compare
the delay values, D; (R~) and D; 4(R;), the delivery
delays from ! to d via the new relay set R~ and the
optimal relay set R;. In fact, the two delay values are
the expected values of the delays via nodes in the two
relay sets. Consider that a node in R= R,— (C;NC},)
first visits [ and is selected as the real relay. Its
contributions to D; 4(R~) and Dl,d(gl,li) are the same.
Thus, we only need to consider the contributions of
the remaining nodes in R~ —R (= gz,l,,) and R,—R to
D; ¢(R™) and Dl7d(Rl), respectively. Since SUL, is the
optimal relay set for the direct delivery from [ to [;, we
thus have Dl,li(gl,li)+Dli,d<Dl,li (RZ—R)-i-Dli’d. That
is, the expected delay from [ to I’ via R~ is even less

.



than the delay via R;. This is a contradiction in that
R, is the optimal relay set. Therefore, the assumption
about ve R; is wrong, and we should have v¢ R;.

2. We are still using the contradiction method, and
assume that there exists an integer i € [1,m] that
satisfies S;;, ¢ R; and Sy, ﬂf?l = R # (). We also
construct a new relay set R'=R,—R+S,,,. Based on a
similar analysis as in part 1, we have that D; 4(R’) is
less than DLd(Rl). This is a contradiction in that R; is
the optimal relay set. Therefore, the assumption about
S’l,li NR, #( is wrong, and the theorem is correct. [J

D. Proof of Corollary 2

Corollary 1: CAOR can achieve the minimum ex-
pected delivery delay.

Proof: A straightforward result in Section 4.3. [J

Corollary 2: Assume that Ay, > Ay 0 > 2> Ay 1,
then the optimal betweenness set 5”;71/ satisfies:
1) v € Sl,l/}
2) lf Vit1 GSH/, then v; € Sl,l/- That is, dk € [1, n] s.t.
Spr={v1, -, v}
3) if Sl,l' = {1)1,“~,Uk}, then BU/({Ul,"' R Ul}) >
Bl’l/({vl,- cey Vg, Ui+1}) for any 1€ [1, k—l]

Proof: At first, we directly prove the second result,
which also implies the first result. We consider the
optimal opportunistic routing between ! and !’ via
{v1, - ,op}. if vy € 5’1,;/, then we have D, 1 <
Dy according to Theorem 2. Since D,, i =

vy,
Dy = 5 —, we can get Dy, < Dyy. Using
Vit ~
Theorem 2 again, we have v; € S; ;. Without loss
of generality, let the node in 5;; with the largest

expected delay to community home I’ be vy, ie.,

v € Sr. Then, vp_1,vp_2,--- ,v1 € Sy, ie., Sy =
{or,-- e}
Now we prove the third result. Compare D; ; ({v1,
, vi}) and Dy ({v1, -, v;,vi41}), we have:

Dy ({v1, - vig1}) < Dy ({vr, -+ vi)) &
‘D'Ui+1-,l/ < Dl,l’({vlv"'avi})' (10)
On the other hand, v;y; € Sl,p, then we can get

Dy, < Dy < Dyp({v1,--,v;}) according to The-
orem 2. Thus, Dl,p({v“ . -,’Ui+1}) < Dl’l/({vl,- . ',vi}).
]



