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Abstract—In this paper, we address a promising applica-
tion in the Vehicular Cyber-Physical Systems (VCPS) called
roadside advertisement dissemination. Its application involves
three elements: the drivers in the vehicles, Roadside Access
Points (RAPs), and shopkeepers. The shopkeeper wants to
attract as many customers as possible, through using RAPs
to disseminate advertisements to the passing vehicles. Upon
receiving an advertisement, the driver may detour towards
the shop, depending on the detour distance. Given a fixed
number of RAPs and the traffic distribution, our goal is to
optimize the RAP placement for the shopkeeper to maximally
attract potential customers. This application is a non-trivial
extension of traditional coverage problems, the difference being
that we use RAPs to cover the traffic flows. RAP placement
algorithms may pose complex trade-offs. If we place RAPs at
locations that can provide small detour distances to attract
more customers, these locations may not necessarily be located
in heavy traffic regions. While heavy traffic regions cover
more flows, they can cause large detour distances, making
shopping less attractive to customers. To balance this tradeoff,
novel RAP placement algorithms are proposed. Since real-
world traffic distributions exhibit unique patterns, here we
further consider the Manhattan grid scenario and then propose
improved solutions. Real trace-driven experiments validate the
competitive performance of the proposed algorithms.

Keywords-Vehicular cyber-physical systems, advertisement
dissemination, placement, coverage problem.

I. INTRODUCTION

Vehicular Cyber-Physical Systems (VCPS) refer to a new

generation of vehicular systems; VCPS integrate compu-

tational and physical capabilities that can interact with

humans through many new modalities [1]. While traditional

vehicular systems were generally considered to be a common

component of the physical world, VCPS actively interact

with humans through communications which yield a very

tight coordination between cyber and physical resources [2].

Hence, it is critical for VCPS to consider the perceptions

and reactions of humans (i.e., the drivers in the vehicles).

The effectiveness and efficiency of VCPS depend on how

humans could benefit from such a system [3].

In this paper, we address a novel and promising applica-

tion in VCPS called roadside advertisement dissemination

[4]. Its application involves three basic elements: the drivers

in the vehicles (the human factor), Roadside Access Points

(RAPs), and shopkeepers. The shopkeeper wants to attract as

many customers as possible, by using RAPs to disseminate
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Figure 1. The scenario of the roadside advertisement dissemination.

electronic advertisements to passing vehicles. The drivers

may decide to go shopping or not upon receiving adver-

tisements, depending on the detour distance. An example is

shown in Fig. 1(a), where commuters drive home after work.

During their trip home, they receive an advertisement from

an RAP, and then, decide to detour to the shop. We observe

that the driver may not shop if the detour distance to the

shop is too large. This is because the desire to shop does not

outweigh the cost of the journey. If the shop is on the driver’s

way home, he or she may stop by due to convenience. We

focus on the scenario with one shop; however, our model

can be easily extended to scenarios with multiple shops.

Fig. 1(b) shows some traffic flows on the streets. Each

traffic flow represents a group of commuters traveling home

from work. Given a fixed number of RAPs and the traffic dis-

tribution that can be obtained from the previous records, we

focus on optimizing the RAP placement for the shopkeeper,

as to maximally attract potential customers. Our problem is

a non-trivial extension of traditional coverage problems, the

difference being that we use RAPs to cover the traffic flows.

A tradeoff exists between the traffic density and the detour

probability for the RAP placement problem. Let us consider

the placement of only one RAP in Fig. 1(b). If we place the

RAP at V1 near the shop, then this RAP can only cover traffic

flow 2, while traffic flow 1 is not covered. On the other hand,

if we place the RAP at V2, although both traffic flows 1 and 2

are covered, the nearby drivers are not likely to go shopping,

due to a large detour distance. Our problem becomes more

challenging when placing multiple RAPs. Let us consider

the placement of two RAPs in Fig. 1(b). Suppose these two

RAPs are placed at V1 and V2, respectively. Then, the RAP

at V2 is meaningless for the drivers in traffic flow 2, since

the RAP at V1 provides a smaller detour distance for those

drivers. Redundant advertisements do not provide additional



shopping incentives. If a driver decides not to go shopping

despite a smaller detour distance, then they would not go

shopping with a larger detour distance. Accordingly, the

geographical distribution of RAPs should also be controlled.

Furthermore, the real-world traffic distributions exhibit

certain patterns, which can be utilized for the RAP place-

ment. For example, the streets in Manhattan are mapped as

a grid, meaning that all the vehicles have only four possible

moving directions. This means that the RAP placement is

more controllable. Another interesting observation is that

multiple shortest paths exist, connecting a pair of locations

in the Manhattan grid streets. These properties pose several

unique challenges regarding RAP placement optimization.

Our main contributions are summarized as follows:

• We address a novel and promising application called

roadside advertisement dissemination, which follows

the design principle of VCPS. The model is a non-

trivial extension of traditional coverage problems.

• Two utility functions are used to model the driver’s de-

tour probability. Greedy solutions with ratios of 1−1/e
and 1−1/

√
e to the optimal solutions are proposed for

those two utility functions, respectively.

• Since the real-world traffic distributions exhibit certain

patterns, we further study the RAP placement problem

in the Manhattan grid street scenario, where we propose

solutions with tightened bounds.

