
Extended Multipoint Relays to Determine
Connected Dominating Sets in MANETs
Jie Wu, Senior Member, IEEE, Wei Lou, Member, IEEE, and Fei Dai, Member, IEEE

Abstract—Multipoint relays (MPR) [18] provide a localized and optimized way of broadcasting messages in a mobile ad hoc network

(MANET). Using partial 2-hop information, each node chooses a small set of forward neighbors to relay messages and this set covers

the node’s 2-hop neighbor set. These selected forward nodes form a connected dominating set (CDS) to ensure full coverage. Adjih

et al. [1] later proposed a novel extension of MPR to construct a small CDS and it is source-independent. In this paper, we provide

several extensions to generate a smaller CDS using complete 2-hop information to cover each node’s 2-hop neighbor set. We extend

the notion of coverage in the original MPR. We prove that the extended MPR has a constant local approximation ratio compared with a

logarithmic local ratio in the original MPR. In addition, we show that the extended MPR has a constant global probabilistic

approximation ratio, while no such ratio exists in the original MPR and its existing extensions. The effectiveness of our approach is

confirmed through a simulation study.

Index Terms—Approximation ratio, broadcasting, connected dominating set (CDS), heuristic solutions, mobile ad hoc networks

(MANETs), multipoint relays (MPR).
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1 INTRODUCTION

A mobile ad hoc network (MANET) is a wireless
network that is comprised of mobile computing devices

for wireless communication, without the help of fixed
infrastructures. Wireless interfaces pose a unique challenge
in designing efficient broadcasting in MANETs.The simplest
way to perform a broadcast is based on the following blind
flooding rule: A node retransmits the message only once. The
blind flooding may cause excessive redundancy and results
in channel contention and message collision (also called the
broadcast storm problem [15]).

Efficient broadcasting in MANETs can be formulated by
identifying a small connected dominating set (CDS) in the
network where only the nodes in the set relay the message
(also called the CDS rule). A dominating set (DS) is a subset of
nodes in the network that assures that every node is either in
the subset or a neighbor of a node in the subset. A DS is called
a CDS if the subgraph induced by the DS is connected. In
Fig. 1b, a sample network with 15 nodes is shown, with
double circled nodes forming a CDS. Many existing works on
finding a small CDS are not suitable for MANETs since they
rely on either global information (such as a global network
topology) or global infrastructure (such as a spanning tree). In
a MANET, network topology changes frequently and, hence,
a global information/infrastructure approach may not be

combinatorially stable. In a combinatorially stable system, the
propagation of all topology updates is sufficiently fast to
reflect the topology changes.

The k-hop localized approach is a solution to ensure the
combinatorially stable property for a small k in MANETs. In
this approach, each node determines its status and/or the
status of neighbors (forward or nonforward) based on its
k-hop information (such as local network topology within
k hops). In general, a k-hop neighbor set of a given node
consists of nodes that are at most k hops away from this
node. If the neighborhood information is collected via
periodic “Hello” message exchanges, it takes k rounds for
each node to collect its k-hop neighbor set. However,
k rounds can only collect partial topology information for
the k-hop neighbor set (or, simply, partial k-hop information).
Specifically, links between k-hop neighbors are not in-
cluded. Fig. 1a shows the partial 2-hop information of v
after two rounds of “Hello” message exchanges with thick
lines for links in the first “Hello” message exchanges and
dashed lines for links in the second “Hello” message
exchanges. To collect complete k-hop information, each node
needs to either exchange positional information (obtained
through GPS or non-GPS localization methods) or perform
kþ 1 rounds of “Hello” message exchanges. It is clearly
impossible to collect up-to-date network topology informa-
tion for a large k; therefore, k is usually a small integer such
as 2 or 3 in MANETs.

Multipoint relays (MPR) [18] are a special 2-hop localized
approach in which each forward node determines the status
of its neighbors based on its partial 2-hop information
through node coverage. It should be stressed that, in the
MPR, each node does not determine its forward status.
Instead, each forward node determines the forward status for
each of its neighbors. Specifically, each forward node selects a
subset of 1-hop neighbors to cover its 2-hop neighbor set (and
this node is also called the selector for its neighbors). A link
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state routing protocol based on MPR, OLSR [6], is part of the
standardization efforts along with DSR [10] and AODV [17].
In OLSR, MPR is used as a virtual backbone to disseminate
link state information to the entire network.

The original MPR [18] is source-dependent (also called
broadcast-dependent), that is, the forward node set is
determined during a broadcast process and is dependent
on the source of the broadcast and communication latency.
Adjih et al. [1] later proposed a novel source-independent
(also called broadcast-independent) MPR. Specifically, the
forward node set is determined before any broadcast
process and is constructed based on the MPR following
two simple rules. In [24], Wu enhanced the source-
independent MPR through several modifications where
the notion of free neighbor is introduced. However, neither
the original MPR nor its extensions have local or global
constant approximation ratio.

In this paper, we provide several extensions to generate a
smaller forward node set using complete 2-hop information
to cover each node’s 2-hop neighbor set. Our focus will be
on the source-independent MPR, which is widely used for
applications that require a relatively stable CDS (e.g., to
form a virtual backbone for efficient routing). In addition,
we extend the notion of coverage in the original MPR.
Specifically, each node v selects a set of node pairs ðu;wÞ
with u being a 1-hop neighbor and w a 2-hop neighbor to
cover v’s 2-hop neighbor set. Our results show that, using
complete 2-hop information instead of partial 2-hop
information, the extended MPR has a constant local
approximation ratio compared with a logarithmic local
ratio in the original MPR. We further prove that the
extended MPR has a constant global probabilistic approx-
imation ratio, while no such ratio exists in the original MPR.
The effectiveness of our approach is confirmed through a
simulation study.

The main contributions of this paper are as follows:

1. We propose an efficient extension of the MPR that
forms a substantially smaller source-independent
CDS than the original MPR and its extensions.

2. We show that our selection of forward pairs based
on complete 2-hop information has an Oð1Þ local
approximation ratio.

3. We prove that the (global) CDS derived from our
extension has an expected approximation ratio of

Oð1Þ and show that such an approximation ratio
does not exist in the original MPR.

4. We conduct a simulation study to evaluate the
average performance of our extension.

The remainder of the paper is organized as follows:
Section 2 provides preliminaries on the general graph
model and reviews MPR with its existing extensions and
the corresponding CDS selection algorithms. Section 3
proposes the extended MPR. Section 4 gives a local upper
bound of the proposed algorithm. In Section 5, we prove a
probabilistic global bound of the new algorithm and show
that a similar upper bound does not exist in the original
MPR. Section 6 provides some simulation results. The
related work is discussed in Section 7. In Section 8, we draw
our conclusions.

