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Power of Voice on AR headsets
l Voice on AR headsets

¡ Primary way of communication
¡ Better user experience
¡ Integration with existing techniques

l Applications
l Voice-based interaction (no identity 

verification)
l Voice-based authentication (identity 

verification)

Applications



Threats of Voice
l Threats of voice

¡ Human voice is often exposed to the public
¡ Attackers can “steal” or even generate victim’s voice
¡ Security issue à replay attack

Goal: Protect the voice input for AR headsets
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Voice Liveness detection
l Limitation of existing works

¡ Existing solutions cannot work on AR headset due to special 
hardware locations

¡ Only for replay attack
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Voice Liveness detection
l Our work

¡ Solution: voice liveness detection using internal body voice
¡ Insight: voice propagates through both air and internal body
¡ Collect internal body voice using a contact microphone
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Attack model
l Obstruction attack for voice-based interaction

¡ Attacker nearby issues a malicious command (e.g. “delete all files”)

l Replay attack for voice-based authentication
¡ Attacker steals victim’s voice at the mouth with recorder and replays it to AR 

headset

“Delete all files”
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Spectrogram generation

Compute the spectra using Short-time Fourier transform
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Word Segmentation

l Recorded voice: the sequence of words and noise
l Segmenting each word:

¡ Using Hidden Markov Model-based techniques

Seven Six Two Four



Spectrum enhancement

l Spectrogram enhancement: further remove background 
noise
¡ Voice dominates the spectrogram
¡ Noise floor: 80% highest power in the spectrogram of each word



Liveness detection for a single word

l Liveness detection for AR headset
¡ Observation 1: the energy distributions in two spectrograms 𝑆BCDE(𝑀 ∗ 𝑁)

and 𝑆KLM(𝑀 ∗ 𝑁) are highly correlated
¡ If we find a best match, they should be perfectly overlapped
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Liveness detection for a single word

l Liveness detection for AR headset
¡ (𝑖, 𝑗) can be solved by finding the maximum in the correlation matrix
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Liveness detection for a single word

l Observation 2: 
¡ two spectrograms 𝑆BCDE(𝑀 ∗ 𝑁) and 𝑆KLM(𝑀 ∗ 𝑁) have much shared 

information (non-zero entries)

l Two metrics:
l Shared information: non-zero entries in both spectrograms
¡ 𝑃Z: the proportion of the shared information that is in 𝑆BCDE
¡ 𝑃< : the proportion of the shared information that is in 𝑆KLM

𝑃Z =
𝑆𝑖𝑧𝑒𝑜𝑓( 𝑖, 𝑗 │𝑆Z 𝑖, 𝑗 > 0 & 𝑆< 𝑖, 𝑗 > 0 )

𝑆𝑖𝑧𝑒𝑜𝑓({(𝑖, 𝑗)|𝑆Z 𝑖, 𝑗 > 0})



Liveness detection for a single word

l Fitting a line using normal user’s training data: y = ax + b
l If a point is away from the line, it is considered from the 

attacker
|𝑎𝑃Z + 𝑏𝑃< + 𝑐|

𝑎< + 𝑏<
< 𝛾

Threshold:
95% largest
distance of normal user’s 
training data



Liveness detection for a sentence

l Combining the classification results from multiple words
¡ Weighted majority Voting
¡ Player: each word
¡ Weight: the smaller value of 𝑃Z and 𝑃<
¡ Decision threshold: 𝑐 ∗ 𝑛

The number of words in the sentence

User 0.6 Attacker 0.42 User 0.5 User 0.7

User: 1.8 > 0.2 *4 Attacker: 0.42

The voice is from the normal user

Set to 0.2 by default



Evaluation
l Body voice: Contact microphone via Raspberry Pi 3 b+ 

board
l Air voice: A smartphone is used to record and replay 

mouth voices
l 8 volunteers (5 males and 3 females)



Evaluation
l Overall performance

¡ Average authentication accuracy: 92.3%
¡ Average true rejection rate of random attack: 99.2%
¡ Average true rejection rate of mimicry attack: 98%



Evaluation
l Impact of training set size

20 words are enough to ensure good performance



Evaluation
l Impact of voting threshold

The voting threshold should be between 0.2 and 0.3



Evaluation
l Impact of number of words in a sentence

Our system can work for most voice commands



Evaluation
l Impact of background noise

Our system is robust to background noise in daily life



Conclusion
l We show that the internal body voice can be used to 

secure the voice input for AR headsets

l We develop a prototype and conduct comprehensive 
evaluations. 

l Experimental results show that our system can 
successfully defend against obstruction and replay 
attacks with an accuracy of at least 98%.
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