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Abstract—Big data has become a hot topic in many areas where
the volume and growth rate of data require cloud-based platforms
for processing and analysis. Due to open cloud environments
with very limited user-side control, existing research suggests
encrypting data before outsourcing and adopting Searchable
Symmetric Encryption (SSE) to facilitate keyword-based searches
on the ciphertexts. However, no prior SSE constructions can
simultaneously achieve sublinear search time, efficient update and
verification, and on-demand file retrieval, which are all essential
to the development of big data. To address this, we propose a
Verifiable Ranked Searchable Symmetric Encryption (VRSSE)
scheme that allows a user to perform top-K searches on a
dynamic file collection while efficiently verifying the correctness
of the search results. VRSSE is constructed based on the ranked
inverted index, which contains multiple inverted lists that link sets
of file nodes relating a specific keyword. For verifiable ranked
searches, file nodes are ordered according to their ranks for
such a keyword, and information about a node’s prior/following
neighbor will be encoded with the RSA accumulator. Extensive
experiments on real data sets demonstrate the efficiency and
effectiveness of our proposed scheme.

Index Terms—searchable symmetric encryption, verifiability,
dynamic, top-K searches

I. INTRODUCTION

Over the past few years, the continuous increase of data

volume has produced overwhelming data flows in both struc-

tured and unstructured formats. Data creation is occurring at

a record rate, and has emerged as a widely agreed-upon trend

in both industry and academia. Due to big data’s high volume,

high velocity, and wide variety of characteristics, traditional

platforms are incapable of analyzing and processing such

significant amounts of dynamic data of varying modalities.

Cloud computing is a new paradigm that enables ubiquitous

and on-demand access to a shared pool of configurable com-

puting resources. Cloud-based platforms with overwhelming

advantages over traditional platforms are increasingly utilized

as potential hosts for big data. Since the cloud service provider

(CSP) is outside the users’ trusted domain, existing research

suggests encrypting data before outsourcing [1]. In a typical

cloud computing environment, a user will utilize Symmetric

Key Encryption (SKE) and Searchable Symmetric Encryption

(SSE) to encrypt file and keyword contents, respectively, and

then upload the ciphertexts to the cloud. Later, she will gen-

erate a search token, TKw, to retrieve all the files containing

keyword w and perform decryption locally to recover the files’

contents. In this process, files, keywords, and search tokens are

encrypted under the user’s private key. Thus, the CSP cannot

know which keywords the user has searched for or what files

have been returned.

As a seminal work in SSE, Curtmola et al. [2], provided a

rigorous security definition and constructed schemes based on

an inverted index for sublinear search. Recently, Kurosawa et

al. [3], [4] constructed verifiable SSE schemes, in which the

user can detect any cheating behavior of malicious servers.

Kamara et. al. [5], [6] proposed dynamic SSE schemes, where

the user can efficiently update encrypted data. As an attempt

to optimize the search results, ranked SSE schemes [7], [8],

[9], [10] have also been proposed to allow the users to retrieve

the best-matched files. However, these works hardly meet the

security needs of big data in cloud computing environments.

Let us consider the following scenario: Alice outsources

archived emails to the cloud, where each email is indexed

by the sender’s name and ranked in descending order of the

receipt date; for a set of files indexed by keyword Bob, an

email received on April 2 will have a higher rank than an email

received on April 1. To keep keyword and file contents secret,

Alice stores them in encrypted forms to the cloud. Since there

could be hundreds of files matching a specific keyword, the

consumed communication will be extensive if the CSP returns

all the matched files. Therefore, Alice may want to perform a

top-K search to retrieve the most recent emails. Moreover, to

save money, Alice may want to store only the emails received

in the last three months.