2 PRELIMINARIES

This section reviews the basic graph model for MANETs,
discusses MPR-based broadcasting and its existing exten-
sions, and overviews some existing algorithms for CDS
selection in MPR-based broadcasting.

2.1 Graph Model

A MANET is represented by a graph G ¼ ðV ;EÞ, where the
node set V represents a set of wireless mobile nodes and the
edge set E represents a set of bidirectional links between the
neighboring nodes. We assume each node has a distinct ID.
A node ID can be any unique attribute of a node, such as its
network or MAC layer address. G is usually a unit disk
graph, where two nodes are considered neighbors if and
only if their geographic distance is no more than a given
transmission range r (as shown in Fig. 1); however, G can
also be a nonunit disk graph (as in Fig. 3). Let NðvÞ denote
node v’s neighbor set (including v) and NðV Þ ¼

S
v2V NðvÞ

is the set of all nodes that are in V or have a neighbor in V .
V covers U if U � NðV Þ.

The (partial) k-hop information of a node v is a subgraph
GkðvÞ ¼ ðNkðvÞ; EkðvÞÞ of the network G, where NkðvÞ is
the k-hop neighbor set and EkðvÞ the partial k-hop link set
of v. Specifically, N0ðvÞ ¼ fvg and NkðvÞ ¼

S
u2Nk�1ðvÞNðuÞ

f o r k � 1. EkðvÞ ¼ fðu;wÞju 2 Nk�1ðvÞ ^ w 2 NkðvÞg i n -
cludes links among nodes in NkðvÞ, but excludes those
between two nodes that are exactly k hops from v. GkðvÞ is
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Fig. 1. A sample network: (a) 2-hop information of node v and (b) double circled nodes forming a CDS.



collected at v through k rounds of “Hello” message
exchanges. As shown in Fig. 3a, if v has 1-hop information,
then it knows all its neighbors, but not the links between
these neighbors. The complete k-hop information of a node v
is a subgraph G0kðvÞ ¼ ðNkðvÞ; E0kðvÞÞ, where E0kðvÞ ¼
fðu;wÞju;w 2 NkðvÞg is the complete k-hop link set of v.
Such information is normally obtained from ðkþ 1Þ rounds
of “Hello” message exchanges or from k rounds of message
exchanges if positional information is available.

2.2 MPR-Based Broadcasting

Multipoint relays (MPR). In multipoint relays (MPR)
[18], each node v maintains a 2-hop subgraph
G2ðvÞ ¼ ðN2ðvÞ; E2ðvÞÞ. Node v selects a small forward node
set, CðvÞ, from its 1-hop neighbor set NðvÞ to cover its 2-hop
neighbor set N2ðvÞ, that is, CðvÞ [ fvg is a CDS for G2ðvÞ.
CðvÞ is also called the coverage set for v. When u is selected
by v as a forward node, v is called the selector of u. Note that
several selectors may exist for a particular node. A forward
node may or may not actually retransmit the message; its
actual status is determined by the following MPR rule [18],
a special CDS rule:

. MPR rule. A node retransmits the message once if
the first message received is from a selector.

The collection of nodes that have retransmitted the
message plus the source node form a CDS called a forward
node set.

Source-independent MPR. The original MPR is source-
dependent. Adjih et al. [1] proposed a novel extension of the
MPR to construct a small CDS that is source-independent.
The source-dependent approach depends on a particular
broadcast; the resultant forward node set depends on many
factors, such as the locations of neighbors, node priority,
message propagation delay, and back-off delay. The source-
independent approach does not depend on a particular
broadcast; the resultant forward node set depends only on
local topology and node priority. In addition, the forward
node set is generic, so it can be used for any broadcast.

A node belongs to a CDS if:

. Rule 1. The node has a smaller ID than all its
neighbors.

. Rule 2. The node is a forward node selected by its
smallest ID neighbor.

Note that node ID, idðvÞ, is not the only way to define
the priority of node v. Other priority schemes exist, for
example, ðjNðvÞj; idðvÞÞ, where node degree is the primary

priority measure and node ID is used in case of a tie in
node degree.

Enhanced MPR. Wu [24] observed two potential draw-
backs in the source-independent MPR and proposed two
extensions: 1) Rule 1 is “useless” on many occasions, that is,
the node selected based on Rule 1 is not essential for a CDS.
2) The original MPR forward node selection (Algorithm 1)
does not take advantage of Rule 2.

In Fig. 2a, u and v are selected based on Rule 1; however,
they are useless. In fact, node w alone is sufficient for a CDS.
Similarly, u in Fig. 2b is useless. On the other hand, we
might have to include some smallest ID nodes even if they
are not selected by any of their neighbors as forward nodes.
In Fig. 2c, suppose node u is not selected by any of its
neighbors, u has to be included (as it is selected by Rule 1)
because any forward node selected by a node other than u
will be ignored based on Rule 2.

Based on the first observation, Rule 1 was enhanced as
follows:

. Enhanced Rule 1. The node has a smaller ID than all
its neighbors and has two unconnected neighbors.

The Enhanced Rule 1, together with the original Rule 2,
will generate a CDS under all cases except complete graphs.

In Fig. 2b, we assume that v selects x as its forward node.
Based on Rule 2, since v is the smallest ID neighbor of x, x
cannot ignore v’s choice. On the other hand, if v chooses y,
since v is not the smallest ID neighbor of y, v’s choice will be
ignored by y. Therefore, forward node y comes for “free” for
v. That is, the inclusion of y does not increase the size of the
global forward node set. Generally speaking, node u is a free
neighbor of v if v does not have the smallest ID among u’s
neighbors.

2.3 CDS Selection in MPR and Its Extensions

CDS selection in MPR. Let HkðvÞ ¼ NkðvÞ �Nk�1ðvÞ denote

the nodes k hops away from v. A simple greedy algorithm

(Algorithm 1) for computing CðvÞ (initially empty) at v is

shown as Algorithm 1 [18]. This selection of CðvÞ is

illustrated by Fig. 3b. Note that NðvÞ is covered when v

transmits. Therefore, H2ðvÞ (¼ N2ðvÞ �NðvÞ) is used instead

of N2ðvÞ. A neighbor u is essential if a node in H2ðvÞ is solely

covered by u. In Algorithm 1, essential neighbors are

included first. Then, neighbors with higher degrees (i.e.,

covering more uncovered 2-hop neighbors) are selected

until H2ðvÞ is covered. If there are two neighbors with the

same degree, either one can be selected.
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Algorithm 1. Greedy algorithm for selecting CðvÞ [18],

1. Add u 2 H1ðvÞ to CðvÞ if there is a node in H2ðvÞ
covered only by u. Any node in H2ðvÞ that is not
covered by CðvÞ is called an uncovered node.

