
SECURITY AND COMMUNICATION NETWORKS

Security Comm. Networks 2015; 00:1–18

DOI: 10.1002/sec

RESEARCH ARTICLE

Understanding a Prospective Approach to Designing
Malicious Social Bots
Yukun He1,2, Guangyan Zhang3, Jie Wu4 and QiangLi1,2,∗

1 College of Computer Science and Technology,Jilin University, Changchun, 130012, China.
2 Knowledge Engineer of Ministry of Education, Jilin University, Changchun, 130012, China.
3 Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China.
4 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA.

ABSTRACT

The security implications of social bots are evident in consideration of the fact that data sharing and propagation

functionality are well integrated with social media sites. Existing social bots primarily use RSS (Really Simple

Syndication) and OSN (Online Social Network) APIs to communicate with OSN servers. Researchers have profiled their

behaviors well, and have proposed various mechanisms to defend against them. We predict that a web test automation

rootkit (WTAR) is a prospective approach for designing malicious social bots. In this paper, we first present the principles

of designing WTAR-based social bots. Second, we implement three WTAR-based bot prototypes on Facebook, Twitter,

and Weibo. Third, we validate this new threat by analyzing behaviors of the prototypes in a lab environment and on the

Internet, and analyzing reports from widely-used antivirus software. Our analyses show that WTAR-based social bots have

the following features: (1) they do not connect to OSN directly, and therefore, produce few network flows; (2) they can log

in to OSNs easily and perform a variety of social activities; (3) they can mimic the behaviors of a human user on an OSN.

Finally, we propose several possible mechanisms in order to defend against WTAR-based social bots. Copyright c⃝ 2015

John Wiley & Sons, Ltd.

KEYWORDS

social bot; online social network; social network security; web test automation

∗Correspondence

Qiang Li, College of Computer Science and Technology, Jilin University, Changchun, China.

E-mail: li qiang@jlu.edu.cn

Received . . .

1. INTRODUCTION

Online social networks (OSNs) such as Facebook, Twitter,

and Weibo are widely used on the Internet. They are

changing the way people communicate and interact with

the Internet [1]. Due to the popularity of OSNs, attackers

have begun designing malicious software that targets

OSNs. These new social botnet programs have become

serious security threats to social networks in recent years.

A popular new attack toolkit called RIG is affecting

accounts on Twitter, Facebook, and other social media

websites. According to Cisco threat researchers1, the RIG

Exploit Kit spreads dangerous malware by infiltrating

advertising networks and embedding malicious links in ads

1http://blogs.cisco.com/security/
rig-exploit-kit-strikes-oil/, 12.12.2015.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. 1

Prepared using secauth.cls [Version: 2010/06/28 v2.00]



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

that redirect users to ransom ware, which can lead to the

locking-up or deletion of victims’ files, or other threats.

In an OSN, a user can control one or many accounts

to post messages, connect with people, read status updates

from friends, and so on. With new social botnets, an OSN

is used as a command and control (C&C) channel. A social

bot is an automated software running in the background

on a user’s computer [2]. It controls an account on a

particular OSN, and communicates with the botmaster

through posting and receiving messages from the OSN.

A social botnet is composed of an army of social bots

and can have significant impact on the average user and

the OSN itself. Several social bots have already been

found on popular OSNs in recent years. Koobface[3],

which is considered the most successful social bot, began

in 2008 and targets Facebook and Myspace; it remains

active today. Another social bot, Nazbot[4], uses Really

Simple Syndication (RSS) to receive encrypted tweets

from the botmaster account on Twitter. Nazbot decrypts

these tweets, which are parsed as bot commands.

In order to understand the behavior of social bots

and thus detect them, researchers also propose several

social bot prototypes. Kartaltepe et al. designed Naz+

[4], which is based on Nazbot. Naz+ checks RSS feeds

on CompactSocial, which is a microblogging service

that emulates the constraints of Twitter for experimental

purposes. Nagaraja et al. designed a covert social network

botnet called Stegobot [5] that uses image steganography

to hide the presence of communications when users share

images. Verkamp et al. designed an undiscoverable botnet

called Facebot [6], and Boshmaf et al. designed a social

bot for Facebook, called Yazanbot [2]. In addition, Singh

designed a social bot for Twitter, called Twitterbot [7].

Most early social bots used RSS or an open application

program interface (API) to connect to OSNs. Nazbot,

Twebot, and Naz+ use RSS to receive encrypted

commands from master accounts on Twitter. Yazanbot

uses a Facebook open API to act on Facebook. Twitterbot

uses a Twitter open API to receive commands from the

master account. However, the number of RSS services

has decreased in recent years, and number of open APIs

employed by various OSNs is limited. Facebook removed

RSS support on November 22, 2011. RSS feeds from

Twitter are no longer supported as of March 2013. Google

quietly shut down the YouTube subscription RSS feed on

May 14, 2014. When using an API for OSNs, developers

must register basic profiles. Some OSNs, such as the

Chinese Weibo platform require real name authentication

for full access to the service or else actions will be limited.

In addition, the number of APIs that can be called is

limited. For example, when using the Twitter REST API,

an OAuth-enabled application can only initiate 350 GET-

based requests per hour per access token. The API of

Facebook and Weibo are also limited to various degrees.

Because of the recent limitations on RSS services and

open APIs, attackers may need to find new solutions for

communication between social bots and OSNs.

In this paper, we draw attention to a technique that

attackers can use to design a social bot, i.e., web test

automation (WTA). WTA is widely used to automate web

application testing. Using the WTA technique, programs

can mimic a normal user to conduct various actions on a

website, such as visiting a certain URL, clicking a button,

and modifying content. Here we assume the perspective

of an OSN attacker who is trying to run a social bot on

a benign user host while evading detection. By taking an

attacking perspective, we can analyze a new rootkit that

attackers may use for building social bots. We first discuss

the key challenges in designing a successful social bot.

Second, we present the principles of designing WTAR-

based social bots. Third, we implement three WTAR-

based bot prototypes on Facebook, Twitter, and Weibo.

Fourth, we validate this new threat from three perspectives:

analyzing prototypes in a lab environment, running the

prototypes on the Internet, and analyzing reports from

widely used antivirus software. Thus, we hope to provide

experience for other security researchers to facilitate better

understanding of the depth and scope of the threats posed

by this new breed of social bot.

The main contributions of our work are as follows.

(1) We evaluate a latent threat, i.e., a new breed of social

bots based on WTARs. Earlier social bots used RSS or

open APIs to connect tp OSN platforms. We propose the

use of the WTA technique to design a social botnet for the

first time. The WTAR-based process produces few network

flows and does not require OSN authentication . A WTAR

mimics a normal user acting in an OSN as if it were a

human being.

(2) We discuss the challenges involved in designing

a malicious social bot and propose three different C&C

structures for social botnets. In addition, we design a novel

2 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

command hiding method for social bots that can confuse

normal users and hide the real C&C channel.

(3) We implement three WTAR-based prototypes,

i.e.,Fbbot on Facebook, Twbot on Twitter, and Wbbot

on Weibo. We analyze the prototypes running in a lab

environment and in wide-area networks. In addition, we

analyze reports from common antivirus software. We also

compare the prototypes to early social bots.

(4) We have shared our WTAR-based prototypes and

their source files on Dropboxs 2. for other researchers to

better understand social bots. In our experiments, we use

existing tools to implement the prototypes for convenience

and efficiency. However, the proposed approach is not

limited to these tools and can be implemented with other

methods, such as the WinCom.dll interface.

The remainder of this paper is organized as follows.

Section 2 presents related work. Section 3 discusses the

key challenges in designing a successful social bot. Section

4 describes the WTAR design principle, including WTAR

enabling factors, an overview of WTAR, C&C structure,

C&C procedures, command encryption, host activities, and

social network activities. Section 5 gives a WTAR case

study. Section 6 validates the WTAR theory from three

perspectives, i.e., analysis in a lab environment, running on

real social networks, and detection by antivirus software.

Section 7 compares WTAR-based social bots to early

social bots, describes a possible defense mechanism, and

discusses limitations of the mechanism. Conclusions are

given in Section 8.

2. RELATED WORK

Our work on WTA rootkits (WTARs) is related to four

areas of prior research: WTA, malware, traditional botnets,

and social bots.

Novel approaches to WTA are continuously proposed

by researchers. Dallmeier et al. [8] present WebMate,

a tool for automatically generating test cases for web

applications. WebMate can automatically explore the

functionality of a web application across different browsers

and operation systems. WebMate can handle full Web 2.0

functionality and explore complex websites like Facebook.

2https://www.dropbox.com/sh/w95r3ivn5khu9xa/
AABh62K4oWbMBdFW3A_QAbOaa,12.12.2015.

Thummalapenta, et al. [9] provide insights into problems

in test automation and cross-browser testing. They also

developed a tool, called ATA, for test automation. ATA can

patch scripts automatically for certain types of applications

or environment changes. Google has applied a patent for

automatically testing a web application running inside a

web browser [10].

Design of malware. Researchers have proposed various

malware types to help better understand and defend against

the threat posed by new malware. King et al. [11] evaluate

a new type of malicious software called virtual machine

based rootkit (VMBR). They implement two proof-of-

concept VMBRs on Linux and Windows. The VMBR

installs a virtual machine monitor underneath the target

operating system. VMBRs are hard to detect and remove

because their state cannot be accessed by software running

in the target system. Rieback et al. [12] explore the concept

of malware for Radio Frequency Identification (RFID)

systems. They present RFID malware design principles

and examples with the aim to encourage RFID designers

to adopt safe coding practices. Embleton et al. [13] draw

attention to the system management mode based rootkit

(SMBR). System management mode (SMM) is an obscure

mode on Intel processors used for low-level hardware

control. Based on the proof-of-concept SMBR, Embleton

et al. implement a chipset-level keylogger and a network

backdoor. The SMBR hides its memory footprint and

requires no changes to the target operation system. The

authors aim to better understand the threat posed by

malware.

Design of traditional bot. To be well prepared for

future attacks, it is not enough to study how to detect and

defend against the botnets that have appeared. Researchers

have to study advanced botnets that may be developed

for future attacks. Wang et al. [14] present the design

of an advanced hybrid peer-to-peer (P2P) botnet. The

hybrid P2P botnet requires no bootstrap procedure and

communicates via the peer list in each bot. Only bots

with a static global IP address which are accessible from

the Internet are in the peer lists. Compared with previous

P2P botnets, the hybrid botnet is harder to shut down,

monitor, and hijack, according to Wang et al. Hua et al.

[15] present two special C&C mechanisms for mobile

botnets. They design an SMS-based flooding algorithm

to propagate commands. They also utilize Bluetooth to

transmit bot commands when hijacked phones encounter

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 3
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

each other. Zeng et al. [16] designed a P2P-structured

mobile botnet based on SMS messages. To avoid detection

of the botmaster, the botnet has no central servers used

to command dissemination. Instead, it uses P2P topology,

which allows the botmaster to publish and the bots to

search commands in a P2P fashion.

Design of social bot. The rapid growth of OSNs

has attracted much attention from both attackers and

defenders. To defend against threats posed by social bots,

researchers have proposed several social bots that may

appear in the future. Jin et al. [17] present mutual friend-

based attacks on OSNs. They find that by using mutual

friend queries, an attacker can launch privacy attacks

that identify friends and distant neighbors of targeted

users. They analyze various attack structures that can be

used to build attack strategies. Boshmaf et al. [2] design

a traditional web-based botnet and build a prototype,

dubbed Yazanbot. The social bot can launch two types of

operations: social interaction operations, which are used to

read and write content on Facebook, and social structure

operations, which are used to alter the social graph, such

as by connecting or disconnecting two accounts. It mainly

uses two techniques: the OSN API and HTTP request

templates. Nagaraja et al. [5] propose a new-generation

social bot called Stegobot. It spreads via social malware

and steals information from its victims. It uses image

steganography to hide the presence of communications

between bots and the botmaster. Boshmaf et al. [18]

give an overview of key challenges in defending against

social bots. The challenges relate to web automation,

online-offline identity binding, and usable security. In this

paper, we draw more attention to the challenges of web

automation, utilizing the WTA technique to solve the

problems of web automation in social bots.

3. KEY CHALLENGES

We present the key challenges faced by attackers in

designing successful malicious social bots. The problem

of detecting malicious social bots is an arms race and will

keep both defenders and attackers busy, depending on their

available resources [2]. Our objective is not to solve the

severity of the problem, as existing security defenses have

proposed many approaches [29] [30] [31] to that end .

Instead, we aim to determine the enabling factors that make

malicious social bots feasible and the difficulties such

bots are required to overcome. Next, we discuss popular

detection approaches that social bots have to evade.

If a social botnet is eager for success, it must pay

attention to evading existing detection approaches. Based

on detection location, existing social bot detection schemes

are mainly divided into two categories: detection by social

network vendors and local antivirus, i.e., server-side and

client-side. According to the detection technique, existing

social bot detection schemes are mainly divided into

three categories: machine-learning based, abnormal based,

and graph based. The strengths and weaknesses of these

detection approaches are discussed below.

3.1. Detection by social network vendors

Social network vendors deploy an immune system to detect

social bots on the OSN server. These approaches usually

collect users’ actions from the OSN including statuses,

friend list, and comments. Then, they select and calculate

several appropriate features from the collected dataset.

Finally, they classify the user account, links, or comments

into benign or malicious. For example, the FIS (Facebook

Immune System) [26], an adversarial learning system,

performs real-time checks and classification on every read

and write action on Facebook’s database. FIS works by

employing intelligent software to detect suspicious links

and patterns of behavior on Facebook. It is thus not

surprising that such an adversarial learning system is

rather effective at identifying and blocking spam. Cao

Q. et al. [27] design and implement a malicious account

detection system called SynchroTrap. The system clusters

user accounts according to the similarity of their actions

and uncovers large groups of malicious accounts. Boshmaf

Y. et al. [28] design Integro, a scalable defense system that

helps OSNs detect fake accounts using a meaningful a user

ranking scheme. Social bots, in contrast, are much more

deceptive than spam because they are designed to appear

normal [29]. To evade detection by the immune system,

a social bot can perform actions on the target OSN as a

normal user and encrypt the context before posting it. The

largest weakness of the immune system is that it can only

eliminate malicious data (user accounts, contexts, images,

etc.) on the OSN. The root cause of these malicious data is

the social bot malware, and it remains alive on the user end

host. Thus, the immune system deployed by social network

4 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

vendors cannot eliminate social bot malware hidden on the

user end host.

3.2. Detection by local antivirus

Compared with detection by social network vendors,

detection by local antivirus can provide greater insight into

social bots, and more importantly, they can completely

eliminate social bot malware if they detect it successfully

on the end host. Pieter et al. proposed an approach

for detecting social botnet communication by monitoring

user activity [30]. They assumed that that communication

with social media is suspicious if it does originate

from human activity. Thus, they measured the causal

relationship between network traffic and human activity

to detect social bots. Zi Chu et al. [31] presented a

new detection approach that used behavioral biometrics,

primarily mouse and keystroke dynamics, to distinguish

between humans and bots. The detection system has

two main components: a webpage logger and a server-

side classifier. The logger records mouse-movement and

keystroke data, and the classifier classifies the operations

as human or bot. However, these detection approaches

have low detection accuracy and heavy overheads, and are

unable to face new variants.

3.3. Machine-learning based detection

Various machine learning approaches such as support

vector machine, decision tree, random forest, naive Bayes,

and clustering have been proposed for detecting malicious

activities on OSNs. Gianluca et al. [32] created a

large and diverse set of honey-profiles on three large

social networking sites and logged the kind of contacts

and messages they received. Then, they developed six

features and used machine learning techniques to classify

spammers and legitimate users. Zhi Yang et al. [33]

attempted to detect, characterize, and understand Sybil

account activity in Renren, an OSN. They applied a

support vector machine classifier to the ground truth

dataset, identified several behavioral attributes unique

to Sybils, and leveraged these attributed to build a

measurement-based, real-time Sybil detector. When social

bots develop into a large-scale network, machine-learning

based detection can hinder the expansion of the social bot

network. Machine learningCbased approaches rely heavily

on training datasets and selected features.

3.4. Abnormal based detection

A number of recently proposed techniques aim to identify

bots automatically in OSNs based on their abnormal

behavior. For example, V. Natarajan et al. [5] presented an

image entropyCbased anomaly detection scheme to detect

StegoBot. StegoBot discovers social bot communication

through social networks. It hides information in images.

The goal of StegoBot is to spread social malware and steal

information from target machines. They found that entropy

plays a central role in significant changes in images

owing to the embedding of secret messages. Christian

J. et al. [34] presented CoCoSpot, a novel approach for

detecting botnet C&C activity based on traffic analysis.

Their approach can deal with obfuscated and encrypted

C&C protocols, and can fingerprint and recognize botnet

C&C. It is not surprising that such an adversarial system

is effective at identifying and blocking known social bots.

These approaches may need to know their design principle

or some features of their fingerprints. However, if new

variants display less abnormal behavior, they may evade

detection by such adversarial systems.

3.5. Graph-based detection

Graph theoretic techniques are expected to be less effective

and more expensive at identifying social bots. Community

detection algorithms [37] [38] are deemed to fail because

there will be far more fake relationships than social bots

[2]. Guanhua Yan et al. [35] explored graphic and theoretic

techniques that help to effectively monitor the activities

of potential botnets in large OSNs. Their work is based

on a Twitter dataset of more than 40 million users and

1.4 billion follower relationships. VoteTrust [36] detects

false social network accounts using trust-based polling

and a voting graph model. It comprises two graphic

models: an invitation diagram (directed graphic) and an

acceptance graphic (a directed, weighted graphic). The

intuition behind this is that each social bot is expected

to gradually, but independently, integrate into the online

community it targets, resembling the scenario when a new

user joins an OSN.

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 5
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

4. DESIGN PRINCIPLE

A successful WTAR botnet must build a robust C&C

channel for when WTARs communicate with the target

OSNs. Social bots can use the WTA technique to build the

C&C channel. When WTAR connects to the target OSN by

automatically controlling the browser, the browser window

should be hidden in the background. Thus, the user of the

victim computer is not aware that the computer has been

infected.

In this section, we discuss the design of WTAR. Section

4.1 presents the enabling factors for WTAR. Section 4.2

give an overview of WTAR botnet and describes that

how different components of WTAR work cooperatively.

Section 4.3 discusses how to build the C&C structure for

social botnet. Section 4.4 describes the C&C procedure for

WTAR. Section 4.5 presents the algorithm that WTAR uses

to encrypt the commands between bots and the botmaster.

Section 4.6 explains the host activities that WTAR may

launch. Section 4.7 explains the social network activities

that WTAR may launch.

4.1. Enabling factors for WTAR

This section gives an overview of web test automation

(WTA), describes a case study of WTA, and introduces

three popular WTA tools.

Overview of WTA. In the development of software,

software testing is an important step to ensure the quality

of the final release of the product. To test web applications,

many developers turn to a mechanism for automatic

testing so that the software quality assurance engineer

does not have to manually test a website. Using the WTA

technique, engineers can develop software for automating

browsers and testing websites. The WTA-based software

can automate the filling in of forms, the reading of data

from web pages, the clicking of elements on web pages,

and the submitting of data to the web server. A case study

of WTA and three popular WTA tools are as follows.

A case study for WTA. We introduce software based

on WTA that is used for panic-buying train tickets. It

is well known that buying train tickets in China is a

great challenge, especially during festivals or holidays. The

website http://www.12306.cn is the only official online

ticket sales outlet for China’s Railway Ministry. Even if

you sit in front of the computer waiting to snatch up train

tickets as they become available, during the Spring Festival

season, you face a likelihood of tickets quickly selling

out. To solve this kind of dilemma, programmers have

developed various plug-ins for different browsers based on

the WTA technique. Browsers that have installed a plug-

in programmed to snatch train tickets can monitor the

ticketing web site and automatically buy the train tickets.

If the booking is successful, the browser will notify you by

playing music or popping up an alert window. Thus, people

do not need to manually buy train tickets.

Three popular WTA tools. PAMIE, which is short

for Python Automated Module for Internet Explorer

(http://pamie.sourceforge.net/), is used to automate web-

site testing within the IE browser by using scripting lan-

guage. PAMIE manipulates IE’s document object model

(DOM) via the component object model (COM). Quality

assurance engineers and developers can use PAMIE to read

data, click elements, and fill in forms in IE. It only supports

the Python programming language and IE running on Win-

dows. Selenium (https://code.google.com/p/selenium/) is

a set of software tools with different approaches that

support test automation. The tool suite includes Selenium

IDE, Selenium WebDriver, Selenium Remote Control, and

Selenium Server. Different parts can be used to solve

different test automation problems. The most important

feature of Selenium is the support for multiple browsers

and different operating systems. Watir (Web Application

Tsting in Ruby,http://watir.com/) is an open source family

of Ruby libraries for automating web browsers. It can

help developers to write test cases that are easy to read

and maintain. Watir can browse the website the same

way as normal users do: read page content, fill in forms,

click links, and press buttons on the web page. It can be

used in multiple browsers on different operating systems.

While Watir can only be used in IE on Windows, the

Watir WebDriver module supports most browsers. A brief

comparison of the three WTA tools is in Table I.

The WTA technique is widely used in testing web

applications. What if someone were to use WTA to design

social bots? Instead of using RSS or API from OSNs,

social bots could use the WTA technique to automatically

connect to the OSN server. A social bot based on WTA,

which we call WTAR, can launch various social network

activities on target OSNs.

The low-level implementation of WTA may also be

socket API. The WTA technique may be a collection

of socket APIs, control flows, and encryption methods.

6 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

Table I. Comparison of PAMIE, Selenium, and Watir

Name Supported browsers Supported OSs Key features Supported languages

PAMIE IE Windows simple, flexible Python

Selenium
Chrome, IE, Firefox, Safari,
Opera, HtmlUnit, phantomjs

Windows, Linux, Mac multifunctional
Java, JavaScript, PHP,
Python, Ruby, Perl, C#

Watir Chrome, Firefox, IE, Opera Windows, Linux, Mac simple, flexible Ruby

Compared with normal sockets, WTA can help the

developer access Web sites automatically and conduct

various actions more conveniently and effectively.

4.2. Overview of WTAR botnet

Figure 1. Overview of WTAR botnet

In the process of designing the WTAR botnet, we

assume that the WTAR can spread easily. The benign hosts

get infected with WTAR in the same way that they get

infected with malware. Instead of focusing on the spread

of WTAR, we examine the relationships between benign

hosts and the WTAR botnet at runtime.

Hosts infected with WTAR become controlled by their

botmaster via the WTA technique on OSNs. Figure 1

shows the overview of the WTAR botnet. M1 are the

hosts that are infected with WTAR. M2 are servers on the

Internet used to store profiles that are stolen by WTAR.

Examples of such servers include a normal mail server

like Gmail, an http-based web server, or a cloud disk like

Dropbox. M3 are the botmasters. The botmaster can use

several accounts on the OSNs to send commands to the

WTARs. They have a key master account from whence

the WTARs get their commands under normal conditions.

If the key master account is detected and blocked by the

OSN, WTARs can connect to the standby master accounts.

Even when the master account has been detected, the

WTAR botnet remains. Hence, it is not easy to completely

remove the whole WTAR botnet.

A typical procedure of the WTAR botnet at work is

as follows. A botmaster from M3 uses the account from

OSNs to public commands on the OSNs. The botmaster

can connect to OSNs via the OSN website, OSN desktop

applications, and even apps on the mobile phone. Then

the WTARs in M1 use the WTA technique to connect

to the target OSNs via victim accounts. WTARs receive

the latest commands from the OSNs and conduct pre-

defined activities. The pre-defined commands are mainly

divided into two aspects, host activities and social network

activities, which will be presented in Section 4.4 and 4.5.

If the master commands need a feedback dataset, WTARs

can upload the desired data to a server in M2. These servers

are set up beforehand by the botmaster, and can be changed

at any time.

4.3. C&C structure

To extend the social botnet for large-scale infiltration of

OSNs, we introduce three different structures, as shown

in Figure 2. The letter M represents the bot master, B

represents a compromised social bot, and MB means that

the node acts as both a social bot and the bot master.

The first structure, shown in Figure 2(a), is the simplest.

It seems similar to an IRC botnet with traditional bot

design. In such a structure, all social bots communicate

with one bot master. The bot master account on the target

OSN is the key factor in social botnet defense. If one social

bot has been detected and its communication decrypted,

the bot master may be found out and blocked by the OSN

vendors. Without the bot master, the other social bots can

be destroyed automatically.

Another structure is shown in Figure 2(b). In such a

structure, both social bots and the bot master communicate

with the target OSN only. M can be any legitimate account

on target OSN. They simply publish encrypted commands

on the OSN as a normal user. Then, social bots search bot

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 7
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

commands from the target OSN. The social bot account

does not need to add the bot master account as friend or

visit the home page of the bot master account. The bot

master account cannot be found just by one social bot

acting alone. If several social bots are detected, the social

botnet can still work well. Even in the event that the bot

master account is detected and blocked by the OSN vendor,

other benign user accounts may upgrade to become the

new master account.

(a) (b)

(c)

Figure 2. Structure of social botnet

The third structure is shown in Figure 2(c). In this kind

of structure, the bot master does not control the social

bot directly. It is a hybrid model and has multiple layers.

When a bot master publishes a command, the command

is first received by several intermediate compromised

social bots, which are represented here by MB. Then, the

MB nodes resend the command to other social bots in

their community. Each MB node may have a different

communication model structure and different encryption

method or encryption key. Even when one social bot is

detected and its communications are decrypted, vendors

can find only the corresponding MB node. The other MB

nodes remain alive. Thus, the original bot master is hard to

detect.

Among the three types of structures, the first one is

simple and easy to destroy. However, it is also easy to

rebuild, and the communication between a bot and the

master is fast and convenient. The third type of structure

is the most stable and robust. It is hard to destroy, but it is

complex and hard to maintain.

4.4. C&C procedure

To simulate a user browsing an OSN, WTAR must solve

the problems of logging into the target OSN, entering

the CAPTCHAs, and issuing predefined commands in the

C&C procedure.

WTARs can use the WTA technique to control the

browser, commanding it to open the login page of the

OSN website. Nowadays, a lot of people allow their

browser to remember the user name and password and

log in automatically. If the password is saved and

the user set the browser to automatically log in, a

WTAR can easily enter the target OSN in the same

way that the user would: by opening the browser

and logging in. If the user did not set the browser

to store the login information, the WTAR can use a

valid username/password combination from the botmaster

to log in. The botmaster collects username/password

combinations on various OSNs. The WTAR can also use

a keylogger to get the username/password combination

when the user logs on to the target OSN.

To differentiate automated software from human users,

the OSN communities require entering a CAPTCHA

before some activities. CAPTCHA, which stands for

“Completely Automated Public Turing test to tell

Computers and Humans Apart”, typically requires the

user to decipher and type in a combination of numbers

and letters from a distorted image [19]. The CAPTCHA

can impede the development of social bots to a degree.

However, the reverse CAPTCHA technique has also been

explored by lots of researchers [20, 21, 22, 23]. There are

also commercial organizations that provide fast-response

CAPTCHAs, such as FastCaptchas. FastCaptchas offers a

quick solving service for CAPTCHAs using simple APIs.

Social bots could also trick the infected user into solving

the CAPTCHA by disguising it as a normal request. For

example, Koobface fools the infected user into solving the

CAPTCHA by popping up an alert window that warns

if you do not solve the CAPTCHA, the system will shut

down. However, WTARs using the WTA technique rarely

need to solve CAPTCHAs, if the users automatically

remember the username/password combinations.

8 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

To ensure the effectiveness of commands from WTARs,

we use a command queue and validate the time-

effectiveness of commands. The command queue is first in

first out (FIFO). A subprocess of WTAR fetches the latest

commands from the botmaster at random time intervals.

The commands are encrypted content and may be statuses,

comments, messages, or profiles of botmaster accounts.

The subprocess can filter the executed commands and

put the latest and any unexecuted commands at the front

of the command queue. The executed commands are

put into the command history list. The details of the

fetching commands algorithm is shown in Algorithm 1.

The algorithm updates the command queue and makes

it possible for WTARs to get the latest and unexecuted

commands from the botmaster. Another subprocess gets

the commands from the tail of the command queue.

After parsing the encrypted commands, WTARs launch

corresponding attacks.

Algorithm 1 Fetch commands algorithm
Input:

a list used to store the commands that have been received,

CMDHistory

a FIFO queue used to store unexecuted commands, CMDQueue

a random time interval, RTime

Output: CMDQueue that has been updated

1: while True do

2: CMDList= fetch the latest commands from the botmaster via

WTA

3: for C in CMDList do

4: if C in CMDHistory then

5: continue

6: else

7: Add C into the front of CMDQueue

8: Add C into the CMDHistory

9: end if

10: end for

11: Wait for RTime seconds

12: end while

4.5. Command encryption

In order for the C&C of WTAR to avoid detection,

the command encryption procedure should be efficient

and have good steadiness. We design the commands in

three aspects: unique command, encrypted command, and

confused command.

To execute the same command twice within a short

time without arousing suspicion, each command should be

unique. To ensure that each bot command is unique, we add

timestamps to the original bot command. The timestamp is

just used to distinguish the same commands published at

different time.

To make it even more difficult to detect the

communications between WTARs and the botmaster,

the bot commands should be encrypted. We use Data

Encryption Standard (DES) to encrypt the bot command

with a predefined key. The DES was developed by an IBM

team around 1974, and has been adopted as a national

standard of the United States in 1977 [24].

To hide the bot commands on the OSNs and not attract

attention, bot commands should look like benign content.

We mix URLs from top-visited domains with encrypted

commands to make a long URL. The domain of the

long URL is in the top-visited domains, and thus, looks

benign. The encrypted commands are the parameters of

the long URL. A list of top-visited domains can be easily

obtained from Alexa (http://www.alexa.com/topsites). The

long URL can be shortened using a free URL-shortening

service, such as Google URL Shortener. If users click

the short URL, they will be redirected to the top-visited

domain without noticing the commands embedded in the

short URL.

Figure 3. An example of commands encryption

Figure 3 shows an example for commands encryption.

It has four procedures (P1, P2, P3, and P4). The original

bot command is redirect www.google.com.hk 127.0.0.1,

which means when the user visits the www.google.com.hk

website, they will be redirected to 127.0.0.1. P1 mixes

the original command with the local time: 1402739772 is

the timestamp for 2014-06-14 17:56:12 in China Standard

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

Time. P2 uses DES to encrypt unique bot commands. P3

mixes the encrypted command with a top-visited domain,

which is www.google.com.hk in the example. P4 uses

the Google URL Shortener to shorten the mixed long

URL to get the benign short URL http://goo.gl/0khqt4.

