
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/12 pp309–321
DOI: 10 .26599 /TST.2019 .9010075
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1


C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Parallel Optimization of the Crystal-KMC on Tianhe-2

Jianjiang Li, Baixue Ji, Yun Yang, Peng Wei�, and Jie Wu

Abstract: The Kinetic Monte Carlo (KMC) is one of the commonly used methods for simulating radiation damage

of materials. Our team develops a parallel KMC software named Crystal-KMC, which supports the Embedded

Atom Method (EAM) potential energy and utilizes the Message Passing Interface (MPI) technology to simulate the

vacancy transition of the Copper (Cu) element under neutron radiation. To make better use of the computing power of

modern supercomputers, we develop the parallel efficiency optimization model for the Crystal-KMC on Tianhe-2, to

achieve a larger simulation of the damage process of materials under irradiation environment. Firstly, we analyze the

performance bottleneck of the Crystal-KMC software and use the MIC offload statement to implement the operation

of key modules of the software on the MIC coprocessor. We use OpenMP to develop parallel optimization for the

Crystal-KMC, combined with existing MPI inter-process communication optimization, finally achieving hybrid parallel

optimization. The experimental results show that in the single-node CPU and MIC collaborative parallel mode, the

speedup of the calculation hotspot reaches 30.1, and the speedup of the overall software reaches 7.43.

Key words: Kinetic Monte Carlo (KMC); Tianhe-2; parallel optimization; OpenMP

1 Introduction

The physical properties of metallic materials are
relatively stable. In the normal state, the atoms continue
to perform thermal motion. However, most atoms
oscillate near the minimum in the potential energy
surface region, and atomic transition events are less
likely to occur. Only extreme conditions, such as
neutron irradiation, can cause certain atoms to obtain
enough energy to exceed the potential energy barrier
and complete transition. The accumulation of these

� Jianjiang Li, Baixue Ji, and Yun Yang are with the
Department of Computer Science and Technology, University
of Science and Technology Beijing, Beijing 100083,
China. E-mail: jianjiangli@163.com; baymaxuer@163.com;
yangyun 1110@163.com.
� Peng Wei is with Industrial and Commercial Bank of

China Shandong Branch, Jinan 250001, China. E-mail:
weissnh@163.com.
� Jie Wu is with the Department of Computer and Information

Sciences, Temple University, Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.
�To whom correspondence should be addressed.

Manuscript received: 2019-10-08; accepted: 2019-12-05

transitions is the main reason for the change in material
physical properties. At present, simulation tools are
widely used to predict the effects of neutron irradiation
on pressure vessels and containment shells by utilizing
the powerful computing power of supercomputers[1].

The Kinetic Monte Carlo (KMC) is the most common
classical method for simulating radiation damage of
materials. The KMC method[2] obtains the transition of
the system by calculating the probability of events using
random numbers. Therefore, in the KMC simulation, the
focus is not on the atom but on the system. Thus, the
simulation time is an exponential factor of the system
configuration transition. The KMC method can describe
the dynamic characteristics of the system. The time
scale and spatial scale of the simulation are relatively
large, and the long-term simulation can be completed.
The interaction force between atoms of each substance
has different characteristics, so a potential energy
function can be introduced to assist computers to carry
out material evolution more accurately. The simulated
materials in this paper are mainly composed of Body-
Centered Cubic (BCC) structure Reactor Pressure Vessel
(RPV) steel[2] (Fe-based alloy containing impurities,



310 Tsinghua Science and Technology, June 2021, 26(3): 309–321

such as Cu, Ni, and Mn, etc.). For this material, the
Embedded Atom Method (EAM) potential[3] is used
to describe the evolution characteristics of the system
accurately.

Hoffmann et al.[4] developed a dynamic Monte Carlo
serial open source software called kmoss. They studied
microfacies in complex reaction networks by simulating
the basic processes that occurred at the active sites of
static lattices. Domain et al.[5] simulated the radiation
damage of RPV steel by LAKIMOKA, which used
Object Kinetic Monte Carlo (OKMC) method. Borodin
et al.[6] used the CASINO-LKMC program to simulate
the formation process of helium-vacancy clusters in iron
with a BCC structure.

KMC is essentially a serial algorithm; that is, the
system should be in a specific state at a certain time
and changes over time to transitions between states.
However, serial computing is slow and limits the
time and space resources available for simulation. The
emergence of large parallel computers, distributed shared
memory processors, and PC-Cluster, etc., has made
more computing resources available. They support long-
timescale and large-scale KMC simulations. At present,
the research on KMC parallel algorithm has become one
of the most important research directions. Owing to this
effect, many scholars have studied and proposed some
KMC parallel simulation algorithms or frameworks.

Shim and Amar[7] proposed the synchronous
Sulrlattice (SL) algorithm to avoid conflicts between
processors. On this basis, Martı́nez et al.[8] proposed
a rejected KMC parallel algorithm based on domain
decomposition, which introduced empty events into each
subdomain to ensure that the total transition rate of each
subdomain was the same.

An open source KMC parallel framework SPPARKS
was developed by the Sandia National Laboratories,
USA. In addition to rejected KMC, it also provided non-
rejected KMC and Multicanonical Monte Carlo (MMC)
algorithms[9]. SPPARKS is a widely used parallel KMC
software framework that supports multiple potential
functions. However, it does not support the EAM
potential[10], so it cannot be used to simulate the radiation
damage of nuclear cladding materials.

MMonCa is an OKMC simulation software written
by Martin-Bragado et al.[11] It provides thread
parallelism for two-axes region segmentation without
communication between parallel regions. Leetmaa
and Skorodumova[12] implemented a lattice dynamics
simulation parallel framework called KMCLib, which is

easy to customize and integrate with other software.
Many research groups have independently designed

new physical models to simulate a particular type
of system; thus, it is difficult to develop a parallel
software that satisfies all KMC applications. Both
SPPARKS and KMCLib show better parallelism and
scalability, but in addition to the KMC applications
they have implemented, users need to implement the
program interfaces according to their physical models.
Also, because of the multi-model compatibility needs,
platform software is more complicated in terms of logic
and implementation than dedicated software.

To meet the needs of simulating the specific
environment of irradiation damage, our research group
has independently developed a parallel KMC simulation
software called Crystal-KMC[13]. The parallel software
is based on lattice dynamics; it supports EAM potential
functions and takes full advantage of the characteristics
of data sharing in shared memory. To meet the needs of
large-scale applications, we optimize the Crystal-KMC
at different levels and scales based on the architecture of
the Tianhe-2 supercomputer.

The rest of the paper is organized in the following
manner. Section 2 gives a brief introduction to
Crystal-KMC. Section 3 elaborates on the performance
optimization of Crystal-KMC on Tianhe-2 (including
performance bottleneck analysis, kernel optimization,
OpenMP optimization, and overall hybrid optimization).
Section 4 is the analysis of the experiment and results,
and Section 5 summarizes the study.

2 Introduction to Crystal-KMC

The KMC simulation is a method used to simulate
the long-term evolution of systems by constructing
a stochastic process. It is also used in the Crystal-
KMC software. This method has been implemented
by various algorithms, such as the random selection
method algorithm, the Gillespie Stochastic Simulation
Algorithm (SSA), and the Variable Step-Size Algorithm
(VSSA), etc.[14] Its main uses are for the simulation
of crystal surface diffusion[15], metal surface gas
adsorption[16], thin film growth[17], grain growth[18], and
material irradiation damage[4]. The basic idea of the
method is: firstly, to determine the initial state of the
system which includes the number of events M and the
related velocity constant Kij , which changes with each
event. Then the number generated by the random number
generator determines the time t needed to change from
the initial state to the next state, and the events (paths)



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 311

selected by the process. After the corresponding changes
occur, the system will transit from the initial state to the
next state. This method can simulate a longer time scale,
which is usually in seconds or longer.

The Crystal-KMC, a KMC parallel software
developed by our group, is mainly used to simulate the
aging of nuclear cladding materials under fast neutron
irradiation. The software supports the EAM potential
function, customizes radiation damage of nuclear
materials, and innovatively proposes an optimization
method to reduce the communication overhead[13].
Figure 1 shows the basic process of Crystal-KMC
performing transition simulation within a certain time
threshold. Note that in Fig. 1, “Time” means the time
threshold, r1 and r2 are two random numbers, ranging
from 0 to 1, which are used to calculate the transition
path and the simulation time required for the transition,

Fig. 1 Basic flow of Crystal-KMC performing transition
simulation within a certain time threshold.

respectively. The initial value of t is 0, and the value of
�t is 1:25 � 10�8 s.

The Crystal-KMC software is divided into
ten modules. However, the energy module, the
communication module, and the calculation transition
module (simulation) are repeatedly called and
executed. From Fig. 2, we can see that the most time-
consuming module is the computation transition module
(simulation). With the expansion of scales, the time-
consuming property of the module of energy, simulation,
and communication increases gradually. If the scale
is more significant, then the run time increases. It is
important to note that the communication part has been
significantly optimized in the Crystal-KMC such that it
will no longer be optimized in this paper. Therefore, we
focus on the energy module and the simulation module.
For the energy module, we use task parallel optimization.
Whereas for the simulation module, we use task-parallel
optimization and data-parallel optimization.

3 Crystal-KMC Optimization on Tianhe-2

Since the development of high-performance computing
technology, it has been widely applied in geophysics,
atmospheric meteorology, industry, materials, and so on.
High-performance computing has become an important
research tool in science and technology. This section
focuses on the optimization of the Crystal-KMC on
Tianhe-2 supercomputer.

3.1 Performance bottleneck analysis

Firstly, parallel optimization for the Crystal-KMC
requires finding out the performance bottleneck of
the Crystal-KMC software. The Crystal-KMC contains
many modules, and the amount of code is huge.
Therefore, we take the module as the object and run
the Crystal-KMC to simulate the diffusion of vacancies
in iron on Tianhe-2 with single process and single thread
for different test scales, which are shown in Table 1. The
simulated space size represents the length, width, and

Fig. 2 Run time of modules in Crystal-KMC.



312 Tsinghua Science and Technology, June 2021, 26(3): 309–321

Table 1 Different test scales.
Scale No. Simulated space size Vacancy count Loop count

1 40 � 40 � 40 400 20
2 40 � 40 � 40 800 20
3 80 � 80 � 80 800 20

height of the simulated space. The running result is
shown in Fig. 2.

From Fig. 2, three time-consuming modules in the
Crystal-KMC are the transition computing module
(simulation), the communication module, and the
energy update module. The time-consuming property
of the communication module is mainly caused by
the overhead of Message Passing Interface (MPI)
communication. In the previous work, the MPI
communication of Crystal-KMC software has been
optimized[13]. Therefore, we focus on the optimization
of computing transition module and the energy update
module.

The energy update module is performed after each
execution of the KMC simulation in the Crystal-KMC
software. Thus, the KMC and its corresponding global
energy updates execution time are proportionally related
to the total computation time by the predefined time
threshold. Hence, the higher the time threshold, the
larger the proportion of the execution time of KMC to
the total computing time, and the smaller the proportion
of the computation time corresponding to energy update
to the total computing time.

For the small-scale test, the transition computing
module (simulation) in Crystal-KMC is analyzed by
using Intel VTuneTM Amplifier XE[19]. The results
show that the main time-consuming functions in the
module are energy() and calcul proba(). And calcul de()
accounts for more than 90% of the total run time, as
shown in Table 2.

Table 2 Run time of functions in simulation module.

Function Module CPU time
(s)

Overhead
time (s)

Spin time
(s)

calcul proba() Simulation 783.23 0 0
calcul de() Simulation 167.45 0 0
energy() Simulation 152.49 0 0

eval embed() Simulation 31.56 0 0
read pot file() Simulation 22.18 0 0

eatom() Simulation 13.45 0 0
choix

vaca-ncy jump() Simulation 7.56 0 0

onr
deplac-ement() Simulation 4.32 0 0

compute() Simulation 2.78 0 0
inc px() Simulation 0.36 0 0

The main function of energy() is to calculate the global
energy update after the transition (the energy update
module of Crystal-KMC). The performance bottleneck
is that the vacancy energy needs to be calculated
independently in the triple nested for loop. The
calcul proba() calculates the probability of a transition
event, and the calcul de() calculates the amount of
change in system energy before and after the transition
event. These parts are called many times and in the
loop at the same time, which can be optimized in
parallel. Table 3 describes the time-consuming functions
calcul proba() and calcul de().

In the process of program execution, calcul proba()
is called eight times for each KMC step. calcul de()
contains two functions, calcul dene v1() and calcul
dene v2(), whose execution time is basically the
same. In the process of program execution, calcul de()
calls calcul dene v1() twice as many times as
calcul dene v2() calls.

After analyzing the performance of Crystal-KMC, we
deal with the core code in the coprocessors on Tianhe-
2 using offload mode. Within each process, tasks are

Table 3 Introduction to the time-consuming functions calcul proba() and calcul de().
Function Feature Parameter Process of function

calcul proba() Calculate the probability of a
transition event.

(i, j, k) position of (di ,
dj , dk) vacancy transition
direction.

(1) Calculate the position of vacancy transition (the
three dimensions are similar);
(2) Get the entity type (atoms/vacancies) of the
transition destination;
(3) Calculate the amount of change in potential
energy before and after the transition–call the
calcul de();
(4) Calculate the probability of transitions.

calcul de() Calculate the amount of
change in system energy
before and after the transition
event.

(i, j, k) position of (di ,
dj , dk) vacancy transition
direction.

(1) Calculate the coordinates of the nearest
neighbor;
(2) Calculate energy based on the potential energy
model.



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 313

divided into threads of a multi-core coprocessor. Typical
transition computing simulation carries out global inter-
process communication and global energy update after
each vacancy transition. So, in each time step, the data
exchange between the main core and the coprocessor will
take place. The multiple for loop operations between data
exchanges can be performed on the Many Intergrated
Core (MIC). In the Crystal-KMC computation process,
some data remain unchanged during the entire simulation
process. This part of data only need to be offloaded once
and transmitted to the coprocessor.

3.2 Parallel optimization of the energy update
computation

3.2.1 Splitting of the energy update loop
It is necessary to eliminate data dependencies in the loop
area to parallelize efficiently. Data dependency refers to
the fact that the current iteration value of a variable
in a for loop depends on the result of the previous
iteration. The parallelization of nested loops can be
realized by loop transformation methods, such as loop
splitting. Here, the variables with data dependence can
be separated from the main body of the for loop to form
another loop (which is serially executed by the loop), and
the main loop without data dependence can be executed
in parallel.

From the result of Section 3.1, the energy() function
calculates the vacancy energy one by one. The function
made up of a for loop which traverses the interaction
force between each atom and the surrounding atoms in
the simulation region. The force beyond the truncation
radius is ignored. The EAM potential energy of each
atom interacting with those atoms within its intercept
radius is calculated by the eatom() function. Algorithm 1
shows the simplified EAM potential energy computation
pseudocode.

In each cell, there are many atoms, and the energy
of all atoms and other information are stored in a three-

Algorithm 1 EAM potential energy computation
1: for cell c D 0 to max //max is the size of space box
2: for atom i in cell c

3: pos=pos+size;
4: . . .
5: call eatom(); // performing EAM potential
energy operations
6: . . .
7: end for
8: end for

dimensional array EV[][][], while pos is used to locate
and retrieve the data of an atom. As iterations are made
in the loop, the variable pos will accumulate accordingly,
causing a data-dependent loop. To parallelize the
loop, it is necessary to split the code fragment with
data dependencies out of the main loop body. The
accumulation of pos variables is thus separated into a
new loop, and an array (array[]) is created to hold the
values of pos after the k-th iteration. Then the main loop
which contains the EAM potential energy computation
is transformed into a double nested loop, in which the
pos stored in array[] is used directly.

As shown in Algorithms 2 and 3, there is no data
dependency on the pos in the main loop. Therefore, the
main loop in the EAM potential energy computation
after loop split optimization can be executed in parallel.

3.2.2 Crystal-KMC acceleration on MIC using
offload mode

The Tianhe-2 supercomputer is a heterogeneous
platform. Its processors include CPU and MIC cards
which can be combined to improve performance. The
MIC card can be used as a coprocessor to perform
computationally intensive tasks, or as a common
node equivalent to CPU. We make full use of MIC
cards with outstanding computing power to perform
computationally intensive tasks and to improve the
performance of programs on a single node.

At present, the offload mode is the most common
Tianhe-2 working mode in use. Therefore, we also
use offload mode to accelerate the Crystal-KMC

Algorithm 2 New loop: Loop split optimization for EAM
potential energy computation
1: for cell c D 0 to max //max is the size of space box
2: for atom i in cell c

3: pos=pos+size;
4: array[k]=pos;
5: end for
6: end for

Algorithm 3 Main loop: Loop split optimization for
EAM potential energy computation
1: for cell c D 0 to max //max is the size of space box
2: for atom i in cell c

3: pos = array[k];
4: call eatom(); //performing EAM potential energy
operations
5: end for
6: end for



314 Tsinghua Science and Technology, June 2021, 26(3): 309–321

computation on the MIC card. After defining variables
and eliminating data dependency, specific statements
are needed to specify which processor code is executed
and how data are mapped between host memory and
accelerator memory. This mode requires executions
to be offloaded to the MIC card. Thus, for the
energy computation part, it is necessary to offload the
energy computation nested loop that traverses all the
information onto the MIC card.

Similar to OpenMP, MIC programming[20] also adds
compilation instructions, hiding a lot of details, and
needs no extra space. The MIC offload compilation
instructions in this section are shown in Algorithm 4.

“#pragma offload target” is an MIC offload compiler
instruction statement. When the program executes
the instruction statement, if there is a corresponding
compiler, the code segment related to the instruction
statement will be compiled and offloaded to the MIC
card for execution. Otherwise, the instruction statement
will be ignored. “#pragma end offload” means the end
of offload mode. The “nocopy” keyword indicates
only open or reserve space on MIC, and no data are
transmitted; “in”, “out”, and “inout” are responsible
for data transmission between CPU and MIC. “in”
means that when entering the offload area, the array
is transferred from CPU memory to MIC memory, only
incoming and not outgoing. “out” means that at the
end of the offload area, the data are returned from
MIC to CPU memory, only outgoing and not incoming.
“inout” means that when entering the offload area, the
array is transferred from CPU memory to MIC memory,
and when leaving, the array is returned. The detailed
meaning is shown in Table 4.

By analyzing the code of energy calculation, the data
can be divided into three categories: (1) The first type of
data only runs on the CPU, which need not be processed;
(2) the second type of data is permanent data on the MIC,
which remains unchanged throughout the simulation
process. For this part of the data, it is offloaded to the
MIC card before the iteration begins. For example, for
static data in energy computation, such as nghost1, T

Algorithm 4 MIC offload compilation instructions
1: #pragma offload target (mic:0)n
2: nocopy(p s:length(mic thread*nv*3)alloc if(.true.)free
if(.false.))n

3: in(nghost1:length()alloc if(.true.true)free if(.false.))
4: . . .
5: #pragma end offload

Table 4 Typical MIC offload statement.
Offload statement Function
#pragma offload
target

Specify the code area that needs to be
mapped and executed by mapping the
host buffer to the MIC device area. After
execution, it is transferred back to the host
area by the MIC device area.

#pragma offload
attribute (push,
target (mic))

Declare functions that are executed on the
target device. Used in pairs with #pragma
offload attribute(pop).

#pragma offload
target in (out/inout)

Used to map host-side data to the MIC
device. The target area can be executed in
the device data environment.

#pragma offload
target nocopy

Only open or reserve space on MIC.

(temperature), EAM potential energy table, and near-
atom index, it is necessary to use “nocopy” to open up
space before an offload to MIC on CPU. (3) The third
type of data is frequently exchanged between CPU and
MIC. These data are usually global variables, which
need to be stored in both CPU and MIC to ensure the
normal flow of data.

The code for the energy computation section is shown
in Algorithm 5.

Lines 1–3 declare that the eatom() function will
be executed on MIC. Lines 4–7 indicate there is

Algorithm 5 MIC parallel of energy computation in
Crystal-KMC (using offload mode)
NUM THREAD: Number of threads participating in parallel
computing
ene: energy of each atom
enetot: total energy
1: #pragma offload attribute (push, target(mic))
2: void simulation::eatom(. . . );
3: #pragma offload attribute(pop)
4: #pragma offload target (mic: 0)n
5: nocopy (p c: length(mic thread*nv*3) alloc if(.true.)
free if(.false.)). . .n
6: in (nghost1: length () alloc if(.true.true)free if(.fals-
e.)). . .n
7: out (enetot: length () alloc if(.true.true)free if(.false.))
8: #pragma omp parallel for private .it; i; j; k; cc, i0; j0;

k0, e v, e r, e s, ene) reduction(+:enetot)
9: f
10: for(i D 0I i<natom; i++)f
11: Calculate ene;
12: enetot+=ene;
13: g

14: g
15: #pragma end offload



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 315

space on the MIC, CPU data are mapped to the
MIC side, and the target area can be executed in the
device data environment. Line 8 indicates that the
OpenMP statement declares a private variable, the
energy computation, and the reduction of total energy.
Line 15 indicates the end of the offload on the MIC card.

3.3 Performance optimization of computing
transition module

During the Crystal-KMC software execution, the
calcul proba function is called eight times for each
KMC step. This is because, for materials with the BCC
crystal structure, the transition probability for each
vacancy is the sum of the probability of transitions
to its eight adjacent grid points. Every KMC process
needs to calculate the transition probabilities in eight
directions for all vacancies in the current computational
area, and the computation of transition probabilities in
these eight directions is independent of each other and
does not share data dependency, so this can be executed
in parallel.

Algorithm 6 shows multi-thread parallelism for
computing the probability part of the Crystal-KMC
software (using OpenMP).

After calculating the transition probability of
vacancies, it is necessary to calculate the transition of
each vacancy, and the calculation transition of each
vacancy is independent. Therefore, these vacancies can
be allocated to several threads for parallel execution. At
the end of the parallel region, the calculation results of
each thread need to be summed up.

Figure 3 shows the flowchart for parallel computation
of the EAM potential and the corresponding forces in
Crystal-KMC in offload mode. The initial value of t is
0, and the value of �t is 1:25 � 10�8 s. Algorithm 7
shows MIC parallel for vacancy transition computing in
Crystal-KMC.

3.4 CPU+MIC collaborative parallelism

After optimizing the offload mode, the hotspot
computation by the transition module was implemented
on the MIC card. Its task flowchart is shown in Fig. 4.

In optimization mode, when executing to the offload
area, its operations will be performed on the MIC (right
area in Fig. 4). At this point, the left area in Fig. 4
is suspended and the CPU is idle. When the execution
time on the MIC is long, the CPU will always be in a
waiting state. In order to make full use of the computing
power of the Tianhe-2 CPU, we use the master/slave

Algorithm 6 Multi-thread parallel probability computing
in Crystal-KMC
NUM THREAD: Number of threads participating in parallel
computing
tmpPlist[n]: store transition probability of vacancies in n

directions
tmpDElist1[n]: store energy changes caused by transition of
vacancies in n directions
1: #pragma parallel sections
2: f
3: #pragma section
4: f

5: tmpPlist[1] =calcul proba(x, y, z, 1, 1, 1, ii fia,
&dene);

//calculate the probability of direction 1
6: tmpDElist1[1]= dene; // energy change in
direction 1
7: #pragma omp critical
8: f

9: (*Plist).push back(tmpPlist);
10: (*DElist).push back(tmpDElist);
11: g

12: g

. . .
13: #pragma section
14: f

15: tmpPlist[8] = calcul proba(x, y, z, –1, –1, –1,
ii fia, &dene); // calculate the probability of direction 8
16: tmpDElist[8] = dene; // energy change in
direction 8
17: g

18: #pragma omp critical
19: f

20: (*Plist).push back(tmpPlist);
21: (*DElist).push back(tmpDElist);
22: g

23: g

cooperative parallel model[21].
In the nested loop of the energy computation part,

the EAM potential energy computation is performed by
dividing the cell, whereas the atomic potential energy
is calculated by calling “eatom()” in the loop body.
Therefore, from the previous analysis, the outer loop
traverses the cell, while the inner loop traverses all atoms
in the cell, while that of the inner loop is to traverse all
atoms in the cell. Since the data dependence between
loops has been eliminated, we use task partitioning to
run part of the cell’s computing tasks on CPU. The MIC
compiling instructions “signal” and “wait” are used to
achieve master/slave cooperative parallelism, as shown
in Algorithm 8. Firstly, by adding a “signal” statement,



316 Tsinghua Science and Technology, June 2021, 26(3): 309–321

Fig. 3 Flowchart for the parallel computation of the EAM
potential and the corresponding forces in Crystal-KMC
(offload mode).

Algorithm 7 MIC parallel for vacancy transition
computing in Crystal-KMC (using offload mode)
NUM THREAD: Number of threads participating in
parallel computing
Sum proba: Transition probability
do jump(): Vacancy transition
1: #pragma offload attribute (push, target (mic))
2: void simulation::do jump (. . . );
3: choix vacancy jump();
4: #pragma offload attribute (pop)
5: #pragma offload target (mic:0)nnocopy()
. . .
6: out (sum proba: length ()alloc if(.true.true)free
if(.false.))
7: #pragma omp parallel private (x; y; z) firstprivate
(numth, Plist, DElist, . . . )
8: f
9: #pragma omp for reduction (+:sum proba)
reduction (+:numnv)
10: for(iv=0; iv<nv; iv++)f
11: choix vacancy jump; // do vacancy transition
12: g

13: g

Fig. 4 Flowchart after MIC optimization.

Algorithm 8 CPU+MIC collaborative parallel for
optimization mode computing in Crystal-KMC
#pragma offload target (mic:0) signal (signal in1)
for(c D 0; i<max-kI c++)
f

mic compute(); // code in MIC
g

#pragma end offload
for(c Dmax-k; c<max; c++)
f

cpu compute(); // CPU+MIC Collaborative Parallelism
(Perform the same operation)
g

#pragma offload wait target(mic: 0) wait(in1) // Merging
with MIC

the CPU can continue to perform the related calculation
without waiting for the end of the MIC operation.
It will not stop the calculation until it encounters a
“wait” statement. Also, the CPU waits for the “signal”
statement to be transmitted before proceeding with
execution.

In the transition calculation module, the areas where
the CPU and MIC collaborate mainly focus on the nested
loops of the energy function; that is, they sum the
potential energy of all atoms in the molecular system.
For each calculation, the results from the previous
calculation with the position and velocity of the atom are
required. These data can be transferred from the CPU
to the MIC card when CPU handles other tasks. As a
result, the delay caused by data transmission is hidden
within the CPU calculation cycle.

4 Experiment and Result Analysis

The experiments in this paper were carried out on



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 317

the Tianhe-2 supercomputer. It has 16 000 computing
nodes, each with two 12-core Xeon E5 processors
and three 57-core Xeon Phi coprocessors (computing
accelerator cards). It has a total of 32 000 Xeon E5 main
processors and 48 000 Xeon Phi coprocessors; thus, a
total of 312 000 computing cores. In 2012, it was ranked
the first in the top 500 world’s fastest supercomputers,
with a peak computing speed of 54.9 Pflops (peta floating
point operations per second). Currently, it is ranked the
fourth[22]. The test environment for this paper is shown
in Table 5.

4.1 Performance test and result analysis of the
Crystal-KMC after optimization (using only
the master cores of Tianhe-2)

(1) Small scale test
We use the optimized Crystal-KMC software to

simulate the diffusion of vacancies in iron. The size
of the simulated space is 200�200�200 and the number
of particles is 1.6�107, among which the number
of vacancies is 200. Furthermore, the concentration
of copper atoms is 1%, the cutoff radius is 4, the
temperature is 600 ıC, and the potential function is the
EAM potential. The advance time of each step of the
KMC simulation system is 1.25�10�8 s, for a single
thread.

In this paper, Crystal-KMC is executed by a single
process on each node using a different number of nodes
(less than 128 nodes) each time. The execution results
are then recorded, as shown in Table 6. The approach
was executed three times in each case, and then we took
the average as the final result. The unit of execution time
is second (s). The test results of different scale tests are
shown in Figs. 5 and 6.

(2) Large scale test
The simulated space size is 1000�1000�1000 and

the number of particles is 1.6�107, among which the
number of vacancies is 1000. Also, the concentration
of the copper atom is 1%, the cutoff radius is 4, the

Table 5 Specific configuration of Tianhe-2.
Configuration Specific details

Operate system Kylin Linux
MPI MPI 3.0
CPU 32000 Intel Xeon CPU, 24 cores

Coprocessor 48 000 Intel Xeon Phi
Computing node 16 000

Network topology TH Express-2
Memory 1.4 PB
Hard disk 12.4 PB

Table 6 Optimized Crystal-KMC parallel execution time
(small-scale test).

Number of
processes

Execution time (s) Average
execution time (s)No. 1 No. 2 No. 3

1 1600.2 1591.4 1598.8 1596.8
2 836.7 849.9 850.8 845.8
4 457.6 461.1 459.8 459.5
8 266.4 272.6 259.2 269.4
16 157.8 152.5 153.5 154.6
32 83.1 87.2 85.3 85.2
64 49.4 51.2 51.5 50.7
128 30.0 33.1 30.5 31.2

Fig. 5 Execution time of optimized Crystal-KMC (small-
scale test).

Fig. 6 Speedup of optimized Crystal-KMC (small-scale
test).

temperature is 600 ıC, and the EAM potential function
is used. Each step of the KMC simulation system has a
forward time of 1.25�10�8 s for a single thread.

In this paper, Crystal-KMC is executed by a single
process on each node using a different number of nodes
(more than 128 nodes) each time. The execution results
are recorded and counted, as shown in Table 7. The
approach was executed three times in each case, and then
we took the average as the final result. The execution
time is in second (s).

The test results of different scale tests in Figs. 7 and
8 show that the Crystal-KMC improves the parallel
execution performance of the original program after



318 Tsinghua Science and Technology, June 2021, 26(3): 309–321

Table 7 Optimized Crystal-KMC parallel execution time
(large-scale test).

Number of
processes

Execution time (s) Average
execution time (s)No. 1 No. 2 No. 3

128 973.1 982.3 980.1 978.56
256 657.9 663.1 662.6 661.2
512 294.5 297.4 302.9 298.3
1024 196.7 190.8 190.3 192.5
2048 154.3 150.2 152.7 152.4

Fig. 7 Execution time of optimized Crystal-KMC (large-
scale test).

Fig. 8 Speedup of optimized Crystal-KMC (large-scale
test).

master cores migration by the MPI. However, when
conducting large-scale tests, as the number of processes
increases, the parallel speedup decreases. The reasons
are as follows:

The Crystal-KMC uses spatial region partitioning
for parallel execution and the MPI message driver to
reduce communication latency. However, the program
is responsible for task scheduling and load balancing
the main process when performing task partitioning.
When the number of computing nodes is small, a single
main process can complete task partitioning and load
balancing tasks in time. However, when the Crystal-
KMC uses more nodes to execute in parallel on the
Tianhe-2 supercomputer, the amount of computation and
communication required for task partitioning and load

balancing will become larger. Exceeding the computing
power of a single control process will lead to task
congestion. As a result, load balancing will take more
time and becomes a program acceleration bottleneck. In
the actual test process, as the size of the node increases,
the growth of the program speedup gradually decreases.
But when the number of nodes reaches or exceeds 4096,
the total execution time of the Crystal-KMC starts to
increase.

4.2 Performance test and result analysis of the
simulation module in the Crystal-KMC after
optimization (using only the slave cores of
Tianhe-2)

In this paper, we use OpenMP to optimize the Crystal-
KMC software in parallel on the Tianhe-2 slave
cores. Because the simulate module is the performance
bottleneck in Crystal-KMC, we use offload mode to
realize parallel optimization on the Tianhe-2 slave cores,
which further improves its performance.

The simulated space is 200�200�200 and the number
of particles is 1.6�107, among which there are 500
vacancies. The copper atom concentration is 1%, the
truncation radius is 4, the temperature is 600 ıC, and the
potential function is EAM potential. The advance time
of each KMC simulation system is 1.25�10�8 s. To test
the effect of using the offload mode, only the execution
time of the simulate module is counted. The test results
are shown in Figs. 9 and 10.

From Figs. 9 and 10, after optimization, the simulation
module in Crystal-KMC obtains a higher parallel
speedup when running on the slave cores.

4.3 Performance test and result analysis of the
Crystal-KMC after optimization (master/slave
collaborative cores parallelism of Tianhe-2)

The hybrid parallelism of the Crystal-KMC software is

Fig. 9 Execution time of the simulation module in Crystal-
KMC after optimization.



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 319

Fig. 10 Speedup of the simulation module in Crystal-KMC
after optimization.

realized by using the master/slave collaborative cores
parallelism of the Tianhe-2. The simulated space is
200�200�200 and the number of particles is 1.6�107,
among which are 500 vacancies. The copper atom
concentration is 1%, the truncation radius is 4, the
temperature is 600 ıC, and the potential function is
the EAM potential. The advance time of each KMC
simulation system is 1.25�10�8 s. Table 8 shows
the optimized Crystal-KMC parallel execution time
(master/slave collaborative cores parallelism of Tianhe-
2). The approach was executed three times in each case,
and then we took the average as the final result. The unit
of execution time is second (s).

From Figs. 11 and 12, when using the master/slave

Table 8 Execution time of the optimized Crystal-KMC
(master/slave collaborative cores parallelism of Tianhe-2).

Number of
processes

Execution time (s) Average
execution time (s)No. 1 No. 2 No. 3

1 485.45 488.39 489.44 487.76
2 292.13 288.30 290.62 290.35
4 184.34 187.20 194.59 188.71
8 126.09 130.31 132.52 129.64
16 95.13 96.16 95.39 95.56
32 81.38 80.42 76.94 79.58
64 73.30 72.47 71.28 72.35
128 64.88 66.13 65.88 65.63

Fig. 11 Execution time of the optimized Crystal-KMC
(master/slave collaborative cores parallelism of Tianhe-2).

Fig. 12 Speedup of the optimized Crystal-KMC (master/
slave collaborative cores parallelism of Tianhe-2).

collaborative cores optimization, the overall execution
time of the Crystal-KMC decreases while the speedup
increases. In comparison to using only the master
cores of Tianhe-2 (Fig. 5), the execution time reduces
significantly for less than 32 cores. However, when
the processes used more than 32 cores, the speedup
increased slowly, because the serial portion of the
program is not negatively affected by increments in
thread number. When the scale of the simulated atom
is larger, the advantage of multi-thread acceleration is
more evident.

5 Conclusion

To improve the scale of material irradiation damage
simulation and make full use of the huge computing
power of modern supercomputers, we propose the
parallel optimization of Crystal-KMC on Tianhe-
2. The computation-intensive modules of Crystal-
KMC run on the MIC coprocessor. The multi-thread
parallel optimization of Crystal-KMC is performed
by OpenMP. Combined with existing MPI inter-
process communication optimization, a hybrid parallel
optimization is developed. The test results show that in
the CPU+MIC collaborative parallel mode of Tianhe-2,
the speedup of calculation hotspot in Crystal-KMC can
reach up to 30.1 and the overall speedup of the software
is 7.43.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2017YFB0202104).

References

[1] Y. L. He, X. Y. Li, and Y. Wang, Current research status
and progress of nuclear energy virtual reactor in China and
abroad, (in Chinese), Nucl. Sci. Technol., vol. 3, no. 2, pp.
41–47, 2015.



320 Tsinghua Science and Technology, June 2021, 26(3): 309–321

[2] A. F. Voter, Introduction to the kinetic Monte Carlo method,
in Radiation Effects in Solids, K. E. Sickafus, E. A.
Kotomin, and B. P. Uberuaga, eds. Dordrecht, Netherlands:
Springer, 2007, pp. 1–23.

[3] M. S. Daw and M. I. Baskes, Embedded-atom method:
Derivation and application to impurities, surfaces, and other
defects in metals, Phys. Rev. B, vol. 29, no. 12, pp. 6443–
6453, 1984.

[4] M. J. Hoffmann, S. Matera, and K. Reuter, kmos: A lattice
kinetic Monte Carlo framework, Comput. Phys. Commun.,
vol. 185, no. 7, pp. 2138–2150, 2014.

[5] C. Domain, C. S. Becquart, and L. Malerba, Simulation
of radiation damage in Fe alloys: An object kinetic Monte
Carlo approach, J. Nucl. Mater, vol. 335, no. 1, pp. 121–145,
2004.

[6] V. A. Borodin, P. V. Vladimirov, and A. Möslang, Lattice
kinetic Monte-Carlo modelling of helium-vacancy cluster
formation in bcc iron, J. Nucl. Mater., vol. 367, pp. 286–291,
2007.

[7] Y. Shim and J. G. Amar, Rigorous synchronous relaxation
algorithm for parallel kinetic Monte Carlo simulations of
thin film growth, Phys. Rev. B, vol. 71, no. 11, p. 115436,
2005.

[8] E. Martı́nez, J. Marian, M. H. Kalos, and J. M. Perlado,
Synchronous parallel kinetic Monte Carlo for continuum
diffusion-reaction systems, J. Comput. Phys., vol. 227, no.
8, pp. 3804–3823, 2008.

[9] SPPARKS kinetic Monte Carlo simulator, http://
spparks.sandia.gov/, 2019.

[10] X. Y. Liu, J. B. Adams, F. Ercolessi, and J. A. Moriarty,
EAM potential for magnesium from quantum mechanical
forces, Model. Simul. Mater. Sci. Eng., vol. 4, no. 3, pp.
293–303, 1996.

[11] I. Martin-Bragado, A. Rivera, G. Valles, J. L. Gomez-Selles,
and M. J. Caturla, MMonCa: An object kinetic Monte
Carlo simulator for damage irradiation evolution and defect
diffusion, Comput. Phys. Commun., vol. 184, no. 12, pp.
2703–2710, 2013.

[12] M. Leetmaa and N. V. Skorodumova, KMCLib: A
general framework for lattice Kinetic Monte Carlo (KMC)

simulations, Comput. Phys. Commun., vol. 185, no. 9, pp.
2340–2349, 2014.

[13] J. J. Li, P. Wei, S. F. Yang, J. Wu, P. Liu, and X. F. He,
Crystal-KMC: Parallel software for lattice dynamics Monte
Carlo simulation of metal materials, Tsinghua Sci. Technol.,
vol. 23, no. 4, pp. 501–510, 2018.

[14] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar,
and L. A. Escaleira, Response Surface Methodology (RSM)
as a tool for optimization in analytical chemistry, Talanta,
vol. 76, no. 5, pp. 965–977, 2008.

[15] C. C. Battaile, The kinetic Monte Carlo method:
Foundation, implementation, and application, Comput.
Methods Appl. Mech. Eng., vol. 197, nos. 41�42, pp. 3386–
3398, 2008.

[16] G. F. Xie, D. W. Wang, and C. T. Ying, Molecular dynamics
simulation of Gd adatom diffusion on Cu(110) surface, (in
Chinese), Acta Phys. Sin., vol. 52, no. 9, pp. 2254–2258,
2003.

[17] C. Ruan, X. M. Sun, and Y. X. Song, Cellular method
combined with Monte Carlo method to simulate the thin
film growth processes, (in Chinese), Acta Phys. Sin., vol.
64, no. 3, p. 038201, 2016.

[18] L. G. Wang and P. Clancy, Kinetic Monte Carlo simulation
of the growth of polycrystalline Cu films, Surf. Sci., vol.
473, nos. 1�2, pp. 25–38, 2001.

[19] Intel VTuneTM Amplifier XE, https://software.intel.com/
en-us/vtune, 2018.

[20] B. Shen, G. Y. Zhang, S. H. Wu, X. W. Lu, and Q. Zhang,
Research of offload parallel method based on MIC platform,
(in Chinese), Comput. Sci., vol. 41, no. 6A, pp. 477–480,
2014.

[21] X. Liu, Research on parallel acceleration technology for
AMBER: A molecular dynamic simulation software on
TianHe-2 supercomputer, (in Chinese), Master dissertation,
National University of Defense Technology, Changsha,
China, 2015.

[22] China extends lead in number of TOP500 supercomputers,
US holds on to performance advantage, https://
www.top500.org/, 2019.

Jianjiang Li is currently a professor at
University of Science and Technology
Beijing, China. He received the PhD degree
in computer science and technology from
Tsinghua University in 2005. He was a
visiting scholar at Temple University from
Jan. 2014 to Jan. 2015. His current research
interests include parallel computing, cloud

computing, parallel compilation, and big data.

Yun Yang is currently a master degree
candidate at University of Science
and Technology Beijing, China. She
received the bachelor degree from Taiyuan
University of Technology in 2017. Her
current research interests include parallel
computing and cloud computing.



Jianjiang Li et al.: Parallel Optimization of the Crystal-KMC on Tianhe-2 321

Baixue Ji is currently a master student
at University of Science and Technology
Beijing, China. She received the BS
degree from South-Central University for
Nationalities in 2018. Her current research
interests include parallel computing and big
data.

Peng Wei received the master degree from
University of Science and Technology
Beijing, China in 2019. He is currently
a development engineer at Industrial and
Commercial Bank of China Shangdong
Branch. His research interests include
parallel computing, cloud computing, and
big data.

Jie Wu received the PhD degree from
Florida Atlantic University in 1989.
He serves as the director of Center for
Networked Computing and Laura H.
Carnell professor at Temple University. His
current research interests include mobile
computing and wireless networks, routing
protocols, cloud and green computing,

network trust and security, and social network applications. He is
a fellow of IEEE.