• Extensive experiments are conducted to evaluate the

proposed solutions. The results are provided from dif-

ferent perspectives to provide insightful conclusions.

The remainder of this paper is organized as follows.

Section II surveys the related work. In Section III, the

general models are described. In Section IV, we discuss

the Manhattan grid scenario. Section V includes the exper-

iments. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Cyber-physical systems are engineered systems whose

operations are monitored, coordinated, controlled and inte-

grated by a computing and communication core [5]. VCPS

are special types of cyper-physical systems designed for

vehicles. While traditional protocols are imperceptible by

humans, VCPS take humans’ perceptions into account [6].

For example, the data dissemination mechanism in [7]

considers the data to be location-dependent, the paradigms

of which humans are not aware of. By contrast, Li et al. [3]

considered a human-oriented service scheduling in VCPS,

where a driver cannot receive multiple services in a short

time. Wagh et al. [8] proposed that the data composition in

VCPS should be flexible for drivers.

Currently, the advertisement dissemination is considered

as a novel and promising application in VCPS [9], since

advertisements belong to the practically useful data. While

traditional studies focus on online advertisements [10–12],

Li et al. [4] first considered the advertisement dissemination
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Figure 2. The scenario for the RAP placement problem.

in VCPS as a bandwidth allocation problem with pre-fixed

locations of RAPs. We optimize the RAP placement for the

advertisement dissemination. This application is also studied

from different perspectives. Shen et al. [13] studied the

message authentication problem for safety advertisements.

Our RAP placement problem is also related to the existing

set cover problems [14], since RAPs are used to cover the

passing vehicles. However, our problem cannot be solved by

existing techniques, since the detour distance is considered.

The location chosen for a driver to receive the advertisement

is critical for his/her detour decision. Although the set cover

problem has been well-solved with some greedy approxima-

tion algorithms, our problem brings more unique challenges.

III. GENERAL MODELS AND SOLUTIONS

A. Model and Problem Formulation

As shown in Fig. 2, our advertisement dissemination

scenario is based on a directed graph G = (V,E), where

V is a set of nodes (i.e., street intersections), and E ⊆ V 2

is a set of directed edges (i.e., streets). Some traffic flows

exist on the streets. We assume that all cars start from and

stop at intersections. Let Ti,j denote the traffic flow from

intersections i to j (e.g., vehicles that return home from the

office). The traveling path for Ti,j is unique and is known

a priori (a shortest path in general). Let |Ti,j | denotes the

number of drivers in Ti,j . Then, T is the set of traffic flows

that are targeted for the advertisement dissemination, where

|T | is the number of traffic flows in T . Traffic flows with

insufficient potential customers are not counted in T .

We start with the scenario with only one shop. To attract

customers, the shopkeeper places a fixed number, k, of RAPs

at street intersections for the advertisement dissemination.

A placed RAP would send electronic advertisements to all

passing vehicles. Depending on the detour distance, drivers

make a decision of whether or not to shop. For each traffic

flow, Ti,j ∈ T , its detour distance is denoted by di,j and can

be calculated as follows. (i) Suppose Ti,j only goes through

one RAP, as shown in Fig. 3. When the driver receives the

advertisement, the shortest path distance from the current lo-

cation to the shop is d′, from the shop to the destination j is

d′′, and from the current location to the destination j is d′′′.
Then, we have di,j = d′+d′′−d′′′. (ii) If the traffic flow Ti,j

goes through multiple RAPs, then the corresponding detour

distance should be the minimum detour distance among all

these RAPs. This is because redundant advertisements do not
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Figure 3. The calculation of the detour distance.

provide additional shopping incentives. If a driver decides

not to go shopping despite a smaller detour distance, then

they would not go shopping with a larger detour distance.

Our model can be extended to scenarios with multiple shops.

For those cases, the result depends on the shop that provides

the smallest detour distance among all the shops.

The roadside advertisement dissemination is an appli-

cation in VCPS, where the human perceptions should be

considered upon designing the system. Therefore, we use a

utility function, f(di,j), to describe the detour probability of

the driver. The driver may not shop if the detour distance to

the shop is too large. This is because the desire to shop does

not outweigh the cost of the journey. Hence, f(di,j) should

be non-increasing with respect to di,j . In this paper, two

kinds of utility functions are considered, namely threshold

utility function and decreasing utility function. The former

one means that the detour probability is a certain constant,

if di,j is no greater than a threshold, D. It is shown as:

f(di,j) =

{

α(Ti,j) if di,j ≤ D
0 otherwise

(1)

In Eq. 1, α(Ti,j) shows the advertisement attractiveness

for the drivers in the traffic flow Ti,j . This is known

a priori through previous statistics. Then, the decreasing

utility function means that f(di,j) is strictly decreasing from

α(Ti,j) to 0 with respect to di,j . An example could be:

f(di,j) =

{

α(Ti,j) · (1− d/D) if di,j ≤ D
0 otherwise

(2)

For each traffic flow Ti,j , an expectation of f(di,j) · |Ti,j |
drivers would detour to the shop as potential customers.

In this paper, we study the RAP placement problem. Given

a fixed number of RAPs and the traffic distribution, our

goal is to optimize the RAP placement for the shopkeeper

to maximally attract potential customers. RAP placement

algorithms may pose complex trade-offs. If we place RAPs

at locations that can provide small detour distances to attract

more customers, these locations may not necessarily be

located in heavy traffic regions, i.e., f(di,j) is large but

|Ti,j | is small. While heavy traffic regions cover more flows,

they can cause large detour distances, making shopping less

attractive to customers, i.e., |Ti,j | is large but f(di,j) is

small. Another challenge lies on the geographical density of

the placed RAPs. Redundant advertisements do not provide

additional shopping incentives for humans. Hence, it is

unnecessary to place too many RAPs within a small area. In

the next two subsections, we will propose bounded solutions

for the two kinds of utility functions, respectively.

Algorithm 1 A greedy solution

Input: The directed graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k);

Output: The RAP placement;

1: Mark all the traffic flows as uncovered;

2: for i = 1 to k do

3: Among all the intersections, find the one that attracts

maximum drivers from the uncovered traffic flows;

4: Place an RAP at that intersection, and then mark the

corresponding traffic flows as covered;

5: return the RAP placement;

B. RAP Placement with Threshold Utility Function

In this subsection, we discuss the RAP placement prob-

lem, using the threshold utility function in Eq. 1. The detour

probability is fixed, if the detour distance is no greater than

a threshold. Then, we have the following two definitions:

Definition 1: An intersection includes a traffic flow, if (i)

this traffic flow goes through this intersection, and (ii) the

detour distance for this traffic flow at this intersection is no

greater than the threshold D in Eq. 1.

Definition 2: An RAP covers a traffic flow, if this RAP

is placed at an intersection that includes this traffic flow.

If a traffic flow is included by multiple intersections, then

placing an RAP at any of these intersections can cover this

traffic flow. If a traffic flow is covered by one RAP, then

using more RAPs to cover this traffic flow does not attract

more drivers to the shop as potential customers (redundant

advertisements do not bring additional shopping incentives).

It turns out that our RAP placement problem with the

threshold utility function is essentially a weighted maximum

coverage problem [15], which is an NP-hard problem, as

follows. First, there are some sets defined over a domain of

elements associated with weights. The goal of the weighted

maximum coverage problem is to select k sets, such that

the total weight of elements within the selected sets is

maximized. In our problem, the elements correspond to the

traffic flows, and the sets correspond to the intersections.

The weight of a traffic flow is its number of expected drivers

that detour to the shop, if this traffic flow is covered. The

selection of a set corresponds to the placement of an RAP.

It is well-known that the weighted maximum coverage

problem has a greedy algorithm that can achieve a ratio of

1−1/e to the optimal solution [16]. We can use that greedy

algorithm to solve the RAP placement problem, as shown in

Algorithm 1. We iteratively place an RAP at an intersection

that attracts the maximum number of drivers from uncovered

traffic flows. The geographical density of the RAPs can be

controlled by Algorithm 1, since the covered traffic flows are

no longer considered for the subsequent RAP placement. An

RAP is not likely to be placed near an existing RAP, since

the nearby traffic flows have been covered. The algorithm
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complexity is O(|V |3 + k|V ||T |), where k is the number of

RAPs, |V | is the total number of intersections, and |T | is

the total number of traffic flows. O(|V |3) results from the

calculation of detour distances, since we need to calculate

the shortest paths between all pairs of nodes. O(k|V ||T |)
comes from the greedy approach. Each greedy step takes

O(|V ||T |) to examine all the intersections. Examining each

intersection takes O(|T |) to check all the traffic flows.

For a better explanation, an example is shown in Fig. 4,

where we have two RAPs (k = 2) to place. The distance

between neighboring intersections is 1. The threshold D is

6. The shop is located at V1. The α(Ti,j) in Eq. 1 is set

to be 1 for all the traffic flows. This example involves four

traffic flows, which are initialized as uncovered. In the first

step, V3 is picked to place an RAP, since it can attract the

maximum amount of drivers from uncovered traffic flows

(|T2,5|+|T3,5|+|T4,3|=15). Then, these three traffic flows are

marked as covered. The remaining uncovered traffic is T5,6.

Therefore, the second RAP is placed at V5 to cover T5,6.

The algorithm terminates for this example, since all the

traffic flows are covered. Note that V6 does not include T5,6,

since its detour distance is 8 (the path changes from V5V6

to V5V6V5V3V2V1V2V3V5V6). Since the detour distance is

larger than the threshold D, the driver would not detour to

the shop, upon receiving the advertisement at V6.

The RAP placement problem with the threshold utility

function is solvable. This is because the tradeoff between

the traffic density and the detour probability is weakened by

the threshold utility function, where the detour probability is

discrete (either zero or a fixed constant). We can eliminate

the intersections with zero detour probabilities to simplify

the RAP placement problem. In contrast, the RAP placement

problem with the decreasing utility function is a non-trivial

extension of traditional coverage problems.

C. RAP Placement with Decreasing Utility Function

Here, we discuss the RAP placement problem with the

decreasing utility function. For a better explanation, let us

revisit the example in Fig. 4 with the decreasing utility

function in Eq. 2. Suppose the two RAPs are still placed at

V3 and V5, which is the optimal placement with the threshold

utility function. For the decreasing utility function, the

detour probability for T2,5 and T4,3 at V3 is 1× (1− 4

6
) = 1

3

with a detour distance of 4 (the path for T2,5 changes
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Figure 5. An illustration for the proof of Theorem 1.

from V2V3V5 to V2V3V4V1V4V3V5). T3,5 is covered by two

RAPs. However, the drivers in T3,5 would detour at V3

rather than V5, since the detour distance at V3 is smaller

than that at V5. Therefore, the detour probability for T3,5 is

1 × (1 − 4

6
) = 1

3
with a detour distance of 4. Meanwhile,

the detour probability for T5,6 is 0 with a detour distance

of 6. Therefore, the total number of detoured drivers is

(6 + 6 + 3) × 1

3
= 5. However, a better strategy is to

place these two RAPs at V2 and V4, respectively. Under this

strategy, the detour probability for T2,5 is 1× (1− 2

6
) = 2

3

with a detour distance of 2 (the path changes from V2V3V5

to V2V1V2V3V5). The detour probability for T4,3 is also 2

3
,

and the total number of detoured drivers is (6+6)× 2

3
= 8.

This placement strategy attracts more drivers, since it takes

the detour distance into consideration. Although V3 and V5

have more passing traffic flows, the corresponding detour

distances are larger. We should further consider the detour

distance for optimizing the RAP placement.

Instead of placing RAPs at the intersections that can cover

the maximum uncovered traffic, we can place RAPs at the

intersections that can attract maximum drivers under the

existing placement. If we go back to the example in Fig. 4,

then the first RAP would be placed at V3, since it attracts

the maximum amount of drivers ((6+6+3)× (1− 4

6
) = 5)

at the first step. Then, an RAP is placed at V2 at the second

step, since [6× (1− 2

6
)]− [6× (1− 4

6
)] = 2 more drivers can

be attracted. This is because the drivers in T2,5 can have a

smaller detour distance at V2. However, this solution only

attracts 2 + 5 = 7 drivers to the shop, while placing these

two RAPs at V2 and V4 is still a better strategy.

The key insight behind the above phenomenon involves

the overlaps between RAPs. When the second RAP is placed

at V2, the first RAP at V3 becomes useless for the traffic

flow T2,5. This is because the second RAP at V2 provides

a smaller detour distance than that at V3. Let us consider a

driver in T2,5. If this driver decides not to go shopping at

V2, he/she would make the same decision at V3 due to the

larger detour distance. Although the two RAPs at V2 and

V3 both cover T2,5, the one at V2 provides more powerful

coverage due to the smaller detour distance. In terms of

T2,5, those two RAPs have overlapping coverage, which is

the key challenge for the RAP placement. If a traffic flow

goes through multiple RAPs, then the corresponding detour

probability depends on the RAP that provides the minimum

detour distance. Further analysis shows the following result:



Algorithm 2 A composite greedy solution

Input: The directed graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k);

Output: The RAP placement;

1: Mark all the traffic flows as uncovered;

2: for i = 1 to k do

3: Candidate intersection i: Among all the intersections,

find the one that attracts a maximum amount of

drivers from the uncovered traffic flows;

4: Candidate intersection ii: Among all the intersections,

find the one that attracts a maximum amount of addi-

tional drivers from the covered traffic flows, through

providing smaller detour distances;

5: Compare intersections i and ii, place an RAP at the

one that can attract more drivers to the shop;

6: Mark the corresponding traffic flows as covered;

7: return the RAP placement;

Theorem 1: For a specified traffic flow Ti,j that goes

from i to j, the first RAP on its path always provides a

smaller detour distance than all the other RAPs on the path.

Proof: As shown in Fig. 5, let us select two arbitrary

RAPs (say x and y) that cover the traffic flow Ti,j . Then,

the difference between the detour distances of x and y is:

[d′(x)+d′′(x)+d′′′(x)]− [d′(y)+d′′(y)+d′′′(y)]

= d′(x)− {d′(y)+[d′′′(x)−d′′′(y)]} < 0 (3)

In Eq. 3, {d′(y)+[d′′′(x)−d′′′(y)]} is the distance from x to

the shop via y. Since d′(x) is the shortest path from x to

the shop, it is smaller than {d′(y)+[d′′′(x)−d′′′(y)]}. Hence,

the detour distance at x is smaller than that at y. Since x
and y are arbitrarily selected, Theorem 1 is true. �

Theorem 1 shows that the first RAP on the path of a traffic

flow provides the smallest detour distance for this traffic

flow. If a driver decides not to go shopping at the first RAP,

he/she would make the same decision at later RAPs due to

the larger detour distance. Therefore, for a specified traffic

flow, the first RAP overlaps with the subsequent RAPs for

the decreasing utility function. The subsequent RAPs are

useless for this traffic flow, since none of the drivers would

detour at the subsequent RAPs. The insight is that the first

RAP provides the highest traveling flexibility for the drivers.

To maximally attract potential customers for the shop-

keeper, the RAP placement involves two critical factors. (i)

The first factor is to find an intersection, the RAP placement

at which a maximum amount of drivers can be attracted

from the uncovered traffic flows. This factor is similar to

that for the threshold utility function. (ii) The second factor

is to find an intersection, the RAP placement at which

maximum additional drivers can be attracted from the cov-

ered traffic flows. This factor represents the overlaps among

RAPs, where we want to find intersections that can provide

w(OPT ) w(Gi )

w1 w2

Figure 6. An illustration for the proof of Theorem 2.

smaller detour distances for the covered traffic flows. If we

consider only one of the above factors, then the resulting

greedy algorithm cannot guarantee an approximation bound.

Therefore, Algorithm 2 is proposed based on a composite

greedy objective using two factors. At each greedy step,

Algorithm 2 picks out the better one from two candidate

intersections that are corresponding to the above two factors:

(i) attract drivers from uncovered traffic flows, and (ii) attract

additional drivers from covered traffic flows by providing

smaller detour distances, i.e., overlaps among RAPs. The

performance of Algorithm 2 is guaranteed as follows:

Theorem 2: Algorithm 2 achieves a ratio of 1−1/
√
e to

the optimal solution, in terms of maximizing the number of

attracted drivers who detour to the shop.

Proof: Let OPT denote the optimal RAP placement. Gi is

the RAP placement in Algorithm 2, after the first i steps. Gi

should include i RAPs and Gk is the final RAP placement

obtained by Algorithm 2. Gi+1\Gi is the RAP placed at the

(i+1)th step. Let w(·) be a function that denotes the number

of attracted drivers for the corresponding RAP placement.

Then, let us focus on the difference between OPT and Gi.

As shown in Fig. 6, OPT can attract more drivers than

Gi, for the following two reasons. (i) OPT may cover

some traffic flows that are uncovered by Gi. The number

of attracted drivers for this part is denoted as w1. (ii) OPT
may provide smaller detour distances for some traffic flows

in Gi. The number of additional attracted drivers for this

part is denoted as w2. Then, we have

w(OPT )− w(Gi) ≤ w1 + w2 (4)

The “≤” in Eq. 4 results from the fact that Gi may cover

some traffic flows that are uncovered by OPT , or Gi may

also provide smaller detour distances for some traffic flows

in OPT . Let us focus on the (i + 1)th step in Algorithm

2. Since the candidate intersection i in Algorithm 2 attracts

maximum drivers from the uncovered traffic flows, we have

w1

k
≤ w(Gi+1\Gi) = w(Gi+1)− w(Gi) (5)

OPT includes k RAPs, the average of which should cover

no greater traffic flows than candidate intersection i in

Algorithm 2 at the (i+ 1)th step, due to its greedy nature.

Meanwhile, w(Gi+1\Gi) should be no less than the number

of attracted drivers by the candidate intersection i, since

Algorithm 2 picks the better one among the two candidate
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intersections. Similarly, for the overlaps, we have

w2

k
≤ w(Gi+1\Gi) = w(Gi+1)− w(Gi) (6)

This is because the candidate intersection ii attracts a max-

imum amount of additional drivers from the covered traffic

flows. Combining Eqs. 4, 5, and 6, we have

w(OPT )− w(Gi)

2k
≤ w(Gi+1)− w(Gi) (7)

Since w(OPT ) ≥ w(Gi) and w(OPT ) ≥ w(Gi+1) by the

definition of the optimal solution, Eq. 7 can be rewritten as

w(OPT )− w(Gi) ≥
2k

2k − 1
[w(OPT )− w(Gi+1)] (8)

Considering w(G0) = 0 means that no RAP has been placed

at the beginning, the recursion in Eq. 8 leads to

w(OPT ) ≥
[

2k

2k − 1

]k

[w(OPT )− w(Gk)]

≥
√
e · [w(OPT )− w(Gk)] (9)

This is because e = limk→∞(1+ 1

k
)k by its definition. Then,

Eq. 9 can be rewritten as

w(Gk) ≥ (1− 1√
e
) · w(OPT ) (10)

Since Gk is the result of Algorithm 2, Eq. 10 means that it

achieves a ratio of 1− 1/
√
e to the optimal solution. �

Algorithm 2 guarantees the performance ratio through

considering both covering uncovered traffic flows and pro-

viding covered traffic flows with smaller detour distances.

It reduces to Algorithm 1, if we use the threshold utility

function. In terms of the time complexity, Algorithm 2

also takes O(|V |3 + k|V ||T |). O(|V |3) results from the

calculation of detour distances, through finding out the

shortest paths between all pairs of nodes. O(k|V ||T |) comes

from the greedy approach, which has k steps. At each greedy

step, searching for the candidate intersection i takes a time

complexity of O(|V ||T |), since we need to examine all

the intersections for all the traffic flows. Searching for the

candidate intersection ii also takes O(|V ||T |), since the first

RAP on the path provides the smallest detour distance.

IV. RAP PLACEMENT FOR MANHATTAN GRID

Considering that the real-world traffic distributions have

some patterns, in this section, we look into a special RAP

placement under the Manhattan grid scenario.

A. Properties of Manhattan Grid

The Manhattan grid streets plan is a type of city plan in

which streets run at right angles to each other. In this city

plan, vehicles can only move in four given directions, as

shown in Fig. 7. We classify the streets into vertical streets

and horizontal streets, based on their orientations. Multiple

shortest paths between pairs of intersections may exist in the

Manhattan grid streets. For example, in Fig. 7, the shortest

path from V1 to V6 could be V1V2V3V6, V1V2V5V6, and

V1V4V5V6. We relax the constraint used in the previous

section, where the traveling path for a traffic flow is unique

and is known a priori. In this section, the traveling path

for a traffic flow is not pre-fixed. Let us consider a driver

in T1,6 that travels from V1 to V6. His/Her traveling path

would be randomly chosen from among the three shortest

paths. At this time, what could happen if an RAP is placed at

V3? This driver would definitely choose V1V2V3V6 as his/her

traveling path, since it is one of the shortest paths with a free

additional advertisement. We consider a traffic flow, Ti,j , to

travel along one of the shortest paths from i to j; if an

RAP is placed in one of the shortest paths, then the traffic

flows would choose that path to obtain a free additional

advertisement. Locations of placed RAPs are assumed to be

known by all the drivers (they are published on the internet).

Considering the above property, we reformulate the RAP

placement problem under the Manhattan grid scenario, as

follows. The shop is located within a square region. D is

large enough such that vehicles would detour to to the shop

once receiving an advertisement. All the traffic flows travel

through their shortest paths. For a specified traffic flow, if an

RAP is placed in one of its shortest paths, this traffic flow

would travel through that path to obtain a free advertisement.

B. Manhattan RAP Placement

Let us start with the Manhattan RAP placement problem

under the threshold utility function. This problem remains

NP-hard, since it still reduces to the maximum coverage

problem. An intersection can still include multiple traffic

flows, while a traffic flow can be included by multiple

intersections. We start with the following definition:

Definition 3: A traffic flow is turned if it has exactly one

turn within the grid. Otherwise, it is straight.

For example, in Fig. 7, the traffic flows of T3,1 and T6,9

are straight, while T2,4 is turned. Note that T3,8 is straight,

since it has two turns at V5 and V6, respectively. All the

traffic flows have at most two turns within the scenario,

otherwise, the corresponding traveling path is not a shortest

path. Then, we observe that a turned traffic flow has multiple



Algorithm 3 A two-stage solution

Input: The square region; the set of traffic flows T ;

The number of RAPs to place (i.e., k);

Output: The RAP placement;

1: if k ≤ 5 then

2: return the optimal solution by exhaustive search;

3: for each corner of the square region do

4: Place an RAP at that corner;

5: for i = 1 to k − 4 do

6: Among all the intersections, place an RAP at the one

that attracts maximum marginal number of drivers;

7: return the RAP placement;

1/3 traffic flows

(turned)

1/3 traffic flows

(straight)

1/3 traffic flows

(turned)

Figure 8. Traffic flow distribution.

shortest traveling paths. Therefore, the locations of RAPs

may have some impacts on its actual traveling path.

Following the above intuition, a two-stage RAP placement

algorithm is proposed as Algorithm 3. The RAPs are placed

for turned and straight traffic flows, respectively. Algorithm

3 assumes that the traffic flows are uniformly distributed.

We start with the case in which all the traffic flows go

through the scenario. For this case, turned and straight traffic

flows have fractions of 2

3
and 1

3
with respect to the total

traffic flows, respectively. The reason is illustrated in Fig.

8. We have two observations. (i) Four RAPs at the corners

of the grid can cover all the turned traffic flows. This is

because corresponding drivers could go to the corner for a

free advertisement without extra traveling distances. (ii) The

RAP placement for the straight traffic flows can be obtained

through the same idea of Algorithm 1. This placement keeps

a ratio of 1 − 1

e
to the optimal solution. Cases are similar,

when traffic flows may start from or stop at an intersection

within the scenario. Consequently, we have:

Theorem 3: On expectation, Algorithm 3 has a ratio of

1 − 1

3e
− 4

3k
to the optimal solution, under the Manhattan

grid scenario with the threshold utility function.

Proof: Our proof includes two parts. The first part is for

the turned traffic flows and the second part is for the straight

traffic flows. In the first part, we claim that four RAPs at

the corners of the grid are enough to cover all the turned

traffic flows that go through the scenario (lines 3 and 4 in

Algorithm 3). Let us consider a traffic flow that enters the

grid via the west boundary of the grid, and exits the grid

Algorithm 4 A modified two-stage solution

Input: The square region; the set of traffic flows T ;

The number of RAPs to place (i.e., k);

Output: The RAP placement;

1: Same as Algorithm 3, except the change of lines 3 and 4:

For each corner of the square region, an RAP is placed

in the middle of that corner and the center of the square;

via the south boundary of the grid. Such a traffic flow could

be T2,4 in Fig. 7. The shortest paths for this traffic flow

only include two kinds of orientations: going Eastward or

going Southward at an intersection. If this traffic flow goes

Southward to the end and then goes Eastward, it would result

in a shortest path that goes through the southwest corner

of the grid. For example, such a shortest path for T2,4 in

Fig. 7 is V2V1V4 that goes through the corner V1. Since

V2V1V4 is a shortest path for T2,4 with a free advertisement,

drivers in T2,4 would choose V2V1V4 as their traveling paths.

By enumerating all the possibilities, our claim is true. On

expectation, four RAPs at the corners of the grid can cover
2

3
of the total traffic flows. The above analysis is also valid,

when traffic flows may start from or stop at an intersection

within the scenario (i.e., not go through the scenario).

In the second part, we focus on the straight traffic flows.

The greedy placement in lines 5 and 6 of Algorithm 3

has a ratio of 1 − 1

e
to the optimal solution using k − 4

RAPs. This is similar to Algorithm 1. Furthermore, it has a

ratio of k−4

k
(1− 1

e
) to the optimal solution using k RAPs.

This is because four RAPs are placed at the corner of the

scenario for turned traffic flows. Note that, straight traffic

flows have a fraction of 1

3
with respect to all the traffic

flows on expectation. Considering both turned traffic flows

and straight traffic flows, the total fraction of traffic flows

that are covered by Algorithm 3 is:

2

3
+

1

3
· k − 4

k
· (1− 1

e
) ≥ 1− 1

3e
− 4

3k
(11)

Eq. 11 completes the proof of Theorem 3. �

When k becomes larger, 1− 1

3e
− 4

3k
becomes larger, mean-

ing that Algorithm 3 has a better performance. 1− 1

3e
− 4

3k

is larger than 1 − 1

e
when k > 5. Then, let us discuss the

Manhattan RAP placement problem under the decreasing

utility function. Similarly, we place RAPs for turned and

straight traffic flows, respectively. However, the overlaps

among RAPs bring some performance degradations. Algo-

rithm 4 is proposed as an extension of Algorithm 3. It has

a prerequisite in which the decreasing utility function must

be the one in Eq. 2. The performance of Algorithm 4 is also

guaranteed (the proof is omitted due to space limitation):

Theorem 4: On expectation, Algorithm 4 has a ratio of
1

2
− 1

6e
− 2

3k
to the optimal solution, under Manhattan grid

scenario with the decreasing utility function.



(a) The Dublin map. (b) The bus traces.

Figure 9. The map and bus traces for Dublin’s central area.

V. EVALUATIONS

A. Real Trace-driven Datasets and Basic Settings

In this section, we conduct experiments based on two

real traces, i.e., Dublin bus trace [17] and Seattle bus trace

[18]. The city plan of Dublin is not grid-based, and thus the

Dublin bus trace is used to test our Algorithms 1 and 2 for

the general scenario in Section III. The city plan of Seattle is

partially grid-based, and thus the Seattle bus trace is used to

test our algorithms for both the general scenario in Section

III and the Manhattan grid scenario in Section IV.

For the Dublin bus trace, we focus on the part within

Dublin’s central area, which is a 80, 000 × 80, 000 square

foot area, as shown in Fig. 9. The Dublin bus trace includes

bus ID, longitude, latitude, and vehicle journey ID. The

vehicle journey is a given run on a journey pattern, which

corresponds to our concept of the traffic flow. Buses with the

same vehicle journey ID have similar routing paths in terms

of longitude and latitude. To obtain the number of attracted

customers, we assume that each bus in Dublin carries 100

people (who are potential customers) per day on average.

For the Seattle bus trace, we focus on the part within

Seattle’s central area, which is a 104×104 square foot area,

as shown in Fig. 10. The Seattle bus trace includes bus

ID, x-coordinate, y-coordinate, and route ID. Each route is

regarded as a traffic flow. Buses with the same route ID

have similar routing paths in terms of x and y coordinates.

To obtain the number of attracted customers, we assume that

each bus in Seattle carries 200 people per day on average.

According to the amount of passing traffic flows, all the

street intersections in both traces are classified into the

city’s center, city, or suburb. This is used to observe the

impact of the shop location. Our experiments use three utility

functions. The first one is the threshold utility function in

Eq. 1. The second one is the decreasing utility function i in

Eq. 2, which decays linearly. The third one is the decreasing

utility function ii, as defined in the following:

f(di,j) =

{

α(Ti,j) · (1−
√

d/D) if di,j ≤ D
0 otherwise

(12)

Under the same detour distance, d, and the same threshold,

D, the detour probability of the threshold utility function is

the largest, that of the decreasing utility function i is in the

middle, and that of the decreasing utility function ii is the

(a) The Seattle map. (b) The bus traces.

Figure 10. The map and bus traces for Seattle’s central area.

smallest. In these three utility functions, α(Ti,j) is set to

be 0.001 for all the traffic flows. This means that a person

receiving advertisements has a probability of 0.001 to go

shopping [4], if the shop is on the way.

B. Comparison Algorithms and Metrics

In our experiments, four baseline algorithms (MaxCardi-

nality, MaxVehicles, MaxCustomers, and Random) are used

for comparisons, as in the following. (i) MaxCardinality

ranks the intersections by the number of passing traffic

flows, and then places the RAPs at the top-k intersections.

(ii) MaxVehicles ranks the intersections by the number

of passing buses, and then places the RAPs at the top-k
intersections. (iii) MaxCustomers ranks the intersections by

the number of attracted customers if an RAP is placed. Then,

MaxCustomers also places RAPs at the top-k intersections.

(iv) Random places RAPs uniform-randomly at the intersec-

tions within the D ×D square region centered at the shop.

Our experiments focus on the relationship between the

number of placed RAPs and the number of attracted cus-

tomers, under different settings (utility functions, threshold

D, and shop locations). Street intersections are classified

into city’s center, city, or suburb, depending on the amount of

passing traffic flows. In the following experiments, if we say

that the shop is located in the city, it means that intersections

with city tags are randomly selected as the shop locations.

All the results are averaged over 1,000 times.

C. Evaluation Results in the Dublin Bus Trace

The evaluation results in the Dublin bus trace under the

general scenario are shown in Figs. 11 and 12. Fig. 11

focuses on the impact of the utility function, where the shop

is located in the city with the threshold D = 20, 000 feet. It

can be seen that all algorithms attract more customers under

the threshold utility function than the decreasing utility

functions i and ii. This is because the detour probability

of the threshold utility function is the largest among the

three utility functions, under the same d and D. In Fig.

11(a) with the threshold utility function, the performance

gap between the Algorithm 1 and the other algorithms is

significant (around 30% performance gain for k = 10). This

is because Algorithm 1 controls the geographical density of

the RAPs. In Fig. 11(b) with the decreasing utility function

i, Algorithm 2 also outperforms the others. This is because it
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(a) Threshold utility function.
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(b) Decreasing utility function i.
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(c) Decreasing utility function ii.

Figure 11. The experimental results for the Dublin bus traces with different utility functions. The shop is located in the city where D = 20, 000 feet.
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(a) The shop is located in the city’s center.
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(b) The shop is located in the city.
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(c) The shop is located in the suburb.

Figure 12. The experimental results for the Dublin bus traces with different shop locations. The decreasing utility function i is used with a different D.

has considered the overlaps among RAPs. However, in Fig.

11(c) with the decreasing utility function ii, Algorithm 2 has

a smaller performance gain. This is because the decreasing

utility function ii decays very fast with respect to the detour

distance, and we have to place RAPs around the shop.

Fig. 12 shows the impact of the shop location and the

threshold D, under the decreasing utility function i. Figs.

12(a), 12(b), and 12(c) show the results for different shop

locations. For each subfigure, the top and bottom parts show

the results with D=20, 000 and D=10, 000 feet, respectively.

The performance gain of Algorithm 2 is relatively small,

when the shop is located in the city’s center or suburb. If

the shop is located in the city’s center, randomly placing

RAPs around the shop can already cover most traffic flows

with small detour distances. On the other hand, if the shop

is located in the suburb, none of the placement strategies can

cover too many traffic flows. The threshold D is also critical.

A larger D means that the drivers are more likely to detour

to the shop, and thus, the shop can attract more customers.

When the shop is located in the city’s center, a large D does

not bring too many additional customers, since most traffic

flows are already near to the shop. When the shop is located

in the suburbs, a large D still does not bring too many

additional customers, since the detour distances are large.

However, when the shop is located in the city, as shown in

Fig. 12(b), a large D brings many more customers, since

more traffic flows are covered with small detour distances.

D. Evaluation Results in the Seattle Bus Trace

The evaluation results in the Seattle bus trace under the

general scenario and the Manhattan grid scenario are shown

in Figs. 13 and 14, respectively. The shop is located in the

city. We focus on the impacts of different utility functions

with a different threshold D. The threshold utility function

is used in Figs. 13(a) and 14(a), while the decreasing utility

function is used in Figs. 13(b) and 14(b). For each subfigure,

the top and bottom parts show the results with D=2, 500 and

D=1, 000 feet, respectively. In Fig. 13, it can be seen that

all algorithms attract more customers under the threshold

utility function than the decreasing utility functions i, since

the former one brings higher detour probabilities. D is also

critical, especially when the shop is located in the city. The
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(a) Threshold utility function.
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(b) Decreasing utility function i.

Figure 13. The experimental results for the Seattle bus traces under the
general scenario in Section III. The shop is located in the city. Different
utility functions with different threshold D are used.
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(a) Threshold utility function.
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(b) Decreasing utility function i.

Figure 14. The experimental results for the Seattle bus traces under the
Manhattan grid scenario in Section IV. The shop is located in the city.
Different utility functions with different threshold D are used.

number of attracted customers with D=2, 500 feet is 30%

more than that with D=1, 000 feet. Fig. 14 shows the results

in the Seattle bus trace under the Manhattan grid scenario.

Compared with the results under the general scenario in

Fig. 13, more customers are attracted under the Manhattan

grid scenario. This is because the traveling paths of all the

traffic flows are pre-fixed under the general scenario, the

assumption of which is relaxed here. A larger threshold D
also brings more customers to the shop.

VI. CONCLUSIONS

In this paper, we address a novel roadside advertisement

dissemination problem that involves elements: the drivers,

RAPs, and shopkeepers. The shopkeeper uses RAPs to

disseminate advertisements to the drivers, as to attract cus-

tomers. Upon receiving an advertisement, the driver may

detour to the shop, depending on the detour distance. Our

goal is to optimize the RAP placement for the shopkeeper to

maximally attract potential customers. Bounded RAP place-

ment algorithms are proposed. Real trace-driven experiments

validate the competitive performance of our algorithms.
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