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Abstract

Most peer-to-peer systems are vulnerable to Sybil attadies Sybil attack is an attack wherein a reputation system
is subverted by a considerable number of forging identitiegeer-to-peer networks. By illegitimately infusing fals
or biased information via the pseudonymous identities, @versary can mislead a system into making decisions
benefiting herself. For example, in a distributed votingtesys an adversary can easily change the overall popularity
of an option by providing plenty of false praise, or bad-niing the option through these fake identities. In this
paper, we summarize the existing Sybil defense technicares,further provide some new research areas. Unlike
traditional surveys about Sybil defense, we first categotie Sybil defense methods, mainly according to their
designed time, and then classify the methods by their appesa We believe that by understanding the evolution of
the solutions, readers could essentially have more irsightthe problem. In a nutshell, the research on the Sybil
defense technique has experienced four phases: (1) eraalitsecurity key-based approaches, (2) specific peer-to-
peer system feature-based solutions, (3) social netwaskd methods, and (4) social community-based techniques.
Besides all of these anti-sybil methods, readers will alsd §ome Sybil attack-related topics, such as Sockpuppets
in online discussion forums. By the end of the paper, we witivile some predictions about directions for future
research.
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|I. INTRODUCTION

We are entering a distributed computing era where a probdecodperatively computed by many participating
entities (also called nodes). Such cooperation mechanisqusre that each participant trust one another. Just like
in a team project, each person needs to trust his co-workera.typical (distributed) peer-to-peer system, the
participators usually play three roles, simultaneousisstFthey are the data owners, and they also share certain
data with others. This data could be local raw data, such masoseeadings, or could also be partial computing
results. Second, they are data processors: each partidgEily processes the data according to some rules or
algorithms. Third, they are also data transmitters. In gdescale peer-to-peer system, a direct connection between
each pair of nodes is impossible; therefore, the particigabodes usually build up a networks, and a message
is transmitted from one node to another via the relay opmratof multiple intermediary nodes (transmitters). If
attackers control one or more participating nodes, theydomodify the local raw data, local computed results, or all
of the transmitted data. Clearly, by such an attacking maishg the attackers can modify the overall computation
results of a peer-to-peer system, or even subvert the wlystern. Therefore, security is a very important aspect
of the research of peer-to-peer systems.

In this paper, we investigate the Sybil attack, a partidylaarmful attack in distributed peer-to-peer systems.
Almost all distributed peer-to-peer systems are based amamn assumption that each participating entity controls
exactly one identity. However, whenever the assumptiomethbe satisfied, the system is subject to sybil attacks.
In a Sybil attack, an adversary creates a large number ofnigifgke/pseudonymous identities (also named Sybil
identities), and since all Sybil identities are controlldthe adversary, she can maliciously introduce a conditkera
number of false opinions into the system, and subvert it, laking decisions benefiting herself. Essentially, Sybil
attacks break and manipulate the trust mechanism behinet@p@eer systems.

For a better understanding of what a Sybil attack is, herepmogide three examples. First, in some distributed
systems, critical resources are assigned based on theyvesnlts of participants: usually, only the node that has
received the highest number of votes can access the resolfrem attacker illegitimately creates a large number
of Sybil identities, then the adversary can proportion m@sources by instructing the fake identities to vote in
certain ways, such as always voting for her fake identitgsce votes are collected indirectly (recall that, instead
of through direct communication between remote nodes, matst are transmitted by the replay of other nodes),
it is hard to detect the illegitimate votes. Another examgdees from an application of sensor networks called
‘pervasive temperature monitoring.’ In a large region, tiplé sensors are randomly and uniformly deployed. Each
sensor measures its surrounding temperature, and fudhearfds the readings to a sink node, which collects the
data. From the sink node, an average temperature can be taanplowever, if the attackers launch Sybil attacks
and let each Sybil identity report one more temperatureededhen the average temperature result will be incorrect.
Our third example comes from a Facebook voting applicatiban adversary maliciously creates many identities,
she can easily change the overall popularity of an option foyiding plenty of false praise, or bad-mouthing of

the option through Sybil ids. Since the false opinions of $lybils may essentially change the final decision of any



distributed system, the research works on Sybil defendmigaes hold the most important position.

The researches on Sybil attacks have passed three phademwvarthey are just entering the fourth phase. Note
that our classification is based on the mainstream of relsdegnds. Sybil attack is named after the subject of the
book Sybil a case study of a woman diagnosed with dissociative igedisiorder. The name was suggested in or
before 2002, by Brian Zill from Microsoft Research. The téipseudo spoofing” had previously been coined by L.
Detweiler on the Cypherpunks mailing list, and was used @nliterature on peer-to-peer systems for the same class
of attacks prior to 2002. However, this term did not gain asminfluence as “Sybil attack.” Phase | of the research
on Sybil defense techniques began in 2002, and mainly emd2604. Within this phase, researchers tried to find
some general mechanisms to defend themselves from all tfp®gbil attacks in various networks or systems. In
a nutshell, people tried to prevent Sybil attacks througtesgning system architectures and by involving secure
mechanisms, such as digital signatures and identity atitla¢gion. However, the majority of approaches found at
this phase faced a common problem: their schemes requireshtaat authority for the verification of identities.
Clearly, the trusted third party is the bottleneck of systewhich could easily become a target point. Moreover, it
is impractical, since there is definitely not a globe agenbypwan be trusted by the entire public.

Around 2004 - 2006, the research trend entered phase Il,iwihatuded specific peer-to-peer system feature-
based solutions. Within this period of time, researchecsised on designing a defense system for a specific peer-to
peer application system. Different application systemkl ls@veral unique features. By exploring these features,
Sybil attacks can be detected, or the damage they cause ¢subded. For example, in sensor networks, nodes are
static. By monitoring the received signal strength of eadeived message, Sybil nodes can be detected. However,
readers need to be aware that such anti-Sybil systems asialbpdesigned; an efficient solution for one application
is typically not suitable for the others. Moreover, durifg tperiod from 2005 to 2006, a majority of researchers
shifted to other secure problems, instead of studying Sthalcks; the research on Sybil attacks was cooling down.

In 2006 ACM SIGCOMM, a novel paper [1] was presented, whichthe research on Sybil defense to enter phase
[ll. With goals dissimilar to those of phase I, the authorkditned to adopt the concept of social networks. They
wanted to detect Sybils based on a unique structure of fsigipd. Through observations, they found that, although
attackers can create plenty of Sybils and further createtylef friendships (also known as social links) among the
Sybils, the number of links between Sybils and honest usdlimited. This is so, because the links/friendships on
a social network are built based on a trust relationship, el as physical interactions among real people. Based
on this key observation, many creative and interestingISlg¢fense approaches were proposed at phase II, and the
Sybil attacks got the attention of the public once again:np metwork, or security related conferences or journals,
you can easily find several papers mentioning Sybil attatkese types of Sybil defense systems are also called
social network-based Sybil defense. Note that these solitio not detect Sybil attacks in social networks. Instead,
they explore the social networks behind a peer-to-peeesysMore details can be found in journal [2].

In the year of 2010, also in ACM SIGCOMM, another paper [3]vided a new trend for Sybil defense, which
argues that the Sybil nodes can be detected by the commumitiges of social networks, since there is a short cut

on the social graph of an attacked system. Community detecsi a relatively mature topic in computer science,



and plenty of useful techniques have been proposed. The fp3jpsuggested that several community detection
algorithms may be directly applied to the anti-Sybil probleNote that partial methods in phase Il essentially
detect the honest community part of a social network in anligihpvay, while the others just use other social
features. We can also regard the phase 1V, social commbaggd Sybil detections, as an extension of phase lll.
The remainder of the paper is organized as follows. In Sedtiowe formally introduce the Sybil attacks on
peer-to-peer systems. The examples about typical vullessistems are given in Section Ill. From Section IV to
Section VII, we provide the general description of the &wbil approaches for each phase. In Section VIII, we

provide the prediction of future research, and Section |IKobades the paper.

Il. TAXONOMY OF SYBIL ATTACKS

To better understand the Sybil attacks, in this section, meigde a taxonomy of different types of Sybil attacks.
The capability of the attacker is determined by several attaristics: (1) insider vs. outsider; (2) selfish vs.
malicious; (3) directed vs. indirected communicationg; f4nultaneously vs. gradually obtained Sybil identities;

(5) busy vs. idle; (6) discarded or retained.

A. Insider vs. Outsider

Whether an attack is an insider or outsider directly deteesithe capability of the attacker, and the hardness
of launching a Sybil attack. For an insider, the attackedfdt least one legitimate identity and claims that she
receives certain data from the other nodes, by using theitities. Usually, a distributed system assumes that
each node is trustworthy, and therefore, the false data eafowarded to the whole system. However, for an
outsider, she is any illegitimate entity; before launchin§ybil attack, she must first access the system. However,
distributed systems typically employ some kind of autheation to prevent illegitimated access, such as a password
for entering, or data encryption. The outsider needs to rataied all the mechanisms of the system prior to launching

Sybil attacks. Therefore, distributed systems are moreerable to inside attackers.

B. Selfish vs. Malicious

For security-related problems, there are two differentetypf attackers: either selfish or malicious. Selfish
attackers manipulate the false data just for their own bgvdfiile malicious attackers attempt to subvert a system.
Whether an attacker is selfish or malicious is usually detezthby the different types of targeted distributed system
and final attacking effects. For example, in our criticalorgge accessing example, if the attacker has resource
accessing rights all to herself, then she is a maliciouslatta since others cannot use the resource. However, if
other users can also access the resource with less propabidéin she is selfish. Since malicious attacks usually
have more serious effects, it is of higher importance to mif@gainst potentially malicious attacks than those that

are potentially selfish.



C. Directed vs Indirected Communications

How Sybil nodes communicate with honest nodes is also afgignt consideration during the designing of Sybil
defense mechanisms. The attacker can directly communmnigiitan honest node by using one of her Sybil identities,
or she can use only her real identity to communicate withrsthend route the Sybil data via this real identity. For
the attackers, the easiness of direct communication wittesionodes directly influences the success of attacking,
and whether honest users can see through the attack. Inajether attackers with more directed communications

are harder to detect. However, for certain distributedesyst direct communication may be difficult to establish.

D. Simultaneously vs. Gradually Obtained Sybil Identities

The attacker can obtain all of her Sybil identities simudtansly, or she can gradually generate them one-by-one.
For an intelligent attacker, the more diverse features @l 8odes have, the harder it is to identify Sybil nodes.
Gradually creating Sybil nodes may potentially differatei the first appearing time of the Sybils. However, the
process may delay the attacking time, and increases thesapltime of some Sybils: if a distribution randomly

checks the authentication of some identities, previouslyegated identities have a higher chance of being caught.

E. Busy vs. Idle

All Sybil identities can participate in a distributed systaimultaneously, or only some of them can work, while
others are in an idle state. Essentially, the selection eéahtwo schemes is determined by how cheap it is to
obtain an identity. If the attacker can easily get plentya¥ef identities, having some idle Sybil nodes could make
them much more real, since an honest node may leave or réjeisyistem multiple times. However, the power of
Sybil attacks results from the quantity of the identitidsolbtaining a large number of identities is very difficult,

the attacker has to use all of them in order to launch a suftdedtack.

F. Discarded vs. Retained

For an attacker, how to manage the old Sybil identities isargnt. After finding a Sybil node, one can further
(and gradually) identify the others by monitoring the claincommunication between a suspect node and the
detected Sybil node. Since the attacker is not aware of whette old identities have been detected yet, once in
a while, she has to determine whether or not to discard themsi@er that generating Sybil identities has certain
costs, and the possible naming space is not infinite. Thecigipaf attacks are related with the naming costs and

the mechanism of using old identities.

Ill. EXAMPLES OF VULNERABLE SYSTEMS

The Sybil attack is an attack wherein a distributed systesulsverted by forging identities. Usually, peer-to-
peer networks are vulnerable to Sybil attacks. In this eactive will provide several realistic examples of these
vulnerable systems. Moreover, we will also provide anotin examples, which are very similar to the Syhil

attacks.



A. Vehicular Ad hoc Networks (VANETS)

A Vehicular Ad-Hoc Network is a technology that uses moviagscas nodes to create a special mobile network,
which takes safety as its main purpose. In VANETS, each q@pating car can communicate with roadside base
stations or other cars. However, this type of network is gtdible to Sybil attack. For example, a selfish driver
may launch a Sybil attack by claiming that many vehicles eaeeling nearby. If this is the case, other cars may
falsely believe that there is a traffic jam on the correspogdibad, and therefore pick up an alternative road.
The selfish driver will enjoy better traffic, with others pagithe cost. Moreover, the Sybil attacks can also cause
serious safety threats: a malicious driver may drop the imgrmessages. In VANETSs, when a crash happens or
speed significantly reduces, a warning message for slogpegd will be generated, and is further forwarded to the
following vehicles, one-by-one. By claiming many fake itiges, the warning messages may all be transmitted to

the malicious driver’s car. If she drops these messagesy édflowing cars will be in danger.

B. Distributed Voting Applications in Peer-to-peer Sysiem

Any distributed voting aggregation system is vulnerableStidil attacks. Usually, a distributed voting system
consists of a collection of identities which vote for diffat objects. Most voting systems assume that each user
only holds one identity, and each identity can provide onhe aote. Based on this restriction, if attacks have
many identities, then she can offer many votes. The vote eaim lany form, from the simplest case, where each
vote represents a positive or a negative opinion, to moreptemcases, where the value of a vote can range
within a given set of values. To rank objects, a ranking maigma typically collects (or aggregates) the votes from
distributed participants and further combines the votes icertain method, such as the majority rule. By Sybil
attack, the real users’ major decision can be out-voted byattacker: since the attacker can easily create many
fake identities, the false opinions can be introduced ih® system by these identities. Here, we need to claim
that, although the Sybil nodes may be held by different k#esin reality, for the ease of description, researchers
always assume that the Sybil identities are owned by a samjlersary. This is due to the idea that this assumption
will not influence the effects of the attacks, and will alsd affect the results of defense approaches.

The example of Amazon’s user feedback system in the inttimués essentially an aggregating voting system,
since the reputation of each merchant is determined by ttess\foom customers. However, we also have to mention
that the Amazon voting system is a centralized system, wéléd the voting processes are controlled by a central
server. However, generally, an aggregating voting systamadso be a distributed system: each node can launch a

vote, and the range of votes’ values may different.

C. Distributed Storage Applications in Peer-to-peer Syste

Peer-to-peer storage systems adopt replication and fratgwien mechanisms, and usually the mapping from
data to the corresponding stored nodes is performed byildistd hash tables. From the consideration of system
stability and easy accessing, the mapping function is inféhe of one-to-many. However, if the attacker is an

insider, she can manipulate the values of her Sybil idestisuch that all the replicated data may actually be stored



on the same malicious node, although the data seems to lesl stbdifferent nodes outwardly. Without multiple
copies of data, the attacker can easily launch many folloattatks without being detected. For example, she can

modify some data. Since she holds all of the data copies, eocan detect the modification of the data.

D. Routing in a Distributed Peer-to-peer System

To improve the performance or fault tolerance, wirelessvogts usually adopt a concurrent multi-path routing
technique. Instead of using a single routing path, multhpauting has multiple alternative paths throughout a
network. The computed multi-paths may or may not be oveddphis technique provides better load balancing
and fault tolerance than traditional routing methods. Hmvein wireless sensor or ad hoc networks, Sybil attacks
can easily invalidate the technique: a computed multi-pathing, which seemingly consists of multiple disjoint
paths, could in fact only go through the same malicious nadech holds several Sybil identities. Other wireless
routing mechanisms, such as the decentralized objectidmcand routing (DOLR) algorithm, and the geographic
routing algorithm, are also vulnerable to Sybil attackspéer-to-peer networks, nodes communicate with each other
by relaying messages from one node to another, and the yjoélthe selected relaying paths directly influences
the performance of a network system. In some extreme cagb#,aftack may even isolate one part of a network

from the other part.

E. Sockpuppets in Online Discussion Forums

In online discussion forums, in order to cheat people on ttierhet, for instance, to believe that a product is
a good buy, or that a particular investment plan has an exsehigh return and low risk, a common trick is to
use different fake online identities pretending to be défe people. This is done to praise or create the illusion
of support for the product [4]. In the same forum, differentioe entities which belong to the same person are
referred as ‘sockpuppets.’ Note that sockpuppet does dohfpeo Sybil attack, since online discussion forums are
not peer-to-peer systems. However, because sockpuppetseaeeral features similar to Sybil attacks, we want to
mention them. First, both attacks are based on the usageltplmidentities belonging to the same person. Second,
their success is related to the same assumption that eacks essociated with one, and only one, identity. Third,
they all break the reputation mechanism behind a given systast, for some distributed peer-to-peer systems,
such as mobile social networks, there are social featurdsfriandships associated with each identity; this also
applies to an online discussion forum. Due to these sintigdatithe solution to one attack may help the design of

the other.

F. PageRank in Searching Engines

Another attack, which is similar to, but different from Slyhttacks, is called spoofed PageRank [5]. For modern
search engines, the ranking of a page is determined by théygqaad quantity of referenced links. In order to
promote a page’s ranking, the page owner (a selfish attaokay)create a lot of small and meaningless spoofing

pages, and let them link to the page. This type of attack is¢apoofed PageRank. If we consider each page as an



identity, and its corresponding PageRank as reputatioruet, then spoofed PageRank is the same as Sybil attack;
both of them promote the opinion or reputation of a maliciensity by using plenty of fake entities. Again, these
similar features may help to design some new Sybil defedsmsexample, Advogato Trust Metric [6] is a Sybil
defense system, where users certify each other in a kind efnegiew process. As the author observed that his
notion of a trust metric was fundamentally very similar te frageRank algorithm, the solution of identity-spoofing
related schemes in a field may inspire the design of defensmather field. Since trust, PageRank, and Sybil
attacks have delicate relationships, we present sevetaillabout them.

In a centralized ranking system (like Google PageRank) rém& of an entity is computed from a stationary
probability distribution of a Markov chain, in which a ramdavalker moves from one node to another by following
the edges with a constant probability(also named damping factor), or randomly jumping to another

Let P = [pi;] be am x m transition matrix, which is a row-normalized link matrix wée value shows the
probability of transmitting fromy; to v; during random walks (by following the link structure of awetk). If there
is an edgey; — v;, thenp;; = 1/D"(v;); otherwisep;; = 0. a isalxm vector,a = [q(v1),q(v2), -, q(vm)],
and it stands for a preference vector during a random jurtyp) > 0 and """, ¢(v;) = 1. The computation of
PageRank is an iteration process; we ?set) to represent the PageRank at 2 computing round. The steady
value ofﬁ(t) is the final PageRanE, which is al x m vector,ﬁ = [r(v1),r(ve), -+ ,r(vm)]. r(v;) means the

PageRank of the node. ﬁ(t + 1) is defined as follows:
Rt+1)=dBOP +(1-d)3

Realistically, Whedﬁ(t +1)— ﬁ(t)| < ¢, we let the value oﬁ(t +1) be R. For the ease of description, we
let P be a probability transition matrix used for computing Pag@R P = [pi;]imxm,pij = d - pi; + (1 — d)q(v;).
Algorithm 1 gives the procedure for computing PageRankeTalg. 1(a) as an example. Fos, D™ (v) = 3,
Phy = Dhy = Phs = 1/3, andph, = p5, = phe = 0. When the damping factaf = 0.85 and ¢(v1) = g(v2) - - - =
q(vs) = 1/6, p21 can be computed as followgs, = d-ph; +(1—d)-g(v1) = 0.85%(1/3)+(1—0.85)*(1/6) = 0.308.

[ 0.025 0.450 0.450 0.025 0.025 0.025
0.308 0.025 0.308 0.025 0.308 0.025
0.167 0.167 0.167 0.167 0.167 0.167
0.025 0.025 0.025 0.025 0.025 0.875
0.025 0.025 0.025 0.450 0.025 0.450

i 0.025 0.025 0.025 0.450 0.450 0.025

After obtainingP, we used Algorithm 1 to compute the PageRank of each nodéallyi we let each node’s
PageRank equal/m. Algorithm 1 iteratively computes the PageRank via usﬁ@%l) = ﬁ(t)P, and the algorith-
m stops wherﬁ(t) is stable. For Fig. 1(a), the final PageRanﬁs: [0.0517 0.0574 0.0737 0.2686 0.1999 0.3487].
Clearly, the webpages ranks as numbet among these nodes. However, in Fig. 1 (b), through addiregthpoofing
pages (alternatively, we called these fake identities dslSyn a peer-to-peer system), the attacker, ranks as

numberl, since those fake pages grab some ranking values from athdraniquely supports. Obviously, Google



Algorithm 1 PageRank

1: Assign initial values for entitiesﬁ(o) =[1/m,1/m, -, 1/m]
. R(1) = RO)P, t =0

: while (|R(t+1) — R(t)|) > ¢ do

4 t=t+1, Rt+1)=RO)P

: Returnﬁ(H— 1) as i

oy

(a) A directed network. (b) The community structure of pages.

N

w

)]

Fig. 1. The change of a network’s structure before and af@@inly a spoofing page attack. Fig.(a) shows the network tsteigvithout the

spoofing pages. In Fig.(b)is employsv; to vg as spoofed pages.

PageRank is vulnerable to spoofed PageRank attacks. 8Bimile other famous web page ranking algorithm, HITS,

also has the same weak point.

IV. SyBIL DEFENSE INPHASE |: SECUREKEY-BASED ANTI-SYBIL TECHNIQUES

According to information theory, in order to detect Sybildes, one must possess asymmetric knowledge, which
means the detecting algorithms must hold more informatioout either the Sybil part or the honest part. For
the techniques in Phase |, they usually only provide valigski® the honest nodes. Here, the “key” is a general
concept; in reality, these could be symmetric or antisymimé&eys. Also, the keys could be session keys or some

permanent keys.

A. Trusted Certification (Centralized Solutions)

Sybil attacks can be avoided by using trusted certificafidnis type of method assumes that there is a special
trusted third party or central authority, who can verify tladidity of each participant, and further issues a certiftca
for the honest one. In reality, such certification can be aigp&ardware device [7] or a digital number [8], [9].
Note that essentially both of them are a series of digits,adbatstored on different medias. Before a participant
joins a peer-to-peer system, provides votes, or obtaingcesr from the system, his identity must first be verified.
Actually, this method is the most commonly used Sybil dedeims our daily lives. For example, when we are
applying for a credit card, we need to provide our social gcaumber for verification; when we are voting in
election years, we also need our official ID card for gettiniga#iot.

When a malicious user launches Sybil attacks, defense misthausually require that a message be sent together

with a signature, which could be used for authenticatinguwhlaity of the sender or the data. Actually, according
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to a paper [10], trusted certification is the only approactt ttas the potential toompletelyeliminate Sybil attacks.
Since almost all authentication steps require the pagtimp of the central server, we categorize this type of smut

as a centralized trusted certification.

B. Trusted Certification (Semi-Centralized Solutions)

Centralized trusted certification approaches are oftedeémented by asymmetric (such as public/private keys)
cryptography. However, the computational cost is a big jgmmb Some researchers proposed another type of solution,
where partial identity verifications can be done withoutngsthe public/private keys. We named these kinds of
solutions ‘semi-centralized solutions.” Paper [11] pd®d a solution by using symmetric keys. They assumed that
each node shares a unique symmetric key with a trusted batgenstAfter verifying the validity of each other via
a Needham-Schroeder like protocol, a pair of nodes can lesstab shared key. During data transmission between

neighboring nodes, they can use the shared key for mutulaéatitation, and can also encrypt the data.

C. Common Problems with Techniques in Phase |

Trusted certification usually relies on a centralized &dsauthority for assigning and verifying identities. The
authority must ensure that each node is assigned exactlyidemgity, and that the identity list (also called a
registration list) is well protected. In real-life, the pess of assigning identities is usually performed by human
beings, which is costly and becomes the bottleneck of systéforeover, the central authority also needs to deal
with lost identities and updates. The performance of reslesys obstructs the usage of these solutions.

We summarize several obvious shortages of central auHosted methods, as follows:

1) Single point of attack. In these schemes, the centralogityhcan easily become a target. Besides Sybil
attacks, attackers can also launch plenty of other attatld) as denial of service, to crash the server.

2) Performance bottleneck. If several users access a tewtifzority simultaneously, the authority may crash
due to the huge workloads.

3) Communication cost. In this type of method, the authdstgften required during the data transmission. For
example, two strange nodes need the help of the authorityeiofying each other. There is a considerable
amount of extra communication between nodes and the atythori

4) Scaling. It is hard to construct an authority, which canthested by all participants, especially when a

peer-to-peer system wants to include more users from diyaeces.

D. Other Defenses in Phase |

Identity Fee: Unlike the trusted certification-based approaches, sommer gapers [12]-[15] add an economical
“fee” with each certification. They argue that the attackeasnot easily subvert a peer-to-peer system unless they
spend a lot of money. Indeed, they intend to build a systetindethe cost of an attack outweigh the benefits of

the attack.
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Secure Hardware: As we have mentioned in the beginning of this section, thatcértification key is a general
concept, a Sybil defense system can also be built based ars#igee of some secure hardwares. Usually these types
of hardware periodically generate some time-sensitivertokVhenever a participant wants to verify the validation
of his encounters, they just determine whether the tokeraligl wr not. Note that there is an assumption behind
the scheme that only honest users could get the secure hagjvead each valid user can only get one. Although
the verifying process does not need the central authotity,still responsible for dispensing the hardwares to valid
users. Moreover, before giving out hardware to a user, thigoaity must verify the user’s identity.

Resource Testing:Usually, each user owns only one identity, and each idemiityks on a single machine.
However, when Sybil attacks are launched, the Sybil idiestitvork on a single computer. When we give some
time or resource consuming tasks to a group of identitieshely can finish the work within a threshold, then
it is highly possible that they are honest users; otherwpset of them may be Sybil. In general, the goal of
resource testing [16]-[19] is to determine whether thectetkidentities have a reasonable amount of resources.
The tests, which are adopted for these kinds of approaanasde: (1) checking computing ability; (2) checking
storage ability, and (3) checking network bandwidth. Resideust be aware that resource testing is not an efficient

approach [10], but we still adopt them for deterring or diseming the attackers.

V. SyBIL DEFENSE INPHASE |l: SPECIFIC SYSTEM FEATURES-BASED ANTI-SYBIL TECHNIQUES

Since attackers have a limited number of real devices inlegsead hoc networks or sensor networks, a group
of Sybils actually shares one device, and therefore, Sylitsbe detected by letting honest users monitor signals’
features or the moving patterns of co-existing identiti€snsider that there are channel conflicts during the
communication of honest users, while Sybil identities mevave real data transmission. Paper [20] proposed a
Sybil detection method by monitoring the neighbors’ charsmnflict rate. They assume that there is a central
server that records the rate of each identity. Whenever armheaconflict happens, certain nodes should report
the event to the server. If some identities have an abnoyn@il rate, then the server will regard them as Sybil
identities. However, the readers should understand tlimntbethod will be inefficacious if the attackers are aware
of the defense mechanism, and will further purposely semticesignals for conflicts.

Considering the fact that Sybils usually appear togethegpep [16] adopts moving patterns for Sybil detections.
In order to increase the accuracy, they also introduce abapilision-based improvement, based on the observation
that the collision rates inside the Sybil groups are lowantthat of the normal groups. However, when the density
of honest users is not large enough, the accuracy of thisdf@ybil defense will not be guaranteed.

Sensor networks are static. By exploring this feature, p§p@] proposed an RSSI-based Scheme for Sybil
detection. They assumed that each node has the ability teureaignal strength. When receiving a message, the
receiver node will associate the received signal strengdiicator (RSSI) with the identity of the sender, which
is included in the message. For attackers, a Sybil node & t@bkend messages with different sender identities.
Consider that all sensors cannot move, and multiple Sybihtities are essentially sent from the same attacking

sensor. Later, if the messages of another sender posskesesne RSSI, then the receiver can treat these senders
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(a) Special link structure of Sybil nodes in social networks (b) General idea of SybilGuard.

Fig. 2. A social network-based Sybil defense scheme: Swhit@ Fig.(a) shows the unique social network’s structarettie distributed
systems under Sybil attacks. Based on the fast-mixing ifeatfi social networks and the unique structure (a short-&ypilGuard tries to

identify Sybil nodes through random walks, as shown by Bjg.(

as Sybil nodes. This approach essentially verifies whethesral identities share the same physical locations, and
other papers [7], [21], [22], also call this type of approggsbsition verification.’

Vehicular Ad Hoc Networks (VANETS) are also vulnerable tobwattacks. Paper [23] proposed a Sybil detection
protocol by using vehicles’ historical geographic infotioa. The core technique for this method is position
verification of mobile nodes: the method measures a possiikting area of a car, based on the car's and its

neighbors’ historical positions.

VI. SyBIL DEFENSE INPHASE Ill: SOCIAL NETWORK-BASED ANTI-SYBIL TECHNIQUES

In 2006 ACM SIGCOMM, paper [1] presented a novel idea on Sgkflense, which explores social networks
behind a given peer-to-peer systeithe authors want to detect Sybils based on a unique steictlithough
attackers can create plenty of Sybil identities, and furtrsablish several links among them; the total number of
links between the Sybil and the honest users is limited,esthe trust relationship on a social network is built
based on the trust relationship among real people. In otloedsy the corresponding social graph of an attacked
peer-to-peer system contains a small cut structure. Addijttin real online social networks, such as Facebook or
Twitter, a user may accept the friend request of a strangareder, by using interaction networks, which provides
a closeness rate based on historical interactions, or mgusime special Apps, which allow users to manually
enter some trust degree, we still can guarantee the limieaber of trusted relationships between the honest and
the Sybil users. After the publishing of this paper, manyagshers came back to the works of Sybil defense, and
even until now, there are still a lot of researchers workingthis idea. In this section, we will introduce several

typical anti-Sybil approaches based on the usage of soetalanks.

A. SybilGuard and SybilLimit

SybilGuard [1], and SybilLimit [24] are two famous Sybil @efses that use social networks. Since their core
techniques are similar, we will only introduce SybilGua8ybilGuard defines two terms: 1. a trusted path; 2. a

trusted node. Similarly, for breaking the symmetric infation constriction, SybilGuard also assumes that there
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(a) A honest path verification. (b) A Sybil path’s verification.

Fig. 3. The difference between the verification of honesh matd sybil path in SybilGuard. Fig.(a) shows the conditibat tthe verifier is
checking an honest node. Fig.(b) gives the case that a veasfighecking a Sybil node.

is a known trusted node. From this trusted node, therekamandom paths with a fixed length For the ease of
description, we call these paths verifiers. From a suspei¢,n8ybilGuard also sends random paths. If a path
encounters a verifier once, then we call the path ‘been vérdigce,’ as shown in Fig. 2(b). If a path has been
verified S times, then the path is a trusted path. When the majorityspatta suspect node are trusted paths, the
suspect node will be regarded as a trusted node; otherwésadtle is a Sybil. Essentially, these random walks
measure how well a suspected node and a verifier node areatedn&he reason for SybilGuard working well is
that the number of attack edges is limited in social netwaskshown in Fig. 2(a). A majority of verifiers and a
majority of the random paths from suspect nodes will remaitheir resident communities.

Now, consider the case that a verifier comes into a Sybil regidthough this verifier can encounter plenty
of Sybil initialized paths, most of the encountered Sybithgacannot get enough verifications, since only a very
limited number of verifiers falsely enter the Sybil regiom e other hand, if a Sybil path enters the honest region
through the attack edges, the path may intersect with vexifieny times, and therefore, become verified. However,
because the number of attack edges is a limited number, ti@itpaf Sybil initialized random paths cannot be
verified, as shown in Fig. 3(b). So, from the consideratiorbotinding the effects of Sybil attacks, SybilGuard

works well.

B. SumUp

SumUp [25] is an anti-Sybil technique designed for a disted voting system. Before we discuss the general
idea of SumUp, we first need to understand the meaning of &t eretdvork. Credit network [26] is a concept used
in the electronic commerce field, and it is designed for agdand measuring transitive trust among users. Note
that, in the field of electronic commercial, trust is usuglirwise. Whenever a node (identity) trusts another node,
a trust link will be established, together with certain trualue (credits). When a node gets services from others,
the node can use the associated credits to pay for the seriote that the credit network could also be used as
a payment infrastructure between nodes that do not direstignd credit to each other [27]. Two remote nodes,
which do not directly trust one another, can interact witbheather when there exists credit paths between them.

In some systems, such interactions will cost credits froenghths.
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Fig. 4. A credit network. Credit networks are directed andghted graphs, where the weights of edges indicate thetsrbégtween two
neighboring nodes. Interactions between two nodes arecaled transactions; each transaction costs some cratligstust path.

Formally, a credit network can be represented by a directapghg each directed edge is associated with a credit
value. In general, the credit is a dynamic value: each tidimse(one time of interaction) consumes a fixed amount
of credit. Note that if the credit of an edge becomes zera) the corresponding two nodes are not able to trade
any further. The interactions between two remote nodeslaoeadiowed (suppose nodewants to get service from
nodew), if and only if there is at least one path framto w, and each hop on the path can “pay” a required credit.
Moreover, such payment can also be split across multiplespéthey exist. Take Fig. 4 as an example [27]. When
node A gets service from a remote node we assume that the system requitepath credits in total. Nodel
adopts an equal splitting mechanism, as follows: it firstggagredits along the path — B — C — FE (note
that each hop costs credits on the path), and pays anotBeeredits along the patd — B — D — FE.

The general idea of SumUp is that, in credit networks, thieslipetween honest users and Sybil users are limited
(as shown in Fig. 5(a)), and the social networks in the honssts part are fast-mixing; most honest users can
participate in a voting, since there are plenty of trustethp&om the honest user to a sinker node. However, since
the number of credit links is limited, most Sybil nodes canmvide their false opinions to the system. Fig. 5(b)
is an example. Although the attacker, nade has three Sybil nodesy;, X5, and X3, the credit on the directed
link from Sybil to the honest is onl@. Hence, if we assume that each action takesedit, then no matter how
many Sybils the attacker could create, he can only giactions at most, which definitely will not change the

voting result.

C. Canal

Canal [27] also adopts a credit network, and we can regard #&maextension of SumUp. In a credit network,
each interaction between nodes always requires the systdirstt find at least one available credit path; clearly,
such a process has a high computational cost. Essentiadlypitocedure of searching such paths is equivalent
to the maximum flow problem. However, even the most efficidgbithms have the computation complexity
in O(V2log(E)). Instead of finding one or several “best” credit paths, Capgiroximates the paths: they first
partition the graph into several layers and regions, angtsdm landmark routing-based technique to find the paths.
Landmark routing [28] is an old technique: in order to find dhpbetween a pair of nodes, they first determine

the paths from the nodes to several pre-selected nodeskiatsen as landmark nodes). Since the paths between
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Fig. 5. A Sybil defense named SumUp, which can be used in erdistributed voting systems. Sumup essentially resttlisdamage of
Sybil attacks by using credit networks. Note that, althoaghattacker may create plenty of Sybils, the credits fromSiils to the honest

nodes are limited.

Level 0 landmark Level 1 landmark Level 2 landmark

Fig. 6. A extension of SumUp, named Canal system. The Cas&trsyadopts landmarks to partition the whole network ingeris. The trust
routing between nodes are conducted by the routing betwah landmarks.

landmarks are known, the resultant path will be a specidd,paltich goes through at least one landmark. In Canal,
as shown in Fig. 6, the author uses multiple-level landmafla credit needs to be transmitted to nearby nodes,
the path will go through the lower level landmark; when a dresdtransmitting to far way nodes, the shortest path
will pass a higher level landmark. However, since the lantdnadsorbs the paths which may cause the credits of

nearby paths to decrease quickly, the landmarks shouldrzonaly generated and periodically updated.

VII. SyBIL DEFENSE INPHASE IV: SocIAL COMMUNITY-BASED ANTI-SYBIL TECHNIQUES

Suppose that, in a peer-to-peer system, thererar®nest nodes and Sybil nodes. After the central authority
obtains all of the data, based on the features of these datmdy predicate whether a node is honest or not.
However, assume that the attackers somehow replicated tieon honest users’ data and built a network with
the same structure as the honest one, and then, sent thidateg data to the collector. If this is the case, no
matter how, the collector cannot discriminate a Sybil nadenfothers, since all of information is exactly the same.
For breaking such symmetric information, a Sybil defensgtesy must build on some asymmetric information.
Recall that social network-based Sybil defense algoritlaagys assume that the executants of the algorithms
regard themselves as the verifier (each user at least knawvi ik trustworthy, itself). The reason for having this

assumption is just to break the symmetric information.



16

2 :o G -
e ' o o0 ®
\ °
.o \\\.O.:... o ‘( [‘,
e L0 e -———— [ooo--~moo-~o ‘oomo]
e %0, o %% e o ® I i
VS i, g Ranking
PY . S © °
e ®-o
e
Trusted i -y

Node

Fig. 7. The essential approach of the existing Sybil defensesocial networks [3]. Most random walk-related Sybil etefe algorithms
essentially assign weights to other nodes based on théandis. By providing a threshold, the nodes with lower weigie regarded as Sybil.

In 2010, paper [3] analyzed several classic social netvwaded anti-Sybil algorithms, and found that those
algorithms essentially detected the community structdréamest users. Following this discovery, the research
community has begun to work on community-based Sybil defeqproaches. Note that the exact concepts used
by different papers may be different; some papers focus anhdhtraditional social networks, while some others
work on signed social networks; the traditional commusitie in a global view, however, it could also be in a
local view. Since the concept of community-based Sybil dedeis relatively new, we are not sure whether it will

become a mainstream, or if it is just an extension of socialokk-based solutions.

A. Pure Social Community-based Sybil Detection

In 2010 ACM SIGCOMM, another novel paper [3] provided a neantt for Sybil defense, which argues that the
Sybil nodes can be detected by their community structureseShe research on community detection has been
there for many years, and there are plenty of useful teclaesitjuat have been proposed, the paper [3] may open up
another option for anti-Sybil approaches. Since the papeeiy fresh and, currently, we do not know how many
followers there will be, we just say that the researches maynay not, enter into the third phase.

[3] exams all the famous Sybil defenses in social networksfards out that, indeed, these methods partition a
given network into communities; the pre-known honest nedesident community is treated as an honest community,
and all of the others’ communities are regarded as Sybil sio@sident regions. As shown in Fig. 7, the authors
found that all the existing Sybil defenses are essentialling systems, which assign a value to each node, based
on the distance towards pre-known honest nodes. Differginit 8efenses may use different thresholds to partition
the nodes. Hence, the authors proposed that the Sybil nodgdendetected through community detections.

The authors of [3] proposed a Sybil defense by using condaetbased community detection. They regard all of
the nodes in a social network as one of two types: the nodatergsn the honest community and nodes resident
in the Sybil community, as shown in Fig. 9. Through some satiohs on synthetic data, they argue that their

method can successfully detect Sybil nodes, and theire@esicommunity.
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Fig. 8. Future research directions [3]. In the experiment p&paper [3], the author shows that the accuracy of soa@alvork-based Sybil
defense is related with the structure of honest nodes. Wherhdonest nodes present multiple communities, most soetalonk-based Sybil
defense algorithms have high false positive results. Is ¢aph, the upper green nodes stand for honest nodes, atuMireorange nodes
represent Sybils. From left to right, the figure shows thecess that the structure of honest nodes changes from singienanity to two

communities.

B. SybilDefender

SybilDefender is another famous approach for anti-Sybidohsists of two steps: Sybil node detection and Sybil
community detection. For a suspect node, based on pre-kinmmast nodes’ statistical features, SybilDefender
determines whether the suspect node is a Sybil or not. Afitelirfg a Sybil node, based on the assumption that
Sybil nodes are more likely to connect with other Sybil ngdes defense will detect the Sybil community in
which the Sybil node resided. This defense is based on tweongssons: 1. the number of links between honest
users and Sybils are limited; 2. the size of the Sybil commyuisi smaller than that of the honest. The second
assumption is realistic, since typical social networkstamnmillions of users; for the attacker to register such a
large number of identities is impossible. From an honest, wge can send a fixed number of random walkers to
pass ari-length random path, assuming there arevalkers. At other nodes, we can compute the times that these
random walkers passed through this node, and call the tiheds visiting frequency.’ After that, we can calculate
the statistic distribution of the visiting frequency. Ifettrandom walks from a suspect node do not follow some
statistic distribution, then the suspect is a Sybil.

Fig. 10 illustrates the SybilDefender. In Fig. 10, suppds# tve have already known an honest node. From this
node, we send out random walks with a fixed length Since social network (in the honest region) is fast-mixing
which means that any pair of nodes can reach one another @{(lagn)-length random path, a circle region in
the honest community will be covered by the random walk. Hexebecause the size of the Sybil community
is smaller than that of the honest one, the majority of ranaatks in the Sybil region will be reflected, which
indicates that the distribution of the visiting frequenaoytihe Sybil region is different from the honest one. By this
way, a suspect node can be verified.

However, since we do not know the size of Sybil communitiesy o determine the length of random walk is
a problem. As shown in Fig. 11(a), if the length is longer thia@ radius of the honest community, or as shown

in Fig. 11(b), if the size of a Sybil community is greater tramandom walk’s length, the distribution of visiting
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Fig. 9. An honest community and a Sybil community. For thetlsgtic data, people usually creates two communities; letarnthem be the
honest community, and the other the Sybil community. Theeedgithin each community are randomly generated, and the degdrees follow

the power law distribution. By using a rewiring operationljraited number of attack edges are added between the contigauni
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Fig. 10. The idea of SybilDefender. One fundamental assiompif SybilDefender is that the size of Sybil community is chusmaller
than that of the honest community. When the length of randatkswvis appropriately set up, one can detect the existen&ylof nodes via

monitoring nodes’ visiting frequency.

frequency may not show the difference. In other words, dieigdy the nodes’ visiting frequency may fail if the
length of random walks is not set up appropriately. Hencéyefcases of Figs. 11(a) and (b) happens, we have to
try other random walk lengths.

Another challenge with the SybilDefender is that of how tdrast the correct visiting frequency distribution
from the honest region. Clearly, if we select an honest nodielwhas been fooled by an attacker, the computed
statistic feature of the honest node will definitely be difet from that of other honest nodes, which locate at the
core of an honest community. From this consideration, lgefmmputing the statistic feature of an honest node,
SybilDefender first finds sever& -hops neighbors. Considering that the links between hara$tSybil nodes are
very limited, a majority of thesd<-hops neighbors will also be honest. Moreover, since théakoetworks are
fast-mixing, the statistic features of the nodes can ctyreeflect that of the whole honest region.

Since SybilDefender does not know the size of the Sybil comityuit initializes several groups of random
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(a) The length of random walk is too long. (b) The length of random walk is too short.

Fig. 11. The appropriative length of random walk is relatedhe size of a Sybil community. The size of Sybil communityingortant to
know for setting the length of random walks. In Fig. (a), teedth of random walk is too long since the walks bounce badbo#t honest
region and Sybil region, while in Fig. (b), the length is tdweg because the random walks do not bounce back at bothneegio

walks with different lengths. Then, during the verificatioha suspect node, several random walks (with different
lengths) are conducted. If the distribution of the visitinggquency of the suspect node does not share the same
distribution as the honest one, this suspect node will bardsgl as a Sybil node; otherwise, SybilDefender will
regard the suspect as an honest node.

After finding a Sybil node, the SybilDefender can also detectesident Sybil community, based on the fact
that Sybil nodes are more likely to connect with other Sylnitles. The detection of a Sybil community can be
done by using loop-free random walks. Consider that whemdam walker passes the same node twice, it means
the random walkers reach the boundary of the Sybil commuSighilDefender renders a random walker dead if
it arrives at the same node twice. Similar to the process nfyieg a suspect node, SybilDefender also initializes
several random walks with different lengths. Again, thesorais that the size of the Sybil community is unavailable.
If the dead ratio of thd -length group of random walks is greater than a pre-definegttiold, then all the passed

nodes will be regarded as members of a Sybil community.

C. Signed Social Network-based Sybil Defense [29]

Most social network-based Sybil defenses adopt the assmmspthat the honest region is a fast-mixing network,
and that Sybil entities can only fool a limited humber of hetnentities. However, more and more evidence shows
that some real social networks are not fast-mixing, esfigoiehen only strong-trust relations are considered.
Moreover, the accuracy of all existing solutions is relatedhe number of attack edges that the adversary can
build. For addressing these two important problems, we gsepa local ranking system for estimating the trust
level between users in mobile social networks.

Unlike traditional Sybil defenses, our proposed schemetheee unique features. First, our system creates a
signed social network, which contains both trust and déstrelations. Second, consider that each mobile phone
only has a relatively small storage, and frequently acogsai remote server increases the amount of data flow,
which costs an extra fee. In our solution, instead of stothmg entire social graph, each user carries a limited

amount of information related to him. Last, but not leastr system weakens the impacts of attack edges by
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Fig. 12. System model. The system consists of two parts d@n&l (1) a central server, which stores signed social netsyo2) users’
smartphones, which detect the physical encounter of othersureports other users’ misbehavior to the server, amdatses the trust level of
the encounter.

removing several suspicious edges with high centrality.

In mobile social networks, our system consists of two paatsemote server, and several users, as shown in
Fig. 12. The server is responsible for two jobs: (1) storimgl @eriodically pruning the created signed network
graph; (2) assigningandomly sampledocial profiles to users for computing the trust-level betwesers. Note
that now we are using two networks: a mobile social networtt arcreated signed social network. The mobile
social network is the network formed by physical interagsi@f phone users, while the signed network is created
for Sybil detection. The positive edges on the created siggoeial network represent trusted social relationships,
which could be obtained from an online-social network. Thgative edges are generated based on users’ physical
interactions with each other. We assume that each honestiaseone mobile phone, which is associated with a
single real identity, while the attacker may hold more thae phone, and each phone runs multiple fake identities.
Each identity is required to periodically send a special sags to the server, and the server will return updated
social profiles; otherwise, the identity will be deletedrfrthe system. Unlike traditional social network-based Bybi
defense models, we assume that the honest region of a setiednk may not be fast-mixing. Exactly how many
honest communities may be formed is determined by the soe@borks being considered. For instance, if we
use a social network of political opinions, then the honestes may be gathered into two communities, e.g., the
Democratic and Republican parties. However, if we adopeBaak, the honest users may only be clustered into
one community.

Consider that multiple Sybils are sharing a single phond,that each Sybil identity needs to periodically report
some message in order to keep itself valid. For some honess,uthey may catch the instant that an attacker
switches her Sybil identities. If that is the case, then thedst users will report this misbehavior to our server, and
a distrust edge will be added from the reporter to the accudedeover, in mobile social networks, each identity
used by a mobile phone is associated with a physical humahsame users may remember the appearance of

others. When several honest users, who have been foolectsathe attacker, physically encounter the attacker at
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the same time, some of them may notice that the attacker g astifferent identity; the honest one could report
this event to our server. Besides these two options, any otighbor monitoring techniques may also be adopted
for the generation of negative edges.

The general procedure of our system is as follows. Each asally stores twaandomly sampledocial profiles:

a trust profile and a distrust profile, which are assigned agmibgically updated by the server. Whenever two
strangers encounter one another, and want to have someratiepeervice, each user’'s phone will exchange the
trust profile, and locally compute a trust and a distrust s¢ordetermine whether the other user is trustworthy. In
order to increase the accuracy, a special pruning algorishranning on the server.

When a new useV joins our system and provides his friend/foe lists, the eewill generate a trust-relation
profile and a distrust-relation profile. The generating pthwoe for the trust-relation profile is as follows: the serve
first sends outX random walkers, and each of them will conduct/dangth random walk fromi/. The walkers
only move along trust edges, and each path represents osiblgosay of trust propagation froi. As a result,
there will be K random paths beginning withi, and the visited node list will be sent 16 as a trust social profile.
Obviously, the profile is a random sampled% [-hop friendship. Consider that, in a mobile social netwearkiser
may have different physical contacting frequencies to Imsctly trusted friends. UseV is able to locally assign
different weights to the paths, according to the frequesncie

In order to cheaply impersonate real users, and to benefit f@rtain applications, Sybils always support each
other by adding trust edges among themsélvEkerefore, friends of a distrusted node are likely to bérgssful.
Moreover, the majority of random walks from a node will stiéiside in their own community. Based on these
observations, the server crealés distrust social profile by using the distrust relationsboth V' and his trusted
friends. Before creating the profile, a distrust seed setsitebe generated: along trust edges, the server computes
K short-length random paths froi, and nodes directly distrusted by the nodes on these patimstfe seed set.
Anotheri-length random walk will be produced from each seed, and s twill be used as the distrust social
profile of V. For instance, in Fig. 13, the solid green lineepresents one of the short-length random paths frgm
and there ar@ distrust edges (dashed green lines) initiating from theesaxhp. The distrust seed set consists3of
nodes (shadowed circles). From each of the seeds, the smmeéucts ari-length random walk, and the generated
random paths compodé’s distrust social profile; again, all random walkers are mg\walong trust edges.

When an honest uséf encounters another usér a trust-level will be computed based on the similarity adith
locally-stored profiles. They first exchange their trustigbprofiles, which are assigned by the server. Note that a
user’s identity (usually we adopt the user’s public key asdentity), his trust (or distrust) social profiles, and the
profile’s valid time are signed together by the server’s gtBvkey; the attacker cannot create or modify it. After
obtaining the trust profile of use$, userV will verify it first, since the attackers may steal othersbfiles. V'

generates a short random number and encrypts it by the pdfiof S; S needs to find out the random number,

1The conditions in which Sybil actively friends honest ussreut of the scope of this paper, since each Sybil normatisracts with honest
users, instead of cheaply creating a fake identity.
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Fig. 13. The generation of distrust social profiles. In orleobtain enough distrust relations, the server first ceeatshort length random
paths fromV'. Then, the server takes all the distrust relations of theesah the paths as a distrust seed set. In this figure, we usbdbewed
green circles to indicate the seeds. From each seed, ther sggmerates a random path along the trust edges, and thgse esmpose the
distrust social profile. Here, we use solid red lines to repné the random paths belonging os distrust profile.

encrypt the random number By’'s public key, and send it back .

After the process of mutual verification, nodle will locally compute a trust score and a distrust score Jor
For the ease of description, the pathslirs trust social profile are named asrifier paths and the paths in the
trust profile of S are calledsuspect pathsas shown by Fig. 14. If there is a common node on both a vepén
and a suspect path, then we say that the suspect path is denifee; when a suspect path has been verified more
thank, times, wherek; is a constant, we say that this suspect path is fully-verified Ver(V, S) be the number
of fully verified paths, and recall that there are a totalfofrandom paths in a trust social profile. In regarditp

the trust score oF is given by:
Ver(V,S)

Trust(V,S) = e

(1)

For the computation of distrust score, SNSD considers Hoghdistrust social profile oF and the trust social
profile of S, as shown by Fig. 15. We name the paths frbrs distrust social profiledistrust verifier pathsand
we useK’ to represent the size df’s distrust social profile. Similar to the computation ofdgriscore, when there
arek; distrust verifier paths having common nodes with a suspebt fais suspect path is a fully verified distrust
path. LetDis(V, S) be the total number of fully-verified distrust paths, and digrust score of5 in regard toV/

is given by: v.9)
Dis(V,
K/

The final label ofS, L(V, S), is determined by the difference of the two scores: Trust(V, S)—DisTru(V,S).

DisTru(V,S) = (2)

Let «, 8 be two thresholdsl > o > 5 > —1.

Trusted for z > «
L(V,S) = Neutral for a>z>p )
Distrusted for 5> 2
The accuracy of a majority of the existing Sybil defense eayst is bounded by the number of attack edges. In
order to improve the accuracy of our system, a special poguaigorithm called Sybil gateway-breaking (SGA) will
run on the remote server once in a while. Essentially, therdlgn prunes some suspicious edges of the signed

social network stored on the server. Consider that all ofgaths connecting honest and Sybil nodes must go
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Honest Region| _...---- Sybil Region

Suspect Path 3

Verifier Path

Fig. 14. The computation of trust score. When the honest dsencounters a strangéf, they first exchange their social profile. In this figure,
the solid blue lines indicat®’s trust social profile, and the dashed black lines repregentrust social profile of5. In V's view, he regards
himself as the verifier, and the paths in his trust profile ammed as the verifier paths. Moreovéf, regards the paths of as suspect paths.
V' locally checks the connectivity between his profile and ttieers’. A trust score will be determined based on the intgrsii connectivity.

In this figure, if V sets the verifier thresholk; = 2, then only suspect path will be fully verified. Therefore,Ver(V,S) =1, |K| = 3, and
Trust(V,S) =1/3.

Honest Region T T : ‘S-}Tl} Region

P R —-

Distrust

Fig. 15. The computation of distrust score. In this examtile, distrust social profile of’ contains3 distrust paths, which is represented
by solid blue lines.V will compute a distrust score by using his distrust profilel &fs trust profile. If we define a verified distrust path as
a suspect path that comes across at least half of the distedfier paths, then, in this figure, only suspect patfs verified. As a result,
Dis(V,S) =1, K’ =3 and DisTru(V,S) = 1/3.

through the attack edges, and that the number of attack ésltjgsted. So, the connectivity from an honest region
(a group of honest nodes) to a Sybil region is bounded by tlentify of attack edges. If each honest node is
able to locally check whether it is fooled by others basedhendonnectivity, and deletes some attack edges, the
accuracy ofany social network-based Sybil defense will surely be enhanced

The SGA consists of three sub-algorithms, as shown by Adgori2: (1) Suspicious Edge Selection Algorithm;
(2) Gateway Verification Algorithm (GVA); and (3) Attack EdgDetection Algorithm. Note that a gateway is
an edge that connects two communities together. SGA firstsehigh centrality nodes/edges as the suspicious
ones, and then verifies whether the associated edges aveagatd-or gateway edges, the algorithm further detects
whether they are Sybils. There are two options for finding shepicious edges. The first one is based on node
centrality, and the second one focuses on the edge centralit

First, the attacker may adopt a target attack by denselyngdattack edges to a target node and its neighbors;
although the target region and Sybils are well connectesl,mbarby regions of the target may observe a weak
connectivity from themselves to Sybils. Therefore, thevsecan first generate a local ma@)(of each node, and
then compute each node’s centrality @nThe gateway verification algorithm is only applied to thgesl which are

connected to the high centrality nodes. The criteria of redity we used is called the betweenness centrality [30],
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Algorithm 2 Sybil gateway-breaking algorithm (SGA)
1: Suspicious Edges Selection:

. Select edges with high local betweenness as suspicious.edge
. Use signed network-based Sybil defense algorithm (se&fjoro determine honest and Syhbil.
: Find shortest paths from the honest nodes to Sybil nodes.

2

3

4

5. Compute the visiting frequency of edges.

6: Take the edges with high visiting frequency as suspicious.

7: Gateway Verification:

8: Generate the initial neighbor sdty}, {v}, and{w}.

9: Compute the number of unique paths frqm} to {u}, and from{v} to {w}
10: for Predefined timeslo

11:  Respectively add\k disjoint neighbors intqu}, {v}, {w}.

12:  Compute the number of unique paths frdm} to {u}, and from{v} to {w}
13:  Compute the growing speeds of unique patfis, and Sy

14:  if |Syu — Svw| is greater than a threshotten

15: Ef, is a gateway;

16: £, is not a gateway.

17: Attack Edge Detection:

18: Find attack edges from detected gateways by distrust oektbreak them.

which is defined as the number of shortest paths passing amdd# the total number of shortest paths within a
given network.B(w) = Zu,vec,uiv Juv (W) /guv, Whereg,, is the total number of shortest indirect paths linking
nodesu andv, andg,,(w) is the number of those indirect paths that include nede

The second option is that, since all of the paths between d Sythe and an honest node must traverse the same
set of attack edges, the suspicious edges could be the edggesdpby the majority of random paths, which connect
the nodes with antagonistic relations (at least one diratiitrusted edge between the nodes). Therefore, the server
randomly selects several pairs of antagonistic nodestesgandom paths between each pair of antagonistic nodes,
and counts the visiting frequency of the transited edgesthieedges with high frequency, the gateway verification
algorithm will be adopted. The above procedure substéyntedamines the centrality of edges based on partial
nodes’ relationships.

Nodes within the same community share certain charadtexig1]. Whether two nodes are located at the same
community can be verified by their connectivity to other madatuitively, if one node’s connectivity to the third
node is much larger than that of the other node, it is veryiptesthat the two nodes reside at different communities.
We use the number of unique paths to measure the connedtuaityre.

Definition 1: Unique paths indicate a group of paths connecting twoilistnodes or regions without sharing
a common edge.

Since the amount of unique paths connecting two nodes isdsalihy the node-degrees of the ends, we compute

the unique paths from a region to another region. Assumetligaénds of a given edge are nodeandw. Let v
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be the third node for checking the connectivityP (u, w) represents the number of unique paths freno w.

Generally speaking, based on the community structure cfetieree nodes, there are three possible cases that
can be observed on connectivity:

1) Eitheru or w shares the same community as

2) Bothu andw are located in the same community @as

3) None of them come from’s community.

For the first case, assuming that nodeesides in the same community as UP(v,u) is much greater than
UP(v,w), since all the paths from to w must go through the gateways between communities, whicliraited.

As we mentioned above, we count the amount of unique patins fegion to region. If we gradually increase the
size of regions byAk, the number of unique paths froais region will stop growing much earlier than those from
u’s region. However, for the second and third cases, we willofiserve such differences. Based on this feature,
we design a gateway verification algorithm for checking Wwketa given edge is a gateway, or not.

GVA respectively calculates the growing speeds of uniguagp&omv to u, and fromwv to w. The procedure
is as follows. GVA gradually addAk disjoint neighbors into both regions, which respectivedpntainu andwv (or
w andwv), and examines the the amount of unique paths between tiense@ince we only care whether the edge
Ef, is a gateway or not, we only need to check the existence of iwigg speeds’ difference for a given node
V.

Whether a gateway is an attack edge is determined by theustistelationships between the communities. If
either one of them, or both of them, highly distrusts the nthés very likely that the gateway is an attack edge.
However, since the server does not know the exact communmitytares of the created social graph, the scheme of
counting the total amount of distrust links from one comntyitd another is infeasible. Consider that the majority
of random paths are trapped inside their own communitietpad of all of the nodes within a community, we
adopt random sampling to estimate the intensity of distrelsitions between communities.

Our attack edge detection algorithm works as follows. Fii@t each gateway, the server temporarily breaks it.
Then, from both its ends, the server sends butindom walkers along the trust edges, respectively. Thgthen
of the random walks is a small fixed number, and all of the eisihodes form a sampling set. The server also
creates another set, called a distrust sampling set, wininkists of nodes directly distrusted by the sampling set’s
members. The intersection of these two sets indicates thasity of distrust of the communities. The larger the
intersection set is, the more likely the gateway is an atedde. Finally, the server keeps the gateways with large

intersection sets being broken, and restores other gassway

D. Multiple Local Communities-based Sybil Defense [32]

Based on real data, paper [33] finds out that the probabifitgomtagion is tightly controlled by the number
of connected components (local communities) in an indiaigiicontact neighborhood, rather than by the actual
size of the neighborhood. Based on this observation, we wondhether there is a better way to measure the

trust values among nodes in a peer-to-peer system. Corthigietraditional social network-based Sybil defenses,
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such as SybilGuard, estimate the trust value by measurmgtiength of trust paths between any pair of nodes.
Since trust and contagion are closely related, instead ofpating the trust paths at the node-level, we should
measure the strength of the paths at the local community. [IBl@eover, in traditional social network-based Sybil
defense algorithms, each node must locally determine wehethaccept all others’ nodes. Therefore, the overall
computation cost of these algorithms is a problem, esggdmasome large systems. Consider that, in a social graph,
the neighbors of an honest user are still honest. Once simdars are clustered into groups, a Sybil detection
algorithm only needs to determine whether a group (clum®yisil. Here, we propose three social clump-based
Sybil defense algorithms, which can save plenty of compratosts, while maintaining the same level of accuracy
as the traditional solution.

In social networks, all friendships between honest useesestablished based on their physical interactions,
and therefore, the edges between users indicate creglibditveen them. In order to impersonate real users, the
attacker has to create social profiles for each sybil idgndihd manipulate the friendship edges among them.
Consider an extreme case in which the attacker copies wiocialsnetworks of real users, and replaces the real
identities with the Sybil ones. It is impossible to discniraie Sybil ids from the real ones by simply checking the
friendship structures. However, since friendship is a rmutalation and is built by physical interactions between
users, attackers cannot tamper with the friendships of ueats, and therefore, the total number of friendships
between Sybils and honest users is few; we gise represent the number. In most cases, g should be smaier th
the average number of honest users’ friends. Suppose thabwee previous knowledge about the valuegpfand
that the attacker can arbitrarily add thesattack edges on a social graph.

The strength of a friendship is measured by the number of comfniends. A pair of friends usually has several
common friendsN(u) is adopted to represent the friend set of naglend let| - | stand for the cardinality of a
given set. If the cardinality of the common friend set is &rsnough, then both users should be clustered into the
same clump.

Theorem1: When a pair of friendsy and v, shares more thap common friends |(V(u) (\ N (v)| > g), the
usersu andv must be both honest or both Sybil.

However, the requirement for having more thaeommon friends causes some honest nodes to have no clump
to participate. Intuitively, in our solution, the more nadinat are clustered into clumps, the more computational
costs that can be saved. Consider that an honest clump isgaaglibof the honest part. It should be cohesive
inside, and have low betweenness from the global view. Basethis observation, we propose a pair of rules for
finding the members of a clump. A collection of nodes can lgdalrm into a clump if and only if the majority of

their friends reside in the same clump, and the nearby n@emzimembers are still reachable within several hops
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Algorithm 3 Distributed Clump Generation Algorithm
1: Each nodeu sets up its label, = u

2. if |N(u)| > g then
3:  if 3v € N(u) and|N(v) N N(u)| > ¢ then
Set the labels of, andl,’s clumps asmin(l., l,)
if 3v € N(u) and|N(v) N N(u)| > «|N(u)| then
Let C = {w|ly = L}
if There are at leagt — |N(u) N C| + 1 unique paths betwee@@ and N (u) N'C then

Set the labels of, andl,’s clumps asmin(l., ()

© 0o N 2 g A

. else

10:  if Vo,w € N(u),ly = lw, lu # 1, then

11: Set the label ofx asl, = =

12: When the labels ofV(u) are stable, run Algorithn2

after removing the clump. In details, the members of corstdiclumpC must satisfy the following two rules:
Rule 1: if we C, then|N(u)NC| > a|N(u)
Rule 2: if w e C, then there existg — |[N(u)NC|+1
unique paths betweefi and N (u) N C,

whose length is less thah

whereC represents the complementary set(bfa, 3 are two parameters.
Definition 2: Unique paths indicate a group of paths connecting twoimki$tnodes or regions without sharing
a common edge.
We adopt rulel to guarantee that nodes are well connected inside each clRaip 2 is set up in order to keep
the bridge structure unchanged after grouping. Howeverthi® honest nodes with lower node degree, they cannot

be accepted by any clump by using Ruleand2. We provide an additional rule:
Rule 3: if |[N(u)| < g andVv € N(u),v € C, thenu € C

Note that Rules and2 work together, and they only apply on the nodes with a largieraegree. The additional
rule, Rule3, only suits nodes with a small friend set.

Algorithm 3 provides the procedure for clump generation.associate one variable, called label, with each node.
For the ease of description, we ukgto represent the label af. Initially, each node uses its own identity as the
label. Based on theorein when two nodesy andv, have more thag common friends, their resided clumps will
merge into one (by adjusting the labels of both clumps’ memli@o the least identity value). If the cardinality
of the common neighbor set between a nadand its neighbow satisfies Rulel, then Rule2 will be checked.
When the rule is satisfied, theris resided clump merges with's. For a node, whose node degree is less than

if all of its neighbors have the same label (Rdlg the node will join its neighbors’ clump.
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Algorithm 4 Clump Pruning Algorithm
1: Based on labels, find the membersu$ clump C

2. if |[N(u) N C| < a|N(u)| then
3:  Set the label ofu asl, = u
4:  Re-conduct Algorithml by replacing line5 with Rule 1

5. Clump C will update its label based on connectivity

Note that line5 of Algorithm 1 is not exactly the same as RuleSince each node only regards itself as a clump
in the very beginning, we need to put several similar nodgsttwer. Admittedly, Theorerh can find the similar
nodes, which definitely belong to the same clump. However,nhmber of nodes may not large enough. So, we
first adopt a modified Rulé as shown in lin& of the algorithm, and then, after the process of labelingpbrexs
stable, a special pruning algorithm will run on every nodecépt the nodes that satisfy Theoréjn as shown by
Algorithm 4. Essentially, the pruning algorithm checks Wies the current label of a node satisfies Ruldf not,
the node needs to redetermine its label by running Algorithagain.

In traditional random walk-based Sybil defense algorithnmsles need to launch a bunch of random walks since,
initially, they only trust themselves. Moreover, from sgtuconcerns, these random walks are usually associated
with secure signatures at each step. It is obvious that afstse algorithms are too high. Consider the fact that
most neighbors of an honest node are still honest. We profiwee clump-based random walk strategies. The
proposed random walks can increase the efficiency of altiegisandom walk-based Sybil defense algorithms.

The strategy of Clump-based Random Walks (CRW) is modifiethftraditional lazy random walk, where each
walker randomly picks up one neighbor of its current logatas the destination of next hop. By using CRW, a
random walker will transit from one clump to another, and stationary distribution of each node depends on both
the degree of the node and the stationary distribution akgdent clump. In order to keep the distribution of each
node unchanged, we add a self-loop at each clump.

Given a clumpe =< V,, E. >, ¢ C G, the transition probability(c, ¢') from clumpsc to ¢’ is defined as follows:

. o Qi
ple ) = sssee B
Diec deg(d)
More specifically, where = ¢/, p(c, c) = 2|E.|/ > ;.. deg(i).

Theorem2: In CRW, clump(C’s stationary distributionrc equals the summation of stationary distributions of

its members «;) in traditional random walkrc = >, m = >0 ';g?', where|E| is the total amount of
edges inG.

A majority of existing social network-based Sybil defensgodathms adopt short-length random walks. As was
introduced in the background section, there is a time gawed®t the first mixing time at the honest region and
the mixing time of the whole graph. Essentially, the Sybifethse algorithms explore the features related with
this time gap. The length of the short-length random walkallgus less than or equal to the first mixing of the

honest region. Since we have already known that the hongftnrés fast-mixing, and that the mixing-time of a
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fast-mixing network is proportional to the cover time of thetwork, we will discuss the variance of cover time
by using clumps.

Theorem3: The cover time on honest region will be reduced in clump-Basadom walks.

In a majority of random walk-based Sybil defense algorithtihhe walkers are always easily spread to intensively
connected nodes. Moreover, the similarity between so@dkn in social networks can be used for measuring the
strength of social links [34]. Based on the observationsclaam that by giving random walkers the ability to jump
among clumps with high similarity, the mixing time at honesgions can be reduced. In other words, by assigning
a higher probability of being visited, the speed of spregdinst scores to far away nodes can be accelerated.

For two given clumps:; andc;, which are not directly connected, the similarity betwekant is defined as

S(ci, cj).
B N(CZ) ﬂN(Cj)
e ) = Ny UN(e)

¢; of both¢; andc;, if the cardinality of the percentage of the common neighd®ds, | S(c;, ¢;)|, is greater than
a predefined thresholg, the random walkers are allowed to jump betwegiandc;. Essentially, CRWGJ shrinks
the length of jumping in intensively connected regions frthops to single hop.

Before conducting any random walks, every clumps in thergivetwork needs to locally measure the common
neighbor sets with direct neighbors, and compute simyladbres with theiR-hop neighboring clumps. If the result
score is greater than the threshold, a virtual edge will beeggied between the corresponding clumps. Suppose
that the graph consisting of all virtual edges is presentedvp. Clearly, E, C A? (A% = [a?j]), since a virtual
edge indicates that its two ends intensively connect witthezgther in2-hops. During the computing of CRWGJ,

a random walker will equally select an edge from its diredghbors or virtual edges to be the destination of the
next hop.

Based on the above strategy, the nodes with a large neigabarghat are intensively connected with surrounding
neighbors, will have higher stationary distribution vauén the case that attack edges are randomly attached to
honest nodes, CRWGJ can reduce the mixing time of the hoaeisaipd the false positive ratef Sybil detection
results.

Theorem4: The mixing time of CRWGJ at the honest region is less than ah&@RW.

However, considering target attacks, where the attackgr doaeverything she can to establish social relations
with a target node and its neighbors, CRWGJ may also resuthiénappearance of extra virtual edges between
honest and Sybil parts; this is the trade-off between speddaacuracy.

Consider the fact that the position of a random walker willitdependent from the initial location after several
steps of transition. Most traditional random walk-basetisyefense algorithms have two problems. First, although
the probability for random walkers transiting from honesgions to Sybil regions is small, once a walker enters

the Sybil regions, it is hard to get out. Second, when the rarroabrandom walkers is not large enough for a given

°False positive rate indicates the percentage that an haoest is regarded as Sybil.
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graph, a node with a high degree may get unfair trust resIitis. may be due to the node trusting some relatively
far away nodes instead of believing in some nearby nodeshndnie not visited by the random walkers.

Here, we propose a new strategy called Clump-based Randoliks Wath Limited Memory (CRWLM). In
CRWLM, each random walker keeps a previous locatiorl lisk Iy, 1, . .., ln—1 > with lengthh. During transition,
the walker can either move to one of itshop neighbors, or jump back to the nodes in the list. Noté iadom
walk with restart (RWR) is a special case of CRWLM, where tlze ®f memory isl, and each clump contains
only one member. Assume that a random walker locates at clunie transition probability is given by the

following:
W /
i+ h(Rchz) for ¢ € N(c),cd €l
1 for ¢ € N(c),d ¢1
W for c ¢ N(C),Cl el

R+Wezs
0 for otherwise

ple,d) =

whereW, = ZiEC,jec/ a;; andWez = Ziewgcaij.

The structure of traditional random walk’s trajectory isime| while CRWLM presents a dendriform structure.
Moreover, such a tree contains afength trunk, and several branches. One problem withttoadil RWR is that,
when a node sends ouk random walkersk >> deg(:), the walkers will repeatedly visits nearby nodes, which
means the walkers do not spread out well. When adopting CRW\adh walker first randomly creates a trunk, and
then expands several relatively short branches from itaGlein CRWLM, a random walker has a better chance
of visiting nearby nodes of the walk initiator, and possessere opportunities for returning to honest regions after

having gotten into a Sybil region.

VIIl. PREDICTION

Here, we provide several directions for further researdtst,Fsince there are certain types of friendships that
are private, what will happen if we combine the privacy andiBgttack problems together? Second, can we use
the community detection method to deter Sybil attacks inractiéd network? Third, the community detections are
always time-consuming; can we find some other light algoritihich can detect the community structures quickly
and accurately? Fourth, social networks contain multipfeethisions, how are we to combine this feature with
traditional approaches? Based on the number of potensehreh directions, we believe that the community-based

Sybil defenses may become the fourth phase of anti-SyHinigaes.

IX. CONCLUSION

Peer-to-peer systems play an ever-increasingly impopi@mtof our daily lives. However, most of the peer-to-peer
systems are vulnerable to Sybil attacks. In order to desigrerefficient and practical Sybil defenses, we write this
survey. This article is the first survey focusing on the depeients of Sybil defenses. We first give the definition
of Sybil attacks, and provide the classification of Sybihekls. Then, we give several realistic systems which are

vulnerable to Sybil attacks. After that, defense mechasiamd their corresponding strengths and weaknesses were
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discussed. Unlike other surveys, we describe these mesharccording to anti-Sybil approaches’ developing

stages. By the end of this survey, we provide some direcfionfuture research.
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