2. Add u 2 H1ðvÞ to CðvÞ if u covers the largest number
of uncovered nodes in H2ðvÞ.

Suppose the following coverage sets are selected based
on the above greedy algorithm in Fig. 2b: CðuÞ ¼ fv; yg,
CðvÞ ¼ fxg, CðxÞ ¼ fvg, CðyÞ ¼ fzg, and CðzÞ ¼ fyg. Collec-
tively, nodes v, x, y, and z form a CDS. As specified in the
MPR rule, the actual set of forward nodes for a particular
broadcast uses only a subset and it depends on the location
of the source and communication latency. For example, if v
is the source and node x receives the first message from v,
then x is a forward node. Also, if nodes w and y receive their
first message from x and v, respectively, none of them will
forward the message. Therefore, fv; xg forms a CDS for this
case. However, if node z is the source and node y receives
the first message from z, then fy; zg forms a CDS.

CDS selection in source-independent MPR. Applying
Rule 1 and Rule 2 to Fig. 2b with the coverage set of each
node selected as above, fv; x; y; zg is changed to fu; v; x; yg
for a CDS. Compared with the set derived from the original
MPR, node z is no longer in the final CDS since it is selected
by y (which does not have the smallest ID among z’s
neighbors). Node u is included since it has a smaller ID than
all its neighbors. The correctness of source-independent
MPR is given in [1].

CDS selection in enhanced MPR. The greedy algorithm
for selecting CðvÞ (Algorithm 1) can be enhanced by giving
free neighbors higher priorities. The modified greedy
algorithm is shown in Algorithm 2. Simulation results in
[24] show that this extension is effective when the network
is sparse. The Enhanced Rule 1 is effective when the
network is dense. Combining the Enhanced Rule 1 and the
modified greedy algorithm (Algorithm 2) at each node v,
the result is effective for both sparse and dense networks.

Algorithm 2. Modified greedy algorithm for selecting CðvÞ
[24],

1. Add all free neighbors to CðvÞ.
2. Follow Steps 1 and 2 of Algorithm 1.

3 PROPOSED APPROACH

In this section, we first give a refined definition of coverage,
where a node, using complete 2-hop information, can select
both 1-hop and 2-hop neighbors to cover its 2-hop neighbor
set. An enhanced Rule 2 for source-independent CDS
construction is proposed based on the directed (1-hop)
and indirected (2-hop) coverage. We then prove the
correctness of the extended scheme. A greedy algorithm is
used to select such an extended coverage set. Finally, we
show several examples.

3.1 Direct and Indirect Selector

The proposed approach is motivated by the case shown in
Fig. 2b. Suppose the current node is u. In the original MPR
or its extensions, both y and v need to be selected to cover
u’s 2-hop neighbors z and x. However, z falls into the 2-hop
neighbor set of v. That is, z can be covered by v via x when v
calculates its forward node set. Motivated by this example,
in our extended MPR, node v selects a pair of nodes to cover
H2ðvÞ. Specifically, node v repeatedly adds a node pair
ðu;wÞ to CðvÞ at each time, where u 2 H1ðvÞ and w is an
uncovered node in H1ðuÞ \H2ðvÞ, until all nodes in H2ðvÞ
are covered. We now give an extended notion of coverage
and selector:

Definition 1 (Coverage and Selector). When node v adds two
nodes u 2 H1ðvÞ and w 2 H1ðuÞ \H2ðvÞ to CðvÞ, neighbors
of u are directly covered and neighbors of w are indirectly
covered. In addition, v is a direct selector of u and an
indirect selector of w.

In the example of Fig. 2b, when node u selects a pair
ðv; xÞ for CðuÞ, among 2-hop neighbors of u, x is directly
covered by v and z is indirectly covered by v via x. In this
case, u is a direct selector for v (to cover x) and an indirect
selector for x (to cover z).

In the proposed approach, each node v still covers its
2-hop neighbor set, but uses complete 2-hop information. In
fact, the only additional information used is about connec-
tions between any two 2-hop neighbors. We then have the
following Enhanced Rule 2:

. Enhanced Rule 2. Node u is a forward node if it is
directly selected by a node in H1ðuÞ that has the
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Fig. 3. (a) Partial k-hop information. (b) In MPR, each node v selects a few 1-hop neighbors (u and x in this example) to cover its 2-hop neighbor set.

Links between nodes in H2ðvÞ are not visible to v.



smallest ID in H1ðuÞ; node w is a forward node if it is
indirectly selected by a node in H2ðwÞ that has a
smaller ID than all nodes in H1ðwÞ.

The following theorem shows that the Enhanced Rules 1
and 2 guarantee a CDS for a given connected graph.

Theorem 1 (Correctness of the Extended MPR). If the given

connected graph is not a complete graph, the set of forward

nodes selected by the Enhanced Rule 1 and Enhanced Rule 2

form a CDS.

Proof. Assume that the graph is not a complete graph; we
first show that there exists at least one node in the

forward node set. Let c be the node with the smallest ID
in the network. If all other nodes are neighbors of c, at

least two neighbors are not directly connected. Based on
the Enhanced Rule 1, c is selected. If there exists a node

that is not a neighbor of c, c will designate a neighbor c0

for relaying. Since c is the smallest ID node, c0 is selected

based on the Enhanced Rule 2. Let C be the connected
component in the forward node set that contains the

smallest ID node c and/or its designated neighbor c0. We
prove that C itself is a dominating set (DS).

We prove by contradiction. If C is not a DS, there must
exist some nodes that are not in NðCÞ, i.e., NðCÞ is not
empty. Let V be the set of nodes that have at least one
neighbor in C and at least one neighbor in NðCÞ. V
cannot be empty since the network is connected. Also,
V \ C ¼ �. Consider the smallest ID node s in NðV Þ. s
belongs to one of the following three cases (see Fig. 4):

. Case 1: Assume s is in NðCÞ (which implies
s 62 V ). Since s 2 NðV Þ and s 62 V , there exists a
neighbor v of s in V . (Note that, in general, when
s 2 NðV Þ, s may not have a neighbor in V .) Let u
be a neighbor of v in C. Consider now the forward
set for s. As u is a 2-hop neighbor of s, based on
Definition 1, s has the following four choices to
cover u:

1. s! xð2 V Þ ! u,
2. s! xð2 V Þ ! yð2 C \NðV ÞÞ ! u,

3. s! xð2 NðCÞ \NðV ÞÞ ! yð2 V Þ ! u,
4. s! xð2 V Þ ! yð2 V Þ ! u.

In the first case, s directly selects x 2 V to directly

cover u; in the second case, s directly selects x 2 V
to indirectly cover u (via y); in the third case, s

indirectly selects y 2 V (via x) to directly cover u;

in the fourth case, s directly selects v 2 V to

indirectly cover u (via y). In all these cases, s has

the smallest ID among NðV Þ which includes NðxÞ
or NðyÞ. With the Enhanced Rule 2, x 2 V or y 2
V will be selected in the forward node set C,

which contradicts V \ C ¼ �.
. Case 2: Assume s is in NðCÞ \ V . Based on the

Enhanced Rule 1, s is selected since its ID is
smaller than that of all its neighbors. In addition,
s has two unconnected neighbors, one in NðCÞ
and one in C. This results in the contradiction that
V \ C ¼ �.

. Case 3: Assume s is in NðCÞ � V . Let v be a
neighbor of s in V and let u be a neighbor of v in
NðCÞ. Consider now the forward set for s. Since u
is a 2-hop neighbor of s, s has the following four
choices to cover u:

1. s! xð2 V Þ ! u,
2. s! xð2 V Þ ! yð2 NðCÞ \NðV ÞÞ ! u,
3. s! xð2 C \NðV ÞÞ ! yð2 V Þ ! u,
4. s! xð2 V Þ ! yð2 V Þ ! u.

The rest of the proof is similar to Case 1.

In all cases, we reach a contradiction that V \ C ¼ �.

Therefore, C has to be a DS. tu

3.2 Extended Greedy Algorithm

The previous subsection provides general rules for the

extended MPR. This subsection deals with efficient im-

plementation of these rules (in terms of reducing CDS). The

efficient implementation in this section does not change

local and global asymptotic bounds discussed in the next

two sections. With the Enhanced Rule 2, we extend the

notion of a free neighbor to 1-hop free neighbor and 2-hop free

neighbor as follows:

Definition 2 (Free Neighbor). Node u is a 1-hop free neighbor

of v if u is in H1ðvÞ and v’s ID is not the smallest ID in H1ðuÞ.
Node w is a 2-hop free neighbor of v if w is in H2ðvÞ and v’s ID

is larger than at least one node ID in H1ðwÞ.

The greedy algorithm can then use these free neighbors

for neighbor coverage without any cost. In the extended

greedy algorithm (Algorithm 3), two nodes, u and w, as a

pair are selected with each selection operation performed

by the current node v, where u is a 1-hop neighbor of v and

w is a 2-hop neighbor of v, which is also a 1-hop neighbor of
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Fig. 4. An illustration of the proof for Theorem 1: (a) Case 1, (b) Case 2, and (c) Case 3.



u. We introduce the concepts of “cost” and “yield” to
measure the quality of each selection.

Definition 3 (Cost and Yield). The “cost” of a selection

operation is the number of selected nodes that are not free

neighbors in the selection. The “yield” of a selection operation

is the total number of uncovered nodes that are covered by the

selection divided by the cost of the selection.

Note that each nodevknows its complete 1-hop and partial
2-hop free neighbors because v has complete 2-hop informa-
tion, which includes the neighbor set of each of its 1-hop
neighbors and the partial neighbor set (H1ðwÞ \N2ðvÞ) for
each 2-hop neighbor w. Also, as the cost of a selection can be
zero, the corresponding value of the yield will be infinite.

Algorithm 3. Extended greedy algorithm for selecting CðvÞ.

1. Add all pairs of 1-hop free neighbor u and
uncovered 2-hop free neighbor w to CðvÞ and
remove all their covered nodes from H2ðvÞ.

2. Add a pair of nodes u 2 H1ðvÞ and uncovered w 2
H1ðuÞ \H2ðvÞ to CðvÞ that gives the highest yield
in H2ðvÞ.

The major modification in Algorithm 3, compared with
Algorithm 2, is that a 2-hop neighbor w of v can be
indirectly selected to cover other 2-hop neighbors. That is, a
1-hop neighbor u directly covers H1ðuÞ \H2ðvÞ and u

indirectly covers H1ðwÞ \H2ðvÞ via w. Also, w always exists
as long as H2ðvÞ is not empty and is included even if it does
not “contribute” additional coverage beyond what u does.
Algorithm 3 takes the following considerations when
selecting node pair ðu;wÞ at v:

1. Both the 1-hop free neighbor u and the 2-hop free
neighbor w can contribute additional coverage
without any cost. Therefore, a pair of free neighbors
should be included first.

2. Either the 1-hop free neighbor u or the 2-hop free
neighbor w can decrease the total cost by half, which
leads to a higher yield.

3. Nodes u and w have equal cost and their contribu-
tions (in terms of coverage) are treated equally.
Therefore, whichever covers a larger number of
uncovered nodes will give a higher yield.

Fig. 5 shows a sample network with eight nodes. The
double-circled nodes are the selected forward nodes by the
source-independent MPR [1] (MPR) using Algorithm 1 with
the regular Rules 1 and 2, the enhanced MPR [24] (EMPR)
using Algorithm 2 with the Enhanced Rule 1 and regular

Rule 2, and the proposed extended MPR (EEMPR) using
Algorithm 3 with the Enhanced Rules 1 and 2. In Fig. 5a, nodes
a, b, and d are the nodes with the smallest ID within their
corresponding 1-hop neighbors, so they are included in the
CDS by Rule 1. Nodes candf are selected as forward nodes by
nodea, which is the node with the smallest ID within c and f’s
1-hop neighbors (Rule 2). Also, it is assumed that node b, the
smallest ID neighbor of node g, selects ffg to cover H2ðbÞ.
Therefore, fa; b; c; d; fg are in the CDS for the MPR. In Fig. 5b,
nodes a and d are removed from the CDS by the Enhanced
Rule 1 because node a’s 1-hop neighbors (c and f) are
connected and d’s 1-hop neighbors (f , g, and h) are pairwise
connected. Therefore, fb; c; fg are in the CDS for the EMPR. In
Fig. 5c, node c is removed from the CDS by the Enhanced
Rule 2 because c’s 1-hop neighbor with the smallest ID, a,
selects f and b to indirectly cover e. Thus, only fb; fg are in the
CDS for the EEMPR.

Fig. 6a shows a relatively sparse network with 80 nodes.
Fig. 6b, Fig. 6c, and Fig. 6d show the results with MPR
(Fig. 6b), EMPR (Fig. 6c), and EEMPR (Fig. 6d). In these
figures, only nodes in the CDS and their induced subgraphs
are shown. The sizes of the CDSs for MPR, EMPR, and
EEMPR are 32, 29, and 27, respectively. Compared with
previous work, EEMPR does not significantly reduce the
CDS size in sparse networks. The major benefit of EEMPR is
its probabilistic approximation ratio, which predicts a small
average CDS size in dense networks, as will be discussed in
the following sections.

4 DETERMINISTIC LOCAL APPROXIMATION RATIO

This section shows local upper bounds of the original MPR
and the proposed scheme, that is, the worst-case performance
of selecting a coverage set to cover the 2-hop neighbor set of a
single node. The global performance will be discussed in the
next section. Note that all results in this and the next section
on the extended MPR (EEMPR) apply to both the general
rules in Section 3.1 and its special cases (such as the greedy
algorithm using free neighbors in Section 3.2). In both
sections, G is assumed to be a unit disk graph.

4.1 Original MPR

In [18], Qayyum et al. proved that the local upper bound of
the ratio of the size of their proposed heuristic to that of the
optimal multipoint relays is Oðlogn0Þ, where n0 is the
maximum size of 2-hop neighbor set. Note that this ratio is
with respect to multiple relays methods only (i.e., methods
where 2-hop nodes are covered by selected 1-hop nodes). In
fact, the approximation ratio is Oðn0Þ among all algorithms
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Fig. 5. A sample network with eight nodes. The double-circled nodes are selected forward nodes by (a) the MPR, (b) the EMPR, and (c) the EEMPR.



that cover 2-hop neighbor sets locally. Consider the

example in Fig. 7a, where all 1-hop neighbors of v are on

the circle of C (with radius r from center v) and all 2-hop

neighbors of v are on the circle of C0 (with radius 2r from

center v). r is the uniform transmission range of each node.

Clearly, when u computes its forward nodes, each 2-hop

neighbor of v, say w, on the circle of C0 can only be covered

by exactly one 1-hop neighbor of v, say u, on the circle of C

whose position is exactly on the line connecting v and w

(that is, there is a one-to-one relation between v and w).

When the number of nodes on C0 increases, the number of

selected forward nodes on C also increases at the same rate.

In fact, as indicated in Fig. 7a, a constant number of nodes

(nine double-circled nodes) is sufficient to cover all 1-hop

and 2-hop neighbors of v. Therefore, the approximation

ratio of the original MPR is Oðn0Þ.

4.2 Extended MPR

Next, we prove that, for each single node v, the EEMPR can

provide a constant size of the forward node set CðvÞ.
Theorem 2 (Local Upper Bound). The EEMPR has a constant

local approximation ratio.

Proof. Suppose v is the node that selects a forward node set

CðvÞ to cover H2ðvÞ. Based on Definition 1, v selects a pair

of nodes u and w, where u is in H1ðvÞ and w is an

uncovered node in H1ðuÞ \H2ðvÞ. The selected nodes are

put into CðvÞ and the nodes covered by CðvÞ in H2ðvÞ are
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Fig. 6. Applying different CDS algorithms in a sample network with 80 nodes. (a) The original network. (b) MPR. (c) EMPR. (d) EEMPR.



removed. Node v continues to select pairs u0 and w0, u00

and w00, and so on until H2ðvÞ becomes empty (see

Fig. 7b). For each selection, the newly selected 2-hop

forward node, say w0, is not adjacent to any already

selected 2-hop forward node (based on the property of

unit disk graphs), say w, in CðvÞ. In other words,

fw;w0; w00; . . .g forms an independent set (IS). An IS is a

set in which no two nodes are neighbors. This suggests

that, within a disk whose diameter is r (or radius is 0:5r),

there exists at most one selected 2-hop forward node (of

type w). In other word, such disks are nonoverlapping.

Notice that the possible location of v’s 2-hop neighbor is

only within the ring between r to 2r. Thus, the disks with

diameter r are confined within the ring between 0:5r to

2:5r (shadowed area in Fig. 7b). The maximum number

of such disks is �ð2:5rÞ2��ð0:5rÞ2

�ð0:5rÞ2 ¼ 24: Therefore, the total

number of fw;w0; w00; . . .g is no larger than 24 and the

total number of nodes in CðvÞ, which is twice the size of

fw;w0; w00; . . .g, is no larger than 48. Since the optimal

number of forward nodes selected by each node to cover

its 2-hop neighbor set is a constant, the proposed

approach has a constant local approximation ratio. tu
In [2], a disk with radius kr is proven to have an upper

bounded constant number of nodes lk in an IS, where
lk � ð2kþ 1Þ2. The EEMPR provides a special case when
k ¼ 2. Although the EEMPR provides each node with a
constant number of forward nodes, the upper bound of the
CDS of the entire network is still OðnÞ because the collection
of the locally selected ISs does not correspond to a global IS.
One worst case is shown in Fig. 7c: All nodes are placed
along line AD of length 3r and the node IDs monotonously
increase along the line from the left end to the right end.
Each node has its selector, which has the smallest ID among
its 1-hop neighbor set. Based on the Enhanced Rule 2, a
node will finally become a forward node if it is selected by
its selector. Suppose n nodes are distinctively distributed
along AD with n=3 nodes on each of the segments AB, BC,
and CD. In addition, for each node u in BC (assuming one
such u is at position B), there exist v in AB and w in CD

such that Disðu; vÞ ¼ r and Disðu;wÞ ¼ r. All OðnÞ nodes on
the segment BC will be forward nodes. On the other hand,
a CDS with only three nodes at positions A, B, and C is
sufficient to cover the entire network. However, this
situation corresponds to the worst case, which rarely
occurs. A study on average performance will be given in
the next section.

5 PROBABILISTIC GLOBAL APPROXIMATION RATIO

In this section, we first show that the original MPR and
EMPR are probabilistically unbounded. That is, the average
number of forward nodes in a finite region is infinite when
the network is extremely dense. Then, we prove that,
although the extended MPR (EEMPR) does not have a
constant approximation ratio, it has a constant probabilistic
approximation ratio. That shows the competitive average
performance of the EEMPR.

5.1 Original MPR

Let CDSMPR be the set of forward nodes selected by the
original source-dependent MPR, source-independent MPR,
or the EMPR based on partial 2-hop information. The
following theorem shows that the MPR does not have a
constant probabilistic upper bound in random unit disk
graphs. We assume that all nodes are deployed in a
2D plane. For each node v in a 2D plane, Diskðv; rÞ denotes
a disk centered at v with a radius r. All nodes within
Diskðv; rÞ are 1-hop neighbors of v. All 2-hop neighbors of v
are within Diskðv; 2rÞ, but not vice versa. As shown in
Fig. 8a, the deployment region (represented by the
shadowed area) may not contain Diskðv; 2rÞ. Let ! � 2�
be the arc of the disk within the deployment region. We
assume the deployment region is rectangular and suffi-
ciently large such that ! � �=2.

Theorem 3 (Probabilistically Unbounded). In a network
with n nodes randomly and uniformly deployed in a finite
region that is sufficiently large, limn!1EðjCDSMPRjÞ ¼ 1.

Proof. Let CðvÞ be the set of forward nodes selected by a
node v. We show that limn!1EðjCðvÞjÞ ¼ 1. That is, for
any integer k0 > 0, there exists an n0 satisfying
EðjCðvÞjÞ > k0 for all n > n0. As shown in Fig. 8a, v’s
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Fig. 7. (a) An example of the worst case where node v’s forward nodes are Oðn0Þ. (b) Illustration of the EEMPR. (c) The worst case where the CDS of

the entire network is OðnÞ for the EEMPR.



2-hop neighborhood can be evenly divided into 4k0

sectors with angle � ¼ !=4k0. The following discussion

shows that, for a sufficiently large n, the expected

number of forward nodes is at least 1=4 in each sector.
Within each sector, we construct two small regions, C1

and C2, within Diskðv; rÞ and Diskðv; 2rÞ, respectively.
As shown in Fig. 8b, C2 is placed such that the distance
between a node in C2 and a node from a neighboring
sector is always larger than r. C1 is placed such that the
distance between a node in C1 and a node in C2 is always
less than r. The sizes of C1 and C2 can be very small, but
are both positive constants under a fixed k0. If there
exists a node u in C1 and another node w in C2, then w is
a 1-hop neighbor of u and a 2-hop neighbor of v. In
addition, w cannot be reached from v’s 1-hop neighbors
in any other sectors. Therefore, v must select at least one
node from this sector of Diskðv; rÞ to cover w.

Let S be the area of the deployment region and S0 the
minimum area of C1 and C2. The probability that v
selects at least one forward node in a sector is

p ¼ p1p2 ¼ 1� 1� S
0

S

� �n� �2

;

where p1 (p2) is the probability that there exists at least

one node in C1 (C2) and p1 ¼ p2 ¼ 1� ð1� S0

S Þ
n. The

expected number of forward nodes selected by v is

EðjCðvÞjÞ � 4k0p:

Let n0 ¼ log1�S0S
ð12Þ. We have p > 1

4 and EðjCðvÞjÞ > k0 for

all n > n0. If we let v be the source node in the original

MPR and a node with the minimal ID in the source-

independent MPR and EMPR, then all nodes selected by

v become forward nodes. That is, CðvÞ � VMPR and

lim
n!1

EðjCDSMPRjÞ � lim
n!1

EðjCðvÞjÞ ¼ 1:
ut

5.2 Extended MPR

Next, we give a probabilistic upper bound on the size of
CDS derived from the extended MPR (EEMPR). Lemmas 1
and 2 show that the average number of forward nodes in
each unit area is bounded by a constant. Theorem 4 further
concludes that the average number of forward nodes in the
entire network is constant times that of a minimum CDS.

Let Diskðv; rÞ [Diskðu; rÞ denote the union (i.e., the
combined area) of two disks and Diskðv; rÞ \Diskðu; rÞ the
intersection (i.e., the common area) of two disks. Given a
finite region C in the deployment region, a node v within
region C is represented by v 2 C. In the EEMPR, the
number of forward nodes in C is determined by the
decisions made by nodes in the following two regions.

Definition 4 (Selector and Releaser Regions). Given a finite

region C, its selector region is SðCÞ ¼
S
v2C Diskðv; 2rÞ and

its releaser region is RðCÞ ¼
T
v2C Diskðv; rÞ.

Based on the Enhanced Rule 2, a node v 2 C is a forward
node if 1) v is selected by a node u 2 SðCÞ as a forward node
and 2) v is not released by a node w 2 RðCÞ, which does not
select w as a forward node and has a lower ID than u. Fig. 9a
shows a square region with side d ¼

ffiffi
2
p

2 r and its selector and
releaser regions. Here, we assume a very high node density
such that there exists a node at every point of C. A lower
node density will yield a smaller SðCÞ and a larger RðCÞ.
The area of SðCÞ is

d2 þ 4dð2rÞ þ �ð2rÞ2 ¼ ð0:5þ 4
ffiffiffi
2
p
þ 4�Þr2 � 18:72r2:

The area of RðCÞ is larger than that of C, which is d2 ¼ 0:5r2.
The area ratio between SðCÞ and RðCÞ is at most 37. This
ratio is smaller when d <

ffiffi
2
p

2 r because SðCÞ shrinks and
RðCÞ expands while C becomes smaller, as shown in Fig. 9b.

Definition 5 (Node and Region Ranks). Given a finite

region C and a node w 2 C, rankðvÞ ¼ jLvj, where Lv ¼
fu j u 2 SðCÞ ^ idðuÞ � idðvÞg includes all nodes in SðCÞ
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Fig. 8. MPR is probabilistically unbounded.



with an ID no higher than v. rankðCÞ ¼ minv2RðCÞ rankðvÞ is
the rank of a node with the minimal ID in RðCÞ.

Lemma 1. For any square region C with side d �
ffiffi
2
p

2 r and
n nodes randomly and uniformly deployed in SðCÞ,
limn!1EðrankðCÞÞ ¼ Oð1Þ.

Proof. First, consider the case of d ¼
ffiffi
2
p

2 r, where the
probability that a node is placed in RðCÞ is p > 1

37 . For
any integer i � 1, event “rankðCÞ ¼ i” is equivalent to
“the first i� 1 nodes with the lowest IDs are outside
RðCÞ and the ith node is inside RðCÞ” and the
corresponding probability is

PrfrankðCÞ ¼ ig ¼ ð1� pÞi�1p:

When n!1, the expected value of rankðCÞ is

EðrankðCÞÞ ¼
X1
i¼1

i � PrfrankðCÞ ¼ ig

¼ p
X1
i¼1

ið1� pÞi�1 ¼ 1

p
< 37:

When d <
ffiffi
2
p

2 r, p is larger and EðrankðCÞÞ is smaller.
Overall,

lim
n!1

EðrankðCÞÞ < 37:

ut

Lemma 2. The number of forward nodes selected by EEMPR in a
finite region C is bounded by Oð1Þ � rankðCÞ.

Proof. Let v be the node with the lowest ID in RðCÞ, that is,
rankðvÞ ¼ rankðCÞ. For any node w 2 C, it becomes a
forward node only if 1) it has the lowest ID in its
neighborhood and, therefore, rankðwÞ � rankðvÞ (En-
hanced Rule 1) or 2) it is selected by a node u 2 SðCÞ
and rankðuÞ � rankðvÞ (Enhanced Rule 2). In case 1), the
corresponding number of forward nodes is at most
rankðvÞ. In case 2), there are at most rankðvÞ such

selectors in SðCÞ. From Theorem 2, each selector selects
Oð1Þ forward nodes. Therefore, the total number of
selected nodes in C is Oð1Þ � rankðvÞ. Overall, the total
number of forward nodes in C is bounded by

rankðvÞ þOð1Þ � rankðvÞ ¼ Oð1Þ � rankðvÞ ¼ Oð1Þ � rankðCÞ:
ut

Let CDSEEMPR be the set of forward nodes selected in
the EEMPR and CDSOPT be a minimum CDS selected by an
optimal algorithm. The following theorem shows that the
EEMPR has a constant probabilistic upper bound.

Theorem 4 (Probabilistic Upper Bound). In a network with n
nodes randomly and uniformly deployed in a finite region,
limn!1EðjCDSEEMPRjÞ ¼ Oð1Þ � EðjCDSOPT jÞ.

Proof. Here, we assume that the deployment region can be
divided into many small but homogeneous squares with
side no larger than

ffiffi
2
p

2 r. From Lemmas 1 and 2, the
expected number of forward nodes in each small square
region is Oð1Þ. Consider nonempty squares that contain
at least one node. Suppose there are N such squares, then

lim
n!1

EðjCDSEEMPRjÞ ¼ Oð1Þ �N: ð1Þ

Now, consider the minimum dominating set CDSOPT .
Each nonempty square must be (at least partially)
covered by a node in CDSOPT . On the other hand, each
node in CDSOPT can cover only �ð1Þ nonempty squares.
Therefore,

N ¼ Oð1Þ � jCDSOPT j: ð2Þ

The theorem is proven by combining (1) and (2). tu
In the above theorem, we assume global uniform node

distribution for clarity. The probability density that a node
is deployed at a given position ðx; yÞ is assumed to be
fðx; yÞ ¼ 1=S for all ðx; yÞ within the deployment area,
where S is the area of the deployment region. Nevertheless,
Theorem 4 also holds in many networks with nonuniform
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Fig. 9. Selector (white) and releaser (gray) regions of a square region C with (a) side d ¼
ffiffi
2
p

2 r and (b) d <
ffiffi
2
p

2 r, where r is the transmission range.



node distributions. Note that the uniform distribution
assumption is used only in Lemma 2 to establish a
probabilistic upper bound of rankðCÞ. From the proof of
Lemma 2, it is clear that limn!1EðrankðCÞÞ ¼ Oð1Þ as long
as the probability p that a node in SðCÞ is placed in RðCÞ is a
constant c. That is,

H
ðx;yÞ2RðCÞ fðx; yÞdxdyH
ðx;yÞ2SðCÞ fðx; yÞdxdy

¼ c: ð3Þ

Many nonuniform distributions exist that satisfy (3), for
example, when the deployment region is an ‘� 1 rectangle.
The following node distribution,

fðx; yÞ ¼
2bxc

2‘�1
: x 2 ½0; ‘	 ^ y 2 ½0; 1	

0 : x 62 ½0; ‘	 _ y 62 ½0; 1	;

�

satisfies (3) for any constants r and d in Lemma 2, while the
node density changes dramatically from the left to the right
of the deployment region.

6 SIMULATION

We compare the size of CDS for the following four
algorithms:

1. MPR: the source-independent MPR algorithm pro-
posed in [1],

2. EMPR: the enhanced MPR algorithm proposed in [24],
3. EEMPR: the extended MPR algorithm, and
4. REMPR: the random-selected extended MPR

algorithm.

The REMPR allows each node to randomly select a pair of
1-hop and 2-hop neighbors at each iteration of the forward
node selection process. Both the EEMPR and REMPR apply
Enhanced Rules 1 and 2 and have the same asymptotic
performance as shown in Sections 4 and 5. The difference is
that the EEMPR provides an efficient implementation of
these rules using free neighbors.

All simulations were conducted using a custom simu-
lator, which assumes an ideal network without node
movement or channel collision. This simulation study
focuses on efficiency (i.e., CDS size) instead of reliability
(i.e., delivery ratio). However, such simplifications will not
affect our conclusion significantly. In the first scenario, a

given number of nodes (ranging from 20 to 100 with a step
of 10 and from 100 to 1,000 with a step of 100, respectively)
are randomly distributed in a 100� 100 2D deployment
region. Each node has a fixed uniform transmission range r
(r is 25 and 50, respectively). If the generated network is not
connected, it is discarded. The 90 percent confidence
intervals of all simulation results are within 
 5 percent.

Fig. 10a and Fig. 10b show the simulation results when
the node’s transmission range is 25. Fig. 10a shows the
trend when the number of nodes in the network ranges
from 20 to 100 (the corresponding graph is sparse), whereas
Fig. 10b shows the trend when the number of nodes in the
network is from 100 to 1,000 (the corresponding graph is
dense). We find that all three curves have a rising trend as
the number of nodes in the network increases. The number
of nodes in the CDS increases because, when more nodes
join in the network, the network density increases and a
node may select more 1-hop neighbors as forward nodes,
which increases the size of the CDS. From the figure, we
also notice that the rising trend is more sensitive to the
number of nodes in the range from 20 to 100 (relatively
sparse) than to that in the range from 100 to 1,000 (relatively
dense). The effect is more remarkable when the network is
sparse because the greedy algorithm is a node coverage
algorithm, that is, it selects 1-hop forward nodes to cover
2-hop neighbors. When the network is sparse, the collective
coverage of the forward nodes may still leave some blank
areas (i.e., areas with no nodes) within the 2-hop neighbor-
hood. As more nodes join in, new nodes may appear in
these blank areas, thus resulting in the selection of more
forward nodes. As the network density increases, the
number of the blank areas reduces, as does the number of
newly selected forward nodes. Therefore, the rising trend
slows down as the number of nodes increases.

Among these algorithms, the performance of the MPR
and REMPR is the worst in all ranges. When the network is
sparse (n is from 20 to 80), the curves of the EMPR and
EEMPR are almost the same. But, as the number of nodes
increases, the gap between the EMPR and EEMPR becomes
significant. When the number of nodes in the network is
1,000, the number of nodes in the CDS determined by the
EEMPR is only around 70 percent of that determined by the
EMPR or MPR. The reason that the EEMPR shows great
improvement in dense networks is that the selection of the
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Fig. 10. The number of nodes in the CDS when r is 25: (a) n ranges from 20 to 100 and (b) n ranges from 100 to 1,000.



forward nodes for one node has an upper bound that is

irrelevant to the network density. Thus, the size of the CDS

is less influenced by the network density. The size of CDS of

the REMPR is larger than that of the MPR when the

network size is over 60. The relatively low performance of

the REMPR shows that, although both the REMPR and

EEMPR have the same asymptotic upper bound, optimiza-

tion techniques such as free neighbor can still make

significant impact in their average performance.
Fig. 11a and Fig. 11b show the results when the node’s

transmission range is 50 and the number of nodes in the

network is from 20 to 100 and from 100 to 1,000,

respectively. When the transmission range increases, the

graph becomes denser if the number of nodes is fixed. In

this case, the size of the CDS only increases slightly as the

size of the network increases. This is because, when the

transmission range is 50, the corresponding graph is

sufficiently dense for the number of nodes to have little

effect on network density. Among these algorithms, the

EEMPR performs the best, followed by the EMPR. The MPR

is the worst when the size of network is less than 200 and

the REMPR has the largest CDS size when the network

population is over 200.
Comparing Fig. 10a and Fig. 10b with Fig. 11a and

Fig. 11b, we find that increasing the node’s transmission

range can increase the coverage area of each node and,

therefore, reduce the diameter of the network, which leads

to a smaller size of the CDS.
In the second scenario, a fixed number of nodes (n = 200

and 1,000, respectively) are randomly distributed in the

same 2D space. The network density is determined by the

node’s transmission range r. For each fixed number of

nodes, we run different experiments where the value of r

changes from 20 to 75. The results of a sufficient number of

experiments for each fixed network density are averaged to

guarantee the same confidence interval.
Fig. 12a and Fig. 12b show the percentage f of forward

nodes versus the node’s transmission range when the

number of nodes is 200 and 1,000, respectively. When the

transmission range r increases, the factor decreases because

the increase in r results in the decrease of the diameter of

the network. Thus, fewer nodes are needed to cover the

deployment region.
From the above results, we conclude that the proposed

EEMPR always outperforms the MPR and EMPR, regard-

less of the size of the network and the density of the

network. The performance difference is more significant in

relatively sparse networks. REMPR has poor performance,

which confirms the effectiveness of free neighbor enhance-

ment. All localized approaches demonstrate good scalabil-

ity in dense networks, although the EEMPR is the only one

that has a constant approximation ratio in expectation.
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Fig. 11. The number of nodes in the CDS when r is 50: (a) n ranges from 20 to 100 and (b) n ranges from 100 to 1,000.

Fig. 12. The factor of the number of nodes in the CDS to that in the network when r is from 20 to 75: (a) n is 200 and (b) n is 1,000.



7 RELATED WORK

The problem of finding a minimum CDS (MCDS) for a
general network is proven to be NP-complete [5]. Even
for a unit disk graph, such a problem is NP-complete
[13]. Therefore, only heuristic algorithms can be applied.
CDS construction algorithms can be classified into four
groups: global [8], [9], quasi-global [23], quasi-local [27],
and local [1], [4], [7], [11], [12], [14], [16], [18], [19], [20],
[21], [22], [24], [25], [26].

Some earlier researchers proposed global greedy algo-
rithms [9] that provide an approximation ratio of Oðln �Þ
for general networks, where � is the maximum node degree
of the network. Quasi-global CDS algorithms [23] build
shortest-path-tree-based CDS structures to provide an
Oð1Þ approximation ratio for unit disk graphs. In contrast,
quasi-local CDS algorithms construct a CDS by first electing
clusterheads [27] and then using selected gateway nodes to
connect them. Quasi-local methods also have Oð1Þ approx-
imation ratios in unit disk graphs.

Among local algorithms, a generic localized broadcast
scheme [25] has been proposed to unify source-independent
and source-dependent approaches. The source-independent
approach forms a “static” CDS of the network that only
depends on the network topology and node priority. Many
algorithms belong to this group, such as source-indepen-
dent MPR [1] and its extension EMPR [24], marking process
[26] and its extensions [7], SPAN [4], CEDAR [20], and
d-hop CDS [19]. In contrast, the source-dependent approach
depends on the source of a specific broadcast operation.
When a specific broadcast starts, after receiving a broadcast
packet, the node determines both its own and/or some of
its neighbors’ forward/nonforward statuses under a local
view of its neighbor set. The local view of its neighborhood
can be updated by “Hello” messages and the broadcast
packet. As the broadcast packet traverses the network, the
forward nodes eventually form a “dynamic” CDS of the
given network. Algorithms that belong to this group are
source-dependent MPR [18], dominant pruning [11] and its
extensions [12], [14], LENWB [22], SBA [16], and neighbor-
elimination-based broadcasting [21].

A local broadcast algorithm is either self-pruning,
neighbor-designating, or hybrid [25]. In self-pruning ap-
proaches [4], [7], [16], [19], [21], [22], [26], each node
determines its forward/nonforward status based on local
information, which is usually its 2 or 3-hop information. A
node becomes a forward node when it has two 1-hop
neighbors that cannot be connected via other nodes with
higher priorities. In neighbor-designating approaches [1],
[11], [12], [14], [18], [24], forward nodes are nominated by
their 1-hop neighbors. Depending on the broadcast scheme,
a nominated node may or may not become a forward node.
Hybrid approaches [25] combine both self-pruning and
neighbor-designating methods.

The three algorithms (MPR [1], EMPR [24], and EEMPR)
discussed in this paper are neighbor-designating ap-
proaches. MPR has been used to generate both source-
dependent and source-independent (and relatively large)
CDS. An extension was proposed in [1] to reduce the size of
a source-independent CDS, which was further extended in
[24] using free neighbors. Other neighbor-designating

approaches, such as the dominant pruning algorithm [11]
and its extensions [12], [14], have been proposed to produce
a smaller source-dependent CDS. All these algorithms use a
similar greedy strategy in selecting 1-hop forward nodes,
which has a logarithmic local approximation ratio. When
node position information is available, a better strategy can
be used to achieve a constant local approximation ratio [3].
The drawback of this method is the overhead for obtaining
node positions and inaccuracy due to channel fading and
shadowing. Note this approximation ratio applies to the
case of selecting 1-hop neighbors to cover 2-hop neighbors,
not to the case of selecting both 1-hop and 2-hop neighbors.
As discussed early in this paper, an optimal solution to the
former can be asymptotically larger than a solution to the
latter.

8 CONCLUSIONS

We have proposed an extended source-independent MPR
based on the recently proposed source-independent MPR.
The enhancement is done by using complete 2-hop
neighborhood information to cover each node’s 2-hop
neighbor set and by extending the notion of coverage in
the original MPR. The effectiveness of the enhancement is
confirmed through both probabilistic analysis and simula-
tion study. In addition, we prove a constant probabilistic
upper bound for the extended MPR and the nonexistence of
such a bound for the original MPR and its existing
extensions.

In this paper, we did not consider energy-aware multiple
relays selection. One straightforward extension is to use
residue energy level as the selection criterion instead of
using node ID. That is, the smallest ID node is replaced by
the node with the highest residue energy level. In this case,
a node with the highest residue energy in its 1-hop
neighborhood has a better chance to become a forward
node based on the enhanced rules. In this way, we can
conduct an energy-aware broadcasting [21]. Another future
work will be the study of different nonuniform node
distributions that can still provide a constant probabilistic
bound for the extended MPR.
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