We describe the generic algorithm for WTAR command

encryption in Algorithm 2. The commands-encryption

algorithm is a symmetric encryption algorithm. The

WTARs on the victim’s computer can easily parse the

short URLs from the botmaster account, and get the final

command.

Algorithm 2 Commands-encryption algorithm
Input:

the plain command, PCommand

the encryption key, key

the top 500 domains on the web, TopURL

Output: the encrypted command, ENCommand

1: time = Get the local system time as a ten-digit number

2: make the command unique UniqueCommand =

time+PCommand

3: encrypt UniqueCommand with DES DESCommand =

DES(UniqueCommand,key)

4: RURL= random a URL from TopURL

5: URLCommand= RURL + DESCommand

6: ShortCommand= get the short URL from URLCommand

7: ENCommand= ShortCommand

8: return ENCommand

Command encryption is very important for preventing

information leakage. The command message can be

disguised as a short encrypted URL. When one or several

bots are caught and fail in a social botnet, the encrypted

commands can be decrypted only if the corresponding

encryption key is used. However, the key is controlled by

the bot master and cannot be easily obtained by others.

4.6. Host activities

Just like traditional bots (IRC, HTTP, P2P), social bots can

also carry out various malicious activities on the victim

hosts. The host activities are basic functions on various

OSNs. When designing WTAR, we reduce the number

of host activities to avoid antivirus software on the local

host from detecting it. We design only basic host activities

for WTAR. These activities are the same, even though the

OSNs are different. The botmaster of WTAR can send host

commands to various OSNs to order WTAR to carry out

corresponding actions.

Table II. Host commands

Name Description

getNetInfo get the local network information
getVersion get the system version of the victim
visit force the browser to open a URL
redirect rebind the domain and IP
download download data from the Internet
upload upload data to the botmaster
exe execute a program on the host
timeExe execute at the predefined time

Table II shows a possible host command list. The

getNetInfo command helps the botmaster obtain the basic

network information of the victim, including the MAC

address, IP address, USERNAME, etc. The getVersion

command helps the botmaster obtain the system version of

the victim. The visit command orders the browser on the

victim host to open a predefined URL. This function can

lead to the spread of spam. Advertising service providers

can use this function to widely promote their products. The

redirect command rebinds the domain and IP on the victim.

When a user of the victim host browses a normal website,

they may actually be on a fake website because the real

IP of the original domain has been polluted. This function

can be easily used to carry out commercial fraud. The

download command orders WTAR to download data from

the Internet. The data can be WTAR modules that need to

be updated, or other malware. The upload command orders

WTAR to upload data from the victim to servers controlled

by the botmaster. The data can be personal information or

configuration files. The exe command orders WTAR to run

a program on the victim host. The program can be a DOS

command or executable software. The timeExe command

orders WTAR to run a program on the victim at a certain

time, which can lead to timing attacks.

The host activities are not limited to the eight shown

in Table II. The number of host activities is extensible by

updating the host activities module of WTAR.

4.7. Social network activities

The special social network activity for social bots makes

them different from traditional bots. Social network

activity represents a social action (e.g., +1, comment,

vote, share, favorite) that references content on OSNs.

WTAR uses the WTA technique to compel an OSN

account on the victim host to carry out social network

activities. These activities can change according to the

10 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

OSNs. The frameworks of different OSNs are different,

and the operations on the OSNs are different. For example,

the messages published on OSNs are called “statuses” on

Facebook, “tweets” on Twitter, and “weibos” on Weibo.

Hence, we need to design modules for different OSNs and

make social activities exclusive to particular OSNs.

Table III. Social commands

Name Description

postStatus
Publish a status, a message, or a tweet

on the target OSN

postComment
Post a pre-defined comment to a certain status

on the target OSN

addFriend
Send a friend request to a certain OSN account

or focus on an account

addLike
Like a status or favorite a message on

the target OSN
autoAdd Automatically add friends on the target OSN

Table III shows a basic social commands list for

WTAR. The postStatus command orders WTAR to use

the compromised account to publish a certain message

on the target OSN. The message may be a status on

Facebook, a tweet on Twitter, or a weibo on Weibo.

The function can be used to disperse fake news and

spread malicious software. The postComment command

orders WTAR to publish a comment on a certain message.

Thus, the number of comments on the message increases,

enhancing the influence of the message. This function

can be used to guide the direction of public opinion. The

addFriend command orders WTAR to send a friend request

to a certain OSN account. This function can enlarge the

community of the whole social botnet and lead to more

“zombie fans”, which are artificial followers. The addLike

command orders WTAR to like (+1, favorite, vote) a

message. This function can have a major impact on the

direction of public opinion. The autoAdd command orders

WTAR to automatically add friends who are friends’

friends of the compromised account. This function can

expand the WTAR botnet.

The social commands are not limited to the five shown

in Table III. As with host activities, the number of social

activities is extensible by updating the social activities

module of WTAR.

5. CASE STUDY

To explore the threat, we implement three proofs-of-

concept prototypes for WTAR. Our prototypes are Wbbot,

Fbbot, and Twbot on the OSNs Weibo, Facebook, and

Twitter, respectively. They all implement the structure

described in Section 4. The only difference between them

is the social network activity.

Our proof-of-concept WTARs can run on both Windows

XP and Windows 7. The WTA technique of our WTARs is

implemented with PAMIE, which is known to be simple

and flexible. We can easily control the DOM of IE through

an API from PAMIE. With simple scripts, WTAR can

order IE to carry out various social network activities, such

as updating a status on Facebook. First, Fbbot finds the

form element for posting statuses. Second, Fbbot fills in

the form by setting the value attribute of the form with

predefined content. Third, Fbbot finds the button element

for posting statuses. Finally, Fbbot clicks the “post” button

element on the Facebook page. The whole process runs

in the background without attracting the user’s attention.

Activity on other OSNs can be implemented in the same

way.

Figure 4. Control flow of the prototypes

We illustrate the basic control flow of the prototypes in

Figure 4. The control flow is the same for all three. We

can easily extend the prototypes by modifying the social

network module to adapt to other OSNs. WTAR first tries

to use IE to log into the OSN with a cookie from the

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 11
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

local user account. If the login fails, WTAR will suspend

for a random time. If the login succeeds, WTAR will

try to get the latest messages posted by the botmaster. If

WTAR gets a message, it will check whether the message

has been received before. If WTAR has not npreviously

received the message, it will try to decrypt the message

and then parse the command hiding in the message. If the

command needs to feed information back to the botmaster,

it will first execute the command and then encrypt the

information that the botmaster needs. Then it will send the

stolen information to the server, being controlled by the

botmaster via email, open API, or simple http request. If

the command does not need feedback, WTAR will finish

the current job and wait for another command.

In the login process of the WTAR in Figure 4, we

assume that the user of the victim host uses IE to

browse the OSN and has set the browser to automatically

remember the username/password combinations. We make

this assumption based on two facts: IE is one of the most

popular browsers, and automatic login is widely used in

many OSN websites, such as Facebook, Twitter, MySpace,

LinkedIn, and Weibo. If the target OSN requires to solve a

CAPTCHA, DeCaptcher (http://de-captcher.com) libraries

were used to enhance our prototypes. The server used to

collect stolen data is built on Dropbox, which is a cloud

disk. In the feedback process, our prototypes use open API

to upload and download files from Dropbox.

The WTA technique is not limited to the framework

described above. PAMIE, the framework used in our

designed prototypes, is not complex. The packaged

executable file of our prototypes is small and can run on

any Windows XP or Windows 7 system without any other

WTA environment. It is a malicious file only on the end

host. Moreover, the prototypes can be injected into other

benign applications. We believe other more robust social

bots can be implemented with our proposed designing

principle. While our subject is not to design a perfect

social bot, we hope to help researchers understand social

bots from the perspective of attackers and propose more

effective approaches for social bot detection. We have

shared the prototypes via Dropbox.

6. VALIDATION

In this section, we validate the threat from WTARs in three

aspects. Section 5.1 discusses the experiment in the lab.

Section 5.2 discusses the experiment conducted on a real

network. Section 5.3 shows the antivirus reports regarding

the three prototypes.

6.1. Experiments in the lab

To analyze the three prototypes on a host, we capture the

system API and monitor the overhead in the lab. In the

experiment, a controllable local network is built. Windows

7 systems are installed on user hosts. They have been

equipped with quad core 2.40GHz CPU and 2G RAM. We

run Wbbot, Fbbot, and Twbot separately.

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

Time(s)

C
P

U
 u

sa
ge

(%
)

 

 
IE
Twbot

(a) CPU usage of Twbot and IE

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

Time(s)

M
em

or
y 

us
ag

e(
M

)

 

 
IE
Twbot

(b) Memory usage of Twbot and IE

Figure 5. Overhead of Twbot

Overhead. We run the three prototypes on the host and

use the master account to order WTARs to execute all the

12 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

commands. We find that WTARs have a little impact on the

performance of the victim host. For example, Twbot is as

shown in Figure 5. Twbot runs on our victim host for about

15 minutes and executes all the bot commands. Because

Twbot compels IE to visit the OSN of Twitter, both Twbot

and IE have an impact on the victim host, even though IE

is a normal benign application and runs in the background.

Figure 5(a) shows the CPU usage of Twbot and IE. CPU

usage of both Twbot and IE changes cyclically. In about

the first 100 seconds, CPU usage changes frequently and

is relatively high, because Twbot is receiving commands

from the botmaster and carrying out corresponding actions.

However, when there is no command to execute, Twbot has

a low CPU usage. Only when Twbot tries to update the

latest commands does the CPU usage of Twbot increase.

When IE is carrying out social network activities, its CPU

usage increases.

Figure 5(b) describes the memory usage of Twbot and

IE. Throughout the whole monitoring process, memory

usage of both Twbot and IE changes cyclically, because

Twbot needs to refresh the latest commands from the

botmaster every few minutes. When Twbot starts to run,

its memory usage is relatively low. However, after a while,

its memory usage is smooth and steady. Its memory usage

on the host is between 18(Mbytes) and 10(Mbytes). When

there is a social command to execute for Twbot, IE is

controlled and runs for a short time to finish the command.

After the command finishes, IE exits and the memory

usage for IE drops to zero.

Table IV. Statistical data for system call

API Wbbot Fbbot Twbot

CreateFile 1153 1235 805
RegOpenKey 656 584 548
RegQueryValue 363 284 366
CloseFile 355 349 399
RegQueryKey 275 194 221
RegCloseKey 263 282 195
ReadFile 221 258 242
QueryDirectory 166 146 165
QueryStandard-
InformationFile

116 110 102

System call. We use Process Monitor to monitor the

system calls that these prototypes have called when they

are running. Table IV lists the statistical data for system

calls over over a period of about ten minutes. We know

that CreateFile is the most frequent. We analyze the system

call sequence of the prototypes according to execution

time. For example, if α and β are two system calls, Fbbot

calls α at t1 and then calls β at t2; t1 is earlier than

t2, so the system call sequence should be α → β. We

found that the following API sequence occurs frequently:

QueryBasicInformationFile → CloseFile → CreateFile

→ CreateFileMapping → QueryStandardInformationFile

→ CreateFileMapping → CloseFile → CreateFile. This

discovery can be used to detect this breed of WTARs.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

Time(s)

F
lo

w
 n

um

 

 

f
s

(a) Flow statics on different occasions

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

Time(s)

F
lo

w
 n

um

 

 
Fbbot
IE

(b) Flow statics for Fbbot and IE

Figure 6. Flow statistics for Fbbot

Network flow. We use the Network Monitor to capture

the network flows which these prototypes have produced.

The total number of network flows is calculated over time.

Through analyzing the network flow dataset, we found that

the processes of WTAR-based bot produce a few network

flows. When the same prototype runs the same commands

in different occasions, the increases in flow rate for them

are very similar. Figure 6 shows a ten-minute log, and the

rate at which flow increased over time. In the figure, the

start time is corrected. Time is plotted on the x-axis, and the

total flow number is on the y-axis. Figure 6(a) shows the

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 13
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

rate of increase for Fbbot on two different occasions. f is

the first occasion, and s is the second occasion. Both times,

Fbbot runs the same botmaster command and produces at

almost the same rate of increase. Figure 6(b) is the increase

in flow rate for Fbbot and IE. IE connects to the OSN and

preforms various social network activities. IE produces far

more network flows than Fbbot does .

6.2. Real world experiments

To validate the real threat of WTARs, we operated ten

prototypes of Fbbot on Facebook for two weeks. Prior

researchers also use this mechanism to design malicious

applications. Wang et al. [25] presented a novel attack

method that allows attackers to reliably hide malicious

behavior in an app on iOS devices. Once the app was

published and installed on an end-user’s device, it can be

required to carry out the intended attacks. Yazan et al. [2]

operated their social botnet on Facebook and collected data

about user behavior.

We create ten prototypes of Fbbot and a single bot

master, all of which are separately run on different hosts in

our laboratory. We use the master account to send autoAdd

command. According to previous survey, we decided to

send 25 friendship requests per Fbbot per day in order to

avoid detecting by FIS (Facebook Immune System). We

order each Fbbot send 350 friendship requests. Each Fbbot

sends 1 to 3 friendship requests every 20 to 40 minutes.

And the actual number of friendship request and time

interval is randomly generated. The friendship requests

are all from their extended neighborhoods which are their

friends’ friends. When a Fbbot has sent 25 friendship

requests, it would stop sending friendship request and keep

silent. For most of time, the Fbbot was idle on the end host.

We kept the Fbbot botnet running for 14 days and

monitoring the status of the requests every day. During

that time, the ten Fbbots sent 3500 friendship requests.

Finally, 1017 requests were accepted with a maximal

acceptance rate of 29.1%, as shown in figure 7. In

particular, acceptance rate tends to stable in the seventh day

after the requests being sent. After a large-scale infiltration,

the bot master account can harvest large amounts of

publicly inaccessible privacy information of users, such as

phone number, email address and so on. Our investigation

suggests that WTAR-based social bot can be a threat to the

OSN of Facebook, and other OSNs as well.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

Number of days

A
cc

ep
ta

nc
e 

ra
te

 (
%

)

Figure 7. Average acceptance rate of the infiltrated users

6.3. Reports from antivirus

Table V. File information for the three WTARs (%)

Name Wbbot Fbbot Twbot

UPX compressed
Win32 Executable

42.3 30.6 42.3

Win32 EXE Yoda’s
Crypter

36.7 26.5 36.7

Win32 Dynamic
Link Library

9.1 6.5 9.1

Win32 Executable 6.2 32.1 6.2
Generic Win/DOS

Executable
2.7 - 2.7

To validate the robustness of our prototypes, we analyze

them by using the well-known online file scan services

VirusTotal and Anubis. We share the analysis result on

Dropbox.

The results from virustotal show that only a few

antivirus programs report that our WTARs are malware.

In 54 scans, only two give the detection result that the

three prototypes are all Trojans. Antiy AVL reports that the

prototypes are Trojan/Win32. Mulo and NANO Antivirus

reports them as Trojan.Win32.Rozena.cwyxkn. However,

other top popular antivirus programs, such as McAfee,

ESET NOD32, and AVG, report that our prototypes are

benign applications. We also analyze a simple executable

file compiled by Python. It is only a “Hello world!”

program, but Antiy AVL and NANO Antivirus detect it

as Trojan, too. So we believe our WTARs have a very

good robustness. Table V shows the file information for

our prototypes. UPX compressed Win32 Executable and

Win32 EXE Yoda’s Crypter are the main components. This

14 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

feature can be used as evidence to detect WTAR-based

social bots.

7. PROFILING

In this section, we compare our WTARs with prior social

bots, discuss the defense mechanism for WTAR, and

describe the limitations.

7.1. Comparison

Comparison with Nazbot. Nazbot is a successful social

bot on Twitter. It uses an account named upd4t3 owned

by the botmaster on Twitter to receive commands. Nazbot

first makes an HTTP GET request to upd4t3’s RSS. Twitter

then returns an RSS feed containing base64-encoded text.

Then Nazbot decodes the encoded text and gets the real

URLs from bit.ly URLs. The short bit.ly URL redirects to

a malicious Zip file on an independent server. Then Nazbot

downloads the malicious Zip file as a payload, unzips the

payload, and executes it. Finally, the payload steals the

user’s information and sends it back to a server controlled

by the botmaster.

The key features of Nazbot are RSS and tweets encoded

by base-64. However, Twitter does not provide RSS

services anymore, and tweets encoded with base-64 can

be easily decoded. What’s more, if the master accounts

publish a base-64 encoded tweet directly, the tweet can

easily draw other users’ attention because the tweets seem

like spam. Thus, the botmaster account may be flagged

as a malicious account. Our WTARs use the popular

WTA technique to carry out actions on OSNs. We use the

DES algorithm to encrypt the message on OSN. The final

messages hiding the command just look like a normal short

URL. We believe our WTARs are more robust than Nazbot.

Comparison with Yazanbot. Yazanbot is a proof-

of-concept Facebook social bot designed by Boshmaf

et al. [2]. It has two main components: a profile on

Facebook and the software. It can conduct two types of

operations: social interaction operations that are used to

read and write content on Facebook, and social structure

operations that are used to alter the social graph, such

as by connecting or disconnecting two accounts. The

botmaster can send six commands. The cluster command

orders the social bot account to connect to other social

bots. The rand connect command orders the social bot

accounts to connect randomly to non-botmaster-owned

accounts. The Decluster command orders a social bot

account to disconnect from all other social bot accounts.

The Crawlextneighborhood command orders a social

bot to find its neighborhood’s neighbors and return

their profiles as botcargo. The Mutualconnect command

orders the social bot to connect with the accounts in

botcargo. The Harvestdata command orders a social bot

to return all accessible information. Yazanbot mainly uses

two techniques: the Facebook API and HTTP request

templates. It randomly updates its status with random

quotes and blurbs provided by iheartQuotes.

Yazanbot draws more attention to social network

activities. However, our WTARs can carry out both host

and social network activities. Yazanbot uses the Facebook

API to communicate with Facebook, but the Facebook API

has a lot of limitations, such as app-level and user-level

limiting. Our WTARs use the WTA technique to connect

with OSNs in the same way that normal users act. Hence,

there are no such limitations. Besides, our WTARs can be

easily adapted to other OSNs by modifying only the social

network module.

7.2. Countermeasures

In this section, we discuss possible countermeasures

against WTAR-based social bot. Server-side defense

countermeasures can capture activities on certain OSNs

from the whole social botnet. They could analyze the big

dataset to distinguish the infected accounts from normal

user accounts. However, social bots which control these

infected accounts remain on the user host. Client-side

defense countermeasures can monitor the behaviors on the

user host. They can analyze the behavior dataset to find out

the social bot process on the victim. However, the social

bot may update its behaviors, and the social botnet is still

there. To protect the user host and OSN from WTAR-based

social bot, we prefer the integrated server-client defense

mechanism.

On the server-side, we can use the page-view graph.

All WTAR-based social bots need to refresh the latest

commands from the master account in a random time

interval. The social bot may have a very large page-view

number on an OSN page from a botmaster account, for

example, the home page of master. Thus, the page-view

graph can be drawn on the server-side, and used to detect

the social bot account, even the master account. On the

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 15
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

client-side, three factors should be considered. (1)OSN

login. The first step for WTARs to perform activities on

OSNs is to log in to the OSNs. Thus, new countermeasures

should prevent the abuse of local cookies and sessions. The

automated login of OSN should also be checked to prevent

WTARs. (2)Process correlation. WTARs may control the

popular browsers on the user host to perform activities on

OSNs. The WTARs themselves do not directly connect

to the target OSN. They produce a few network flows.

Considering this fact, we should consider the correlation

of different processes. (3)Self-Concealing. WTARs use

stealth mechanisms to hide themselves. Generally, this

includes the processes of WTAR’s lack of Graphical User

Interface (GUI) and Human Computer Interaction (HCI).

This can be considered as cofactors for detecting the

processes of WTAR.

7.3. Limitations

Our proof-of-concept social bot has a number of

implementational limitations. We focus on two of them:

bootstrap and large data test in the real Internet.

We do not pay much attention to the bootstrap phrase

of WTAR. We focus on the C&C, command encryption,

host activities, and social network activities. Thus, our

prototypes should be run manually, or the threat of WTAR

will be killed automatically if the host has been shut down.

However, we believe WTARs can be easily extended if

good bootstrap mechanisms are used.

We have not carried out a large data test in the real

network. Our prototypes only carry out a few activities in

the Internet. We only collect a 14-day data set from Fbbot

on Facebook and only autoAdd command is verified. The

finally acceptance rate of friendship requests is not high.

But we believe that if the WTARs have a better promotion,

and the base number of victim hosts is large enough,

WTARs can be used to build up a large social botnet.

8. CONCLUSION

Social bots have become a security threat to both users

and service providers of OSNs. Prior social bots mainly

used RSS or OSN APIs to communicate with OSN. Both

defenders and attackers have developed various social

bots for different purposes. The details of these social

bots can be different, but the ways that these social bots

communicate with OSNs are similar. To defend against

social bots, the OSN service providers also take several

defense mechanisms. Some OSN services do not provide

RSS services anymore. OSN service providers also limit

the use of open OSN API.

In this paper, we assume the perspective of the social

network attacker, who is trying to design effective social

bots that target OSNs. By assuming this perspective, we

hope to help defenders understand and defend against the

threat posed by a new class of social bots. We present a

novel breed of social bot called WTAR. It uses the WTA

technique to communicate with an OSN, and can launch

various attacks on OSNs.

First, we discuss the key challenges involved in

designing a malicious social bot. Second, we present how

to design the WTAR. We describe the enabling factors for

WTAR, C&C structure of social botnet, C&C procedure

of WTAR, command encryption, host activities, and social

network activities. Third, we implement three prototypes

to target Facebook, Twitter, and Weibo. Fourth, we validate

our concepts of WTAR in three aspects: (1) we analyze

the system call and overhead of our prototypes in a lab

environment; (2) we validate our prototypes in the real

network and monitor acceptance rate of friendshp requests

sent by WTAR; (3) we also analyse the reports from

popular antivirus software. Finally, we compare it with

prior social bots, discuss the possible defense mechanism

for WTAR, and describe the limitations of our WTAR.

We believe that social bots on OSNs represent only

one of the many emerging cyber threats. The first step to

defend against such a threat is to understand how social

bots are designed and how they work. With the experience

of designing WTAR, we hope to help defenders propose

novel approaches to detect social bots in the future.

9. ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China under Grant No. 61170265,

61472162.

16 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



Y. He et al. Understanding a Prospective Approach to Designing Malicious Social Bots

REFERENCES

1. J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y.

Dai, B. Y. Zhao, Understanding latent interactions

in online social networks, ACM Transactions on the

Web (TWEB) 7 (4) (2013) 18.

2. Y. Boshmaf, I. Muslukhov, K. Beznosov, M. Ripeanu,

Design and analysis of a social botnet, Computer

Networks 57 (2) (2013) 556C578.

3. Thomas K, Nicol D M. The Koobface botnet and the

rise of social malware[C]//Malicious and Unwanted

Software (MALWARE), 2010 5th International

Conference on. IEEE, 2010: 63-70.

4. E. J. Kartaltepe, J. A. Morales, S. Xu, R. Sandhu,

Social network-based botnet command-and-control:

emerging threats and countermeasures, in: Applied

Cryptography and Network Security, Springer, 2010,

pp. 511C528.

5. S. Nagaraja, A. Houmansadr, P. Piyawongwisal,

V. Singh, P. Agarwal, N. Borisov, Stegobot: a

covert social network botnet, in: Information Hiding,

Springer, 2011, pp. 299C313.

6. J.-P. Verkamp, P. Malshe, M. Gupta, C. W. Dunn,

Facebot: An undiscoverable botnet based on treasure

hunting social networks.

7. A. Singh, A. H. Toderici, K. Ross, M. Stamp,

Social networking for botnet command and control,

International Journal of Computer Network &

Information Security 5 (6).

8. V. Dallmeier, B. Pohl, M. Burger, M. Mirold, A.

Zeller, Webmate: Web application test generation

in the real world, in: Software Testing, Verification

and Validation Workshops (ICSTW), 2014 IEEE

Seventh International Conference on, IEEE, 2014, pp.

413C418.

9. S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra,

S. Gnanasundaram, D. D. Nagaraj, S. Sathishkumar,

Efficient and change-resilient test automation: an

industrial case study, in: Proceedings of the 2013

International Conference on Software Engineering,

IEEE Press, 2013, pp. 1002C1011.

10. Lee T H, Look G, Zhang H, et al. Automatically

testing a web application that has independent display

trees: U.S. Patent 8,572,505[P]. 2013-10-29.

11. S. T. King, P. M. Chen, Subvirt: Implementing

malware with virtual machines, in: Security and

Privacy, 2006 IEEE Symposium on, IEEE, 2006, pp.

14Cpp.

12. M. R. Rieback, P. N. Simpson, B. Crispo, A. S.

Tanenbaum, Rfid malware: Design principles and

examples, Pervasive and mobile computing 2 (4)

(2006) 405C426.

13. S. Embleton, S. Sparks, C. C. Zou, Smm rootkit: a

new breed of os independent malware, Security and

Communication Networks 6 (12) (2013) 1590C1605.

14. P. Wang, S. Sparks, C. C. Zou, An advanced

hybrid peer-to-peer botnet, Dependable and Secure

Computing, IEEE Transactions on 7 (2) (2010)

113C127.

15. J. Hua, K. Sakurai, Botnet command and control

based on short message service and human mobility,

Computer Networks 57 (2) (2013) 579C597.

16. Y. Zeng, K. G. Shin, X. Hu, Design of sms

commanded-and-controlled and p2p-structured

mobile botnets, in: Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and

Mobile Networks, ACM, 2012, pp. 137C148.

17. L. Jin, J. B. Joshi, M. Anwar, Mutual-friend based

attacks in social network systems, Computers &

security 37 (2013) 15C30.

18. Y. Boshmaf, I. Muslukhov, K. Beznosov, M. Ripeanu,

Key challenges in defending against malicious

socialbots, in: Proceedings of the 5th USENIX

Conference on Large-scale Exploits and Emergent

Threats, LEET, Vol. 12, 2012.

19. B. Zhu, J. Yan, G. Bao, M. Mao, N. Xu, Captcha as

graphical passwords–a new security primitive based

on hard ai problems, Information Forensics and

Security 9 (6).

20. M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,

G. M. Voelker, S. Savage, Re: Captchasunderstanding

captcha-solving services in an economic context., in:

USENIX Security Symposium, Vol. 10, 2010, pp.

4C1.

21. E. Bursztein, S. Bethard, Decaptcha: breaking 75%

of ebay audio captchas, in: Proceedings of the

3rd USENIX conference on Offensive technologies,

USENIX Association, 2009, p. 8.

22. E. Bursztein, R. Beauxis, H. Paskov, D. Perito,

C. Fabry, J. Mitchell, The failure of noise-based

noncontinuous audio captchas, in: Security and

Privacy (SP), 2011 IEEE Symposium on, IEEE, 2011,

Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd. 17
DOI: 10.1002/sec

Prepared using secauth.cls



Understanding a Prospective Approach to Designing Malicious Social Bots Y. He et al.

pp. 19C31.

23. P. Golle, Machine learning attacks against the asirra

captcha, in: Proceedings of the 15th ACM conference

on Computer and communications security, ACM,

2008, pp. 535C542.

24. D. Coppersmith, The Data Encryption Standard

(DES) and its strength against attacks, IBM journal

of research and development 38 (3) (1994) 243C250.

25. T. Wang, K. Lu, L. Lu, S. Chung, W. Lee, Jekyll

on ios: When benign apps become evil., in: Usenix

Security, Vol. 13, 2013.

26. Stein T, Chen E, Mangla K. Facebook immune

system[C]//Proceedings of the 4th Workshop on

Social Network Systems. ACM, 2011: 8.

27. Cao Q, Yang X, Yu J, et al. Uncovering Large Groups

of Active Malicious Accounts in Online Social Net-

works[C]//Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Secu-

rity(CCS). ACM, 2014: 477-488.

28. Boshmaf Y, Logothetis D, Siganos G, et al.

Integro: Leveraging victim prediction for robust fake

account detection in OSNs[C]//Proc. of Network and

Distributed System Security Symposium (NDSS15),

San Diego, CA, February 2015.

29. Wagner C, Mitter S, Korner C, et al. When social

bots attack: Modeling susceptibility of users in online

social networks[J]. Making Sense of Microposts

(MSM2012), 2012: 2.

30. Burghouwt P, Spruit M, Sips H. Towards detection

of botnet communication through social media by

monitoring user activity[M]//Information Systems

Security. Springer Berlin Heidelberg, 2011: 131-143.

31. Chu Z, Gianvecchio S, Koehl A, et al. Blog or block:

Detecting blog bots through behavioral biometrics[J].

Computer Networks, 2013, 57(3): 634-646.

32. Stringhini G, Kruegel C, Vigna G. Detecting

spammers on social networks[C]//Proceedings of

the 26th Annual Computer Security Applications

Conference. ACM, 2010: 1-9.

33. Yang Z, Wilson C, Wang X, et al. Uncovering social

network sybils in the wild[J]. ACM Transactions

on Knowledge Discovery from Data (TKDD), 2014,

8(1): 2.

34. Dietrich C J, Rossow C, Pohlmann N. CoCoSpot:

Clustering and recognizing botnet command and

control channels using traffic analysis[J]. Computer

Networks, 2013, 57(2): 475-486.

35. Yan G. Peri-Watchdog: Hunting for hidden botnets in

the periphery of online social networks[J]. Computer

Networks, 2013, 57(2): 540-555.

36. Xue J, Yang Z, Yang X, et al. VoteTrust: leveraging

friend invitation graph to defend against social

network Sybils[C]//INFOCOM, 2013 Proceedings

IEEE. IEEE, 2013: 2400-2408.

37. Viswanath B, Post A, Gummadi K P, et al. An

analysis of social network-based sybil defenses[J].

ACM SIGCOMM Computer Communication

Review, 2011, 41(4): 363-374.

38. Fortunato S. Community detection in graphs[J].

Physics Reports, 2010, 486(3): 75-174.

18 Security Comm. Networks 2015; 00:1–18 c⃝ 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls


