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Abstract—Gaining a better understanding of the relationship
between attackers and defenders in cybersecurity domains in
order to protect computer systems is of great importance. From
the defender’s side, it is critical to choose the best reaction to
maintain the system in a safe state, based on a given estimate
of the attacker. One of the main challenges is that the defender
may not be able to correctly detect a current attack due to
incomplete and noisy information presented to them. Another
important factor in the attack-defense interaction is the limited
budget of both attackers and defenders. Therefore, both sides
want to perform the best actions to maximize their gains. This
paper focuses on an approach based on interactions between the
attacker and defender by considering the problem of uncertainty
and limitation of resources for the defender, given that the
attacker’s actions are given in all states of a Markov chain.
The best actions by the defender can be characterized by a
Markov Decision Process in a case of partially observability and
importance of time in the expected reward, which is a Partially
Observable Semi-Markov Decision model. Our simulation on a
trace-based data set demonstrates that the proposed approach
handles analyzing interactions of the attacker and defender
with the limited budgets for both sides along with imperfect
information for the defender.

Index Terms—Attackers, best actions, defenders, imperfect infor-
mation, Markov chain, Markov Decision Process (MDP), Partially
Observable MDP, utility

I. INTRODUCTION

Analyzing behaviors of the attacker and defender can shed
light on improving defense methods to protect a system. In the
real world, a major factor for a defender is that they do not
have prior nor enough information about the current status
and or security level of the system, and they have partial
observations. In contrast, most of the time the attacker, has full
observations about systems and defending actions. In addition,
resources, such as money and time, are not infinite, and agents
should take actions efficiently due to this limitation. Finite
creates a limitation for taking more action for both the attacker
and defender. Time is another important parameter that should
be considered in analyzing attack-defense. From the attacker’s
view, the more time that a system stays in an unsafe state, the
more damage for the system and the more benefits for the
attacker. Conversely, from the defender’s view, detecting and
recovering the system to a safe state should be as quick as
possible in order to prevent more damage. It should be noted
that staying for a long time in a particular state of the system
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Fig. 1. Markov model for relationship between different state of the system.

increases the chance of revealing the attacker by the defender,
thereby the attacker must restart the attack, resulting in more
cost for him. In other words, the defender tries to minimize
cost and get the highest reward. It is critical for the defender
to recover the system to a safe state as soon as possible.
On the other side, the attacker tries to the minimizing cost
and makes high damage in order to reach to a crash state of
the system. The behaviors of attackers and defenders can be
modeled/characterized with the help of Markov chain [1].

The possible states of the given system can be shown with
the nodes of a Markov chain. In Fig. 1, s represents the state
of the system which can be from s0 to sN for a system with N
different states. Any change in the state of system is the result
of taking a particular action. Directed edges between nodes
in a Markov chain represent possible transitions between the
states of the system. The probability of a transition between
state i and j can be shown with pi,j . For example, in Fig. 1,
when the system is in the current state s2, taking a particular
action, say a, will transit the system from s2 to s3 with the
probability of p2,3 and will transit the system from s2 to s1
with the probability of p2,1. It is possible that the system
remains in the same state i after a given action. This transition
is shown with the self-transition of pi,i. Certainly, both sides
try to earn rewards as much as possible by reaching their
target states. Therefore, estimating the cost that the attacker
or defender would have to pay to succeed and the time they
would stay in a particular state is important to analyze the
attacker’s and defender’s behavior.

In this paper, we use a simple the attacker and defender
interaction example to illustrate different types of Markov
models. Given that the attacker acts according to a particular
probability distribution, our focus is on how the defender
determines their best strategy to counter under various con-
ditions, including limited time and budget along with partial



and incomplete view. The quality of a strategy is determined
by utility which is based weighted summation of percentages
at different states, from a safe state with the highest weight, a
compromised state with a reduced weight, to a totally damaged
state with zero weight. We start with a Markov Decision
Processing (MDP) using a regular Markov chain to represent
the transition between states based on the given probability
distribution and total budget of the attacker and defender. Then
we use a semi-Markov chain to include the time it takes after
taking action to transit to the next state. We consider the fact
that the defender stays in each state for a different amounts of
time and this leads to varying amounts of rewards for him or
her. Finally, due to the defender’s lack of perfect information,
a Partially Observable Markov chain can model the actions
of the defender. Therefore, a state-based model that captures
the attacker’s and the defender’s behaviors can be cast as a
Partially Observable Semi-Markov Decision Process.

The primary contribution of our work is to model the
relationship of the defender with the environment with un-
certainty about the underlying states, the past and present
status of the environment. The defender has to predict the
best action by considering the belief state, rate of detection
and available budget. We will analyze this model on the
Markov model associated with real data on intrusion detection
service. All models are simulated using a trace-based data
set on the attacker model. We compare different models in
terms of utility under different settings including the budget
for attacker and defender, detection rates, partial view, and
initial information states.

The remainder of the paper is as follows: Section II de-
scribes related works on Partially Observable MDP and Semi-
Markov Decision Process. Section III provides background
related to Markov chain models and differences between
different kinds of MC. Section IV describes different scenarios
for attackers and defenders and explains the model that we
consider with numeric examples. Section V contains some
results on real data in order to evaluate our model and solution.
And finally, we conclude the paper in Section VI with some
suggestions for the future.

II. RELATED WORKS

This section presents an explanation about related works of
different Markov models and how they are used in modeling
behaviours of attackers and defenders. Authors in [2] and [3]
applied Markov chain to model security threats based on graph
theory. They used different security metrics and vulnerability
scores to compute the probability distributions. Paper [4]
presented different methods of intrusion detection and used a
hidden Markov chain to detect anomalies. Approