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Abstract

The problem being discussed in this paper is a special
case of the unbounded knapsack problem :

Yo citi < fon
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where p;’s are uniformly distributed random variables
in [0, 1], and ¢;s are discrete random variables distrib-
uted uniformly in {1/M,2/M,... (M —1)/M,1}. As-

suming that M is large, it is shown that limy, o 2 (M

approximately equals to 4/ 23& —0.3062(y/Bo M)~ L.

1 Introduction

The unbounded knapsack problem can be stated as the
following combinatorial optimization problem :

max z, = %Z?ﬂ DT
st. L 2?21 ciw; < Bo
z; €{0,1}Vi=1,...,n.
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From Lai [1], Marchetti-Spaccamela and Vercellis [4]
and Lueker [3], the optimal solution of the above prob-
lem is equivalent to the solution of the following prob-
lem for large n.

max lim,_, 2, = Ol/m* fnll*cp dp dc
s.t. Ol/m fnll*cdp de = B (1)

where 1 <m* < oo.

By making assumption on the statistical distributions
for p;s and ¢;s, the average profit gain can thus be
obtained.

It should be noted the assumption that ¢;’s are con-
tinuous can hardly be found in practice, particularly in
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multi-unit combinatorial auction [2, 5]. An auctioneer
has a number of products, say notebook computers,
for auction off. Bidders submit their offers. Once the
auction time has closed, the auctioneer selectively allo-
cates the products to the bidders in order to optimize
the profit. Since the bid size is discrete, the average
profit gain can only be evaluated through an approxi-
mation.

In this paper, we extend the work in [4] and [3].
Specifically, the average profit gain obtained by the
following problem, (2), will be analyzed.

max
s.t.
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where p;’s are uniformly distributed random variables
in [0,1], and ¢s are discrete random variables dis-
tributed uniformly in {1/M,2/M,....(M — 1)/M, 1}.
First, the average profit gain for the case that ¢;’s are
continuous will be derived. Assuming that each bid-
der whose original bid size is in [j/M, (7 + 1)/M] will
bid for either j/M or (j + 1)/M equally random, the
average profit gain can be derived.

The rest of the paper will elucidate the derivation
and an application in multi-unit combinatorial auction.
The average profit gain for the case that ¢;’s are con-
tinuous random variables will be derived in the next
section. The average profit gain for discrete ¢;’s will
be derived in Section 3. Section 4 presents an applica-
tion of the result in multi-unit combinatorial auction.
Finally, the conclusion will be presented in Section 5.

2 Average profit gain : Contin-
uous ¢;’s

For the case that ¢;’s are continuous random variables
distributed uniformly in [0,1], the optimal solution
lim,, o 2, can be obtained by simply solving the sec-
ond equality constraint in (1) for m* and, then, sub-
stituting the value to the first equality for the optimal
limy, 5 00 2. Solving the second equality in (1), we are



able to show that

m* = %. (3)

Putting this result back to the first equality in (1), we

have
/2
lim z, = ﬁ. (4)
n—0o 3

This result provides the researchers the first approx-
imation on the average profit being gained from each
object. But the assumption is that the product is divis-
ible, i.e., the size of each object can be in any fractional
number.

3 Average profit gain : Discrete
Ci’S

Let us consider a simple multi-unit combinatorial auc-
tion problem. Suppose an auctioneer has 1 000 000
units of notebook computers for auction off. The auc-
tioneer anticipates that 2 000 bidders will come. More-
over, the auctioneer also expects that their bid sizes
are uniformly random in [1,1 000] and the bid price
is another independent random variables uniformly in
[100, 100 000]. Accordingly, the average profit gain is
estimated as follows :

2(0.5)

2 000 x 100 000 X Z2000 = 2000 x 100 000 x

= 115.47 x 10°.

Since the quantized levels in both bid size and bid
price are small, 0.001 and 0.001 respectively, the ap-
proximation is close to the actual value. However, it
will be inaccurate if the quantized level is not small.

Let M be the maximum size that a bidder will bid.
The actual inequality constraint will be expressed as
follows :

1 n
i=1

Here ¢; M € {1,2,..., M}, is the actual bid size for the
i bidder. Let lim, o, 2, (M) be the optimal average

profit gain,
lim 2,(M) < lim Z,.

n—ro0 -

n—r 00
Equality holds when M — oo. Besides, let us define
the percentage error, E(M), as follows :

im0 2y — limy, o0 20 (M)

E(M) =

(6)

We now consider the case that the probability distri-
bution for the bid size ¢, P(¢), is uniformly distributed
in the set {1/M,2/M,... 1}, that is,

Mo
Ple) = Y 7rdle,k/M) (7)
k=1
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Figure 1: The straight line p = m*¢ is the decision
boundary for product allocation. All the bids (p,¢)
above this line will be allocated.

In practice, we assume that each bidder whose orig-
inal bid size is in the range [j/M,(j + 1)/M] (j =
0,1,...,M = 1) will bid up to (j + 1)/M. Therefore,

the equality constraint in Equation (1) can be written

as follows :
al m* 1
> (1-i%7) () =

i=1

(8)

where m* is the slope of the straight line for the de-
cision boundary, see Figure 1, and m* and k™ can be
related by the following inequatlity.

k* < 1 < k41
M~ m* M

Solving Equation (8), it is able to obtain

B (k* 4+ 1) ke (k" + 1)(2k* + 1)
2 M 6

= ﬁoMz. (9)
Since the number of bidders n and the number of quan-
tized intervals M are large, it can be assumed that
k™ > 1 and m* /M =~ k*. Hence,

k* a0 /680 M. (10)
The average profit gain lim,, 2, (M) can be written
as follows :
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Figure 2: The error ratio E(M) against the number of
interval M.

Since k* & /65y M,

2 1
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Equation (6) can thus be approximated by the follow-
ing equation.

3 h 1
E(M) 777 = 3082 =

Figure 2 shows the cases when gy equals to 0.2 and 0.5
respectively. M is taken from 40 up since the approxi-
mation does not hold for small M. It is found that the
percentage error is less than 1% even when the number
of intervals is only 70.

(11)

4 Application in MUCA

In the illustrative example mentioned in the last sec-
tion, we roughly estimated the average profit gain,
2(0.5)
3
with Equation (11), the percentage error can thus be

obtained.

limy, o0 limpr 00 (M), as In accordance

E(M) = 0.3062 =4.33x107*

1
+/0.5 1000

which is less than 0.05%. A better estimation for the
average profit gain can also be evaluated as follows :

2(0.5)

lim (M = 1000) ;

n—od

(1-4.33x107%)
= 0.5771

Using Equation (11), we can determine the maxi-
mum integer of M such that the percentage error is
less than certain threshold 5.

M 0.3062;

NEE

For n = 0.01 and By = 0.2, it can readily be shown
that M ~ 69. For n = 0.01 and By = 0.5, M ~ 44. For
M equals to 100 and Sy is in [0.2,0.5], the percentage
error is less than 1%.

5 Conclusion

The average profit gain, Equation (4), for the un-
bounded knapsack problem with fractional sized ob-
jects has been derived. An extended result for the
case that object size is discrete has been obtained.
It has been shown that the average discrete-sized
profit gain can be expressed in term of fy and M as

\/ % —0.3062(v/BoM)~L. An application of this result

in multi-unit combinatorial auction has been presented.
Without loss of generality, the case when p;’s are dis-
crete random variables can also be derived using the
same technique used in the paper.
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