In this application scenario, the adopted SSE scheme should

meet the following requirements: (1) Ranked search. The user

is allowed to perform a top-K search to retrieve the best-

matched files. (2) Dynamic. The user is able to update (add and

delete) files stored in the cloud. (3) Verifiability. The malicious

CSP may delete encrypted files not commonly used to save

memory space, or it may forge the search results to deceive

the user. Even if the CSP is honest, a virus or worm may

tamper with encrypted files. Therefore, the user should have

the ability to verify the correctness of the search results. (4)

Efficiency. The user can efficiently perform searches, updates,
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and verifications on a set of encrypted files.

Unfortunately, existing SSE schemes only partially address

these requirements. To simultaneously satisfy all these prop-

erties, this paper proposes a Verifiable Ranked Searchable

Symmetric Encryption (VRSSE) scheme that allows the user

to perform updates and top-K searches on ciphertexts in a

verifiable and efficient way. Our main idea is to build a ranked
inverted index I from a collection of files to facilitate top-K
searches, while recording the rank information in a verifiable
matrix, V , for verifiable updates and searches. Specifically, I
contains multiple inverted lists, each of which links to a set

of file nodes that relates to a specific keyword. File nodes

are ordered according to the rank of keywords. Information

about a node’s prior/following neighbor, recorded in V , will be

encoded with the RSA accumulator [11]. I is an extension of

the inverted index [2] and allows for sublinear-time searches.

Furthermore, I facilitates updates since the update of a file

D only needs to modify the neighbors of the file node that

corresponds to D. Our main contributions are as follows:

• To the best of our knowledge, this is the first attempt to

devise a verifiable, ranked, and dynamic SSE scheme to

preserve big data security in a cloud environment.

• Our scheme allows the user to efficiently update the file

collection and verify the correctness of a top-K search

while preserving user privacy from the CSP.

• We theoretically analyze the security and performance of

our scheme and conduct extensive experiments on real

data sets to validate its effectiveness and efficiency.

Paper organization. We provide the preliminaries in Sec-

tion II and an overview of this work in Section III. After

constructing our scheme in Section IV, we evaluate it in

Section V. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

A. System Model

The system consists of the cloud service provider (CSP)

and the cloud user. The CSP maintains cloud infrastructures,

pooling the bandwidth, storage space, and CPU power to

provide data storage and query services. Cloud users, who pay

the services residing on the cloud, can be further classified into

data owner and data user according to data ownership.

The data owner first creates ciphertexts C = {C1, . . . , Cn}
for a file collection D = {D1, . . . , Dn}. It then builds an

encrypted index I and a verifiable matrix V from D and the

universal keywords W = {w1, . . . , wm}. After uploading all

the above information to the cloud, she can perform updates

(add/delete) on ciphertexts and retrieve the data of interest on
demand in a verifiable way. The data owner can also delegate

the search/verification ability to authorized data users. In this

paper, we do not discriminate between the data owner and data

user, and refer to them both as user for simplicity.

B. Adversary Model

The users are assumed to be fully trusted, and the CSP is

the potential attacker who is assumed to be honest but curious.

That is, the CSP will always correctly execute a given protocol,

but may try to learn some additional information about the

stored data and the received message.

Existing SSE schemes resort to the weakened security

guarantee for efficiency concerns. That is, they will reveal the

access pattern and the search pattern but nothing else during

the search process. As defined in [2], access pattern refers

to the outcome of search results, i.e., which files have been

returned; the search patterns refer to whether two searches

were performed for the same keyword. Like existing SSE

schemes, our scheme will reveal the access pattern and the

search pattern to the CSP. Furthermore, in a top-K search, only

K highest ranked files will be returned. Therefore, information

about file ranks will also be leaked during the search phase.

C. RSA Accumulator

Let κ be a security parameter, and let p = 2p′ + 1 and

q = 2q′ + 1 be two large primes where p′, q′ are primes such

that |pq| > 3κ. Let F = {f : {0, 1}3λ → {0, 1}λ} be a two-

universal family of hash functions. Let N = pq, and let G be a

cyclic group of size (p−1)(q−1)/4 where g is a generator of

G. For a set of elements E = {y1, . . . , yn} with yi ∈ {0, 1}κ,

the RSA accumulator works as follows:

(1) For each yi, we choose a random prime xi, denoted as

P(yi), such that f(xi) = yi. The accumulated value for E
can be calculated as Acc(E) = g

∏n
i=1 P(yi) mod N. (2) For

any subset E′ ⊆ E, a witness π = g
∏

yi∈E−E′ P(yi) mod N
can be produced. (3) The subset test can be carried out by

checking Acc(E) = π
∏

yi∈E′ P(yi) mod N.

III. SCHEME OVERVIEW

A. Notations

The set of all binary strings of length η is denoted as {0, 1}η
and the set of finite binary strings is denoted as {0, 1}∗. Given

a sequence of elements S , we refer to its i-th element as S[i]
and to its total number as #S . Given a matrix M, the entry in

its i-th and j-th column is denoted as M[i][j]. If s is a string

then |s| refers to its bit length. The concatenation of c strings

s1, . . . , sc is denoted by 〈s1, . . . , sc〉. For quick reference, the

most relevant notations used in our scheme are listed below:

• D = {D1, . . . , Dn} : A collection of n files, where j ∈
[1, n] is the identifier of file Dj . The ciphertext collection C =
{(1, C1), . . . , (n,Cn)}.
• W = {w1, . . . , wm} : A set of m keywords, where i ∈

[1,m] is the identifier of keyword wi.

• ID(wi) = (id1, . . . , id#wi) : A sequence of #wi

identifiers of files containing keyword wi.

• ID(Di) = (id1, . . . , id#Di) : A sequence of #Di

identifiers of keywords contained in file Dj .

• I = {Ts, As} : The ranked inverted index consists of a

search table Ts and a search array As.

• V : The verifiable matrix with m× n entries.

• TKw, TK∗(D) : The search token generated for keyword

w and the add/delete token generated for file D.

• Cw,K : The results for the top-K search of keyword w.



B. Ranked Inverted Index

The ranked inverted index I = {Ts, As}, where for each

word w ∈ W , a list Lw of #w nodes are randomly stored

in the search array As and the pointer to the head of Lw is

included in the search table Ts. Specifically, a search array As

is an array that consists of #As cells with As[i] denoting the

value stored at location i. A search table Ts is a dictionary

that stores #Ts key-value pairs. If a pair (k, v) exists in Ts,

then v is the value associated with key k in Ts. Furthermore,

Ts[k] = v denotes storing the value v under key k in Ts.

In our construction, #Ts = m + 1 where the first m entries

correspond to keywords in W and the last entry points to an

unused cell in As. Similar to [5], we set #As = |C|/8 + z,

where |C| is the size of ciphertext collection and z ∈ N is

the size of unused cells. Unlike the previous work, in which

file identifers randomly appear in ID(w), our scheme requires

ID(w) to have the following ranking property:

Ranking property. Let Ri,j denote the rank of file Dj ∈ D for
keyword wi ∈ W , and let Li,j denote the order of j in ID(wi).
For j, k ∈ ID(wi), we have that j is before k (denoted by
Li,j < Li,k) if the rank of Dj is higher than that of Dk for
wi, (denoted by Ri,j < Ri,k).

That is, given ID(w) = (id1, . . . , id#w), idj is the identi-

fier of the rank-j file for j ∈ [1,#w]. Thus, for each keyword

w ∈ W , the ranked list Lw can be defined as follows:

Ranked list. Lw is composed of #w nodes (N1, . . . , N#w)
and defined as Nj = 〈idj , addrs(Nj+1)〉, where idj ∈
ID(w) is the identifier of the rank-j file for keyword w and
addrs(Nj+1) is the address of node Nj+1 in the search array
As. In the special case, N#w = 〈id#w,0〉.
C. Verifiable Matrix

Let H : {0, 1}∗ → {0, 1}κ be a collision-free hash function

where κ is a parameter for securing the system. Since a

keyword appears in, at most, n files, the verifiable matrix V
is an m × n matrix where row i ∈ [1,m] corresponds to a

keyword w ∈ W and column j ∈ [1, n] corresponds to a rank

j ∈ [1, n]. The relationship between the row i and the keyword

w is determined by the key-value pairs of the search table Ts.

Let V [i][j] denote the entry in the i-th row and j-th column,

and let Ri,j be a random string stored at V[i][j]. We have:

V [i][j] =
{

H(idj−1, idj , idj+1), j ∈ [1,#w]
Ri,j , otherwise,

(1)

where V [i][j] records the information of rank-(j − 1), rank-j,

and rank-(j+1) files for keyword w. V [i][1] = H(0, id1, id2),
and V [i][#w] = H(id#w−1, id#w,0). For j ∈ [#w + 1, n],
V [i][j] is filled with random strings.

IV. THE PROPOSED VRSSE SCHEME

A. Our Construction

Suppose that the whole system is secured under parameter

κ. Let SKE = (Gen,Enc,Dec) be a symmetric-key encryp-

tion scheme, where Gen is a key generation algorithm, Enc

is an encryption algorithm, and Dec is a decryption algorithm.

Let F = {f : {0, 1}3κ → {0, 1}κ} be a two-universal

family of functions, let H1 : {0, 1}∗ → {0, 1}∗ be random

oracles, and let H : {0, 1}∗ → {0, 1}κ be a collision-free hash

function. Let F : {0, 1}κ × {0, 1}∗ → {0, 1}κ, G : {0, 1}κ ×
{0, 1}∗ → {0, 1}∗, P : {0, 1}κ × {0, 1}∗ → {0, 1}κ, and

S : {0, 1}κ × {0, 1}∗ → {0, 1}κ be pseudorandom functions

(PRFs). Our VRSSE scheme is constructed as follows:

(Initial phase)
• Setup(1κ) → (PK,SK) : The user randomly choos-

es four κ-bit strings k1, k2, k3, k4 as keys of PRFs, runs

SKE.Gen(1κ) to generate ke, and generates (N = pq, g).
Let P(y) be a random prime x such that f(x) = y. We have

PK = (N, g, f) and SK = (p, q, ke, k1, k2, k3, k4).

(Store phase)
• EncIndex(SK,D,W)→ I : Let As be an array of size

|C|/8 + z and Ts be a dictionary of size m + 1. For each

keyword w ∈ W , the user performs following:

(1) She creates list Lw by choosing #w random locations

in As. For i ∈ [1,#w], Ni is set to 〈idi, addrs(Ni+1)〉 as

defined in Section III-B, and will be encrypted with Eq. 2:

As[addrs(Ni)] = (Ni ⊕H1(Pk3(w), ri), ri), (2)

where ri is a κ-bit random string.

(2) She stores the address of the head of Lw in Ts by setting:

Ts[Fk1(w)] = addrs(N1)⊕Gk2(w). (3)

Let free denote a keyword not in W . The user creates an

unencrypted free list Lfree by randomly choosing z ∈ N unused

cells in As. Let F1, . . . ,Fz be the free nodes in As. For 1 ≤
i ≤ z, she sets As[addrs(Fi)] = 〈0, addrs(Fi−1)〉, where

addrs(F0) = NULL. Then she sets Ts[free] = addrs(Fz).
Finally, she outputs the encrypted index I = (Ts, As).

• EncFile(D, SK) → C : For each file Di ∈ D, the user

runs SKE.Enc(ke, Di) to generate the ciphertext Ci. The

ciphertext collection C = {(1, C1), . . . , (n,Cn)}.
• AccGen(PK,SK,D,W)→ (V,A) : Let V be an m×n

matrix as defined in Section III-C. For each keyword w ∈ W ,

the user locates the row in V by computing Fk1(w), and she

encrypts each non-random value by calculating V[Fk1(w)][j]⊕
Sk4(w). The RSA accumulator [11] is applied to verify the

correctness of the search results. Then, she calculates A =
(AC ,AI) with Eqs. 4∼5 and stores them locally:

AC = g
∏n

i=1 P(H(i,H(Ci))) mod N, (4)

AI = g
∏m

i=1

∏n
j=1 P(H(i,V[i][j])) mod N. (5)

(Search phase)
• SrcToken(w, SK) → TKw : To retrieve top-K files

containing keyword w, the user generates a search token

TKw = (τ1, τ2, τ3) = (Fk1(w), Gk2(w), Pk3(w)).

• Search(TKw,K, I) → Cw,K : On receiving TKw =
(τ1, τ2, τ3) = (Fk1(w), Gk2(w), Pk3(w)), the CSP locates

Ts[τ1] and returns ⊥ if τ1 is not in Ts. Otherwise, it computes



α1 = Ts[τ1] ⊕ τ2 to recover the pointer to the head of Lw.

Suppose As[α1] = (v1, r1); it recovers N1 by computing:

(id1, addrs(N2)) = v1 ⊕H1(τ3, r1). (6)

For 2 ≤ i ≤ K + 1, node Ni will be recovered as above. Let

ID(w,K) = {id1, . . . , idK} be the identifers of the top-K
files containing keyword w. The returned ciphertexts are set

as Cw,K = (idK+1, {(i, idi, Cidi)}i∈[1,K]∧idi∈ID(w,K)). Note

that a top-K query will be extended to a top-(K +K ′) query

if there are K ′ files in Cw,K marked with delete.

• GenProof(TKw, PK, C,V) → Π : The CSP computes

proofs Π = {πC , πI,1, πI,2} by computing:

πC = g
∏

i�∈ID(w,K) P(H(i,H(Ci))) mod N,

πI,1 =
∏

idj �∈ID(w,K)

P(H(τ1,V [τ1][j])),

πI,2 = g
∏

i �=τ1

∏n
j=1 P(H(i,V[i][j])) mod N.

(7)

(Recovery phase)
• V erify(PK,SK, Cw,K ,Π,A) → {0, 1} : For

each ciphertext in Cw,K , the user first computes xi =
P(H(idi, H(Cidi))) and then checks if Eq. 8 holds:

AC = (πC)
∏

idi∈ID(w,K) xi mod N. (8)

The user then reconstructs V[Fk1(w)][1], . . . ,V[Fk1(w)][K]
from Cw,K . Next, for j = 1, . . . ,K, she computes zj =
P(H(Fk1(w),V[Fk1(w)][j])) and checks if Eq. 9 holds:

AI = (πI,2)
πI,1·

∏K
j=1 zj mod N. (9)

If so, the V erify algorithm outputs 1, otherwise it outputs 0.

• DecFile(Cw,K , SK) → {D}C∈Cw,K
: The user runs

SKE.Dec(ke, C) to recover D for each ciphertext in Cw,K .

(Update phase)
• UpdToken(SK,D) → TK∗(D): To add file Dn+1, for

each keyword widi with idi ∈ ID(Dn+1), the user:

(1) determines the rank of Dn+1, denoted as J, and then

computes βi = (βi[1], βi[2], βi[3], βi[4]):

βi[1] = Fk1(widi), βi[2] = 〈J− 1,V ′[βi[1]][J− 1]〉,
βi[3] = 〈J,V ′[βi[1]][J]〉, βi[4] = 〈J + 1,V ′[βi[1]][J + 1]〉,

where V ′ as the updated verifiable matrix can be computed:

V ′[βi[1]][J− 1] = H(idJ−2, idJ−1, n+ 1)⊕ Sk4(widi),

V ′[βi[1]][J] = H(idJ−1, n+ 1, idJ)⊕ Sk4(widi),

V ′[βi[1]][J + 1] = H(n+ 1, idJ, idJ+1)⊕ Sk4(widi),

where idJ is the identifier of the rank-J file for keyword widi

in the original verifiable matrixes V , which can be obtained

by performing a top-K search on the cloud.

(2) computes λi = (Gk2(widi), Pk3(widi), 〈n + 1,0〉 ⊕
H1(Pk3(wid), ri), ri) where ri is a random string.

Finally, the user sets the update token TK∗(D) =
TKadd(D) = {(n+1, Cn+1),C, τv, τa}, where C = (R1,n+1,
. . . ,Rm,n+1) is a sequence of κ-bit random strings, τv =
(β1, . . . , β#Dn+1

) and τa = (λ1, . . . , λ#Dn+1
).

To delete file Di, the user sets the update token TK∗(D) =
TKdel(D) = (i, delete) and then sends it to the CSP.

• AccUpdate(PK,SK, TK∗(D),AC ,AI) → (A′C ,A
′
I) :

If TK∗(D) = TKadd(D), the user updates AC by computing:

A′C = (AC)
P(H(n+1,H(Cn+1))) mod N. (10)

For each keyword widi with idi ∈ ID(D), she computes:

zi =

∏
j∈[J−1,J+1] P(H(Fk1(widi),V ′[Fk1(widi)][j]))∏
j∈[J−1,J+1] P(H(Fk1(widi),V[Fk1(widi)][j]))

,

where J is the rank of file Dn+1 for keyword widi . Then she

updates AI by computing:

A′I = (AI)

∏

widi
/∈ID(D)

Ri∗,n+1

∏

widi
∈ID(D)

zi mod P
mod N,

where i∗ = Fk1(widi), P = (p− 1)(q − 1), and Ri∗,n+1 ∈ C
is a random string.

If TK∗(D) = TKdel(D), the user first generates ci-

phertexts C ′ and Ci by running SKE.Enc(ke,delete) and

SKE.Enc(ke, Di), respectively. She then computes x =
P(H(i,H(Ci))), x′ = P(H(i,H(C ′))), and d = x′/x
mod (p− 1)(q− 1) . She then updates AC to A′C = (AC)

d.

• Update(I, C,V, TK∗) → (I ′, C′,V ′) : If the update

token TK∗(D) = TKdel(D) = (i, delete), the CSP replaces

the ciphertext Ci with delete. Otherwise, given TK∗(D) =
TKadd(D) = {(n+ 1, Cn+1),C, τv, τa}, the CSP first adds C
as the last column of the verifiable matrix and then updates C
to C′ by adding (n+1, Cn+1) to C. For 1 ≤ i ≤ #Dn+1, the

CSP performs updates as follows:

(1) It computes ϕ← Ts[free] to find the last free location ϕ
in the search array As, and it calculates (0, ϕ−1)← As[ϕ] to

find ϕ−1, the address of next free node in As. Then, it updates

the search table to point to ϕ−1 by setting Ts[free] = ϕ−1.

(2) It recovers a pointer to the first node N1 by computing

α1 ← Ts(βi[1])⊕λi[1]. Then, it recovers nodes {N2, . . . , NJ}
in the search array by running the Search algorithm, where

J is the rank of file Dn+1.

(3) Let αJ denote the address addrs(NJ) of node J in the

search array. It stores the new node at location ϕ and sets

As[ϕ] = (λi[3]⊕〈0, αJ〉), λi[4]). If As[αJ−1] = (v, r), it sets

As[αJ−1] = (v ⊕ 〈0, ϕ⊕ αJ〉, r).
(4) It sets Ts[βi[1]] = ϕ⊕ λi[1] if J = 1.

(5) It moves V[βi[1]][j] backward one column for j ∈
[J + 1, n]. Then it replaces V[βi[1]][J − 1], V [βi[1]][J],
and V [βi[1]][J + 1] with the updated ciphertexts in

βi[2], βi[3], βi[4].

B. Security Sketch

The SSE scheme proposed in [5] has been proven to be

CPK-2 secure. We will show that our scheme leaks only extra

rank information compared with [5]. In the storage phase, the

message from the user to the CSP is {C, I,V}, where C is

generated by the SKE scheme that has been proven to be CPA

secure under the adaptive adversaries. Furthermore, I and V
are encrypted by PRFs, which are secured by the secret keys

k1, . . . , k4. Therefore, our scheme is as secure as [5].



TABLE I
COMPARISON OF COMPUTATION COST

Server Store Search Add Delete
Kurosawa [4] O(1) O(n ·m) O(1) O(1)
Our VRSSE O(1) O(n ·m) O(1) O(1)
User Store Search Add Delete
Kurosawa [4] O(n ·m) O(n) O(m) O(1)
Our VRSSE O(n ·m) O(K) O(#D) O(1)

TABLE II
COMPARISON OF COMMUNICATION COST

Kamara [5] Kurosawa [4] Our VRSSE
Store O(

∑
#w +m) n · (m+ 128) O(

∑
#w + n ·m · κ)

Search O(κ) n+O(κ) O(κ)
Add O(#D · κ) m O(m · κ+#D · κ)
Delete O(κ) O(κ) O(κ)

In the update phase, the message from the user to the CSP

is {TK∗}. If TK∗ = TKadd, the CSP will know the identifier

of the newly added file D. Then, it will update the encrypted

ranked list I by adding a node associated with file D before

the J-th node in Lw where J denotes the rank of D for

keyword w. Furthermore, the CSP will update the J−1-th, J-

th, and J+1-th columns of the verifiable matrix V . Therefore,

the CSP will know the rank of file D apart from the access

pattern and search pattern. However, TKadd is in the encrypted

forms and the keyword/file contents are kept secret from the

CSP. If TK∗ = TKdel, no more information will be leaked

except the identifier of the removed file.

In the search phase, the message from the user to the CSP

is {TKw}, the construction of which is the same as [5]. Given

TKw, the CSP will know the identifers of the K best match

files and the rank of each returned file. However, TKw is

encrypted by the PRFs under secret keys. The CSP cannot

deduce file/keyword contents without these keys because of

the security of PRFs. Therefore, our VRSSE scheme leaks no

more information than [5] except for the rank information. �

V. EVALUATION

A. Performance Analysis

We will compare the performance of our VRSSE scheme

with the schemes proposed in [5] and [4] in terms of

computational and communication complexities. For ease of

comparison, the other schemes are denoted as Kamara [5]

and Kurosawa [4], respectively. For computation cost, we only

consider the most expensive operations, i.e., the calculation of

the RSA accumulators. Note that Kamara [5] is not verifiable,

and thus, its cost is 0; it will not be listed. Given a collection

of n files and m keywords, the comparison results are shown

in Table I, where K is the parameter for a top-K search and

#D is the total number of keywords contained in D.

All three schemes encrypt files with SKE, and the sizes of

the ciphertexts are the same. Therefore, we only consider the

sizes of index/matrix/tokens. The comparison of communica-

tion costs is shown Table II, where κ is the security parameter,

#w is the number of files containing keyword w, and other

notations are the same as those in Table I.
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Fig. 2. Execution time in the search phase.
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Fig. 3. Execution time in the recovery phase.

B. Parameter Setting

Experiments are conducted on a local machine running

the Microsoft Windows 7 Ultimate operating system with an

Inter Core i3 CPU running at 2.3GHz and a 4GB memory.

The programs are implemented in Java and compiled using

Eclipse 4.3.2. The cryptographic algorithms are implemented

with JPBC library [12].

To validate the effectiveness and efficiency of our scheme

in practice, we conduct a performance evaluation on a real

data set, the Internet Request For Comments dataset (RFC) 1.

This data set has 6,870 plaintext files with a total size of about

349MB. The average size of each file is 52KB. We use the

Hermetic Word Frequency Counter 2 to extract keywords from

each RFC file, and we choose [1, 5] keywords for each file after

ranking them by frequency of occurrence. In the experiments,

we select n = 1, 000 files from the data set. The number

of distinct keywords is m = 884, and each keyword appears

in 1∼44 files. We execute each experiment multiple times to

obtain the average execution time.

C. Experiment Results

We will compare the performance of our scheme with

Kamara [5] and Kurosawa [4] in terms of the communication

cost and execution time. Since Kamara [5] is unverifiable, it

lacks algorithms AccGen, GenProof, Verify, and AccUpdate. In

all three schemes, SKE is employed to encrypt file contents,

and the computation and communication costs of generating a

1http://www.ietf.org/rfc.html
2http://www.hermetic.ch/wfc/wfc.htm
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Fig. 4. Communication cost and execution time in the update phase.

search token are very small. Therefore, we omit comparison of

the algorithms EncFile and SrcToken in our experiments.
Fig. 1-(a) shows the comparison results of communication

costs in the store phases. For the EncIndex algorithm,

Kamara [5] generates a copy of index and thus, incurs the

most cost. For the AccGen algorithm, our scheme is the most

expensive because of the transmission of the verifiable matrix.

Fig. 1-(b) shows the comparison results of execution time in

the store phase. To generate an encrypted index, our scheme

needs to encrypt m entries in the search table and
∑

#w cells

of the search array. Kamara [5] needs to encrypt dual structures

and Kurosawa [4] needs to encrypt n bits for each keyword.

Therefore, our scheme incurs the minimal execution time for

EncIndex. To generate accumulated values, our scheme needs

to encrypt each non-random value in the verifiable matrix;

therefore, it incurs more computation time than Kurosawa [4].
Fig. 2 shows the execution time in the search phase. In the

Search algorithm, our scheme only needs to decrypt K + 1
cells to return the top-K files; thus, it incurs the minimal cost.

Similarly, the communication cost can be reduced to K/#w.

To generate a proof, our GenProof algorithm generates Π,

the computation cost of which is mainly impacted by K. Our

execution time decreases from 233s to 211.74s as K increases

from 10 to 40.
Fig. 3 shows the comparison results in the recovery phase.

Since our scheme only needs to decrypt K best-match files,

it incurs the minimal cost for DecFile. To verify the search

results, our scheme needs to calculate xi and zi for each

returned file. Therefore, the computation cost is impacted by

K. The execution time for our Verify algorithm grows from

0.74ms to 4.9ms as K increases from 5 to 40.
Fig. 4 shows the comparison results in the update phase. In

our scheme, given a newly added file D associated with #D
keywords, the user calculates and transmits β[i], λ[i] in the

UdpToken algorithm and zi in the AccUpdate algorithm for

i ∈ [1,#D]. Further, the CSP needs to update corresponding

forwarding pointers for the nodes in Lw. Therefore, both the

communication and computation costs of adding a file are

impacted by #D. In terms of deleting a file, the costs of the

AccUpdate algorithm in both our scheme and Kurosawa [4]

are constant. Moreover, the costs of the Update algorithm are

almost 0 in both schemes, in which means the CSP only needs

to replace the ciphertext with delete.

VI. CONCLUSION

Due to the high volume and velocity of big data, storing big

data on cloud-based platforms is wise. In such an environment,

a key problem is how to perform a top-K search on a set

of dynamic files securely, efficiently, and in a way that is

verifiable. In this paper, we propose a VRSSE scheme to

achieve verifiable updates and ranked searches on a set of

encrypted files. Experiment results show that our scheme has

a better search performance than existing SSE schemes, since

the user can retrieve data of interest on demand. However, our

VRSSE scheme supports only single-keyword searches. As

part of our future work, we will try to design a multi-keyword

VRSSE scheme to achieve conjunctive keyword searches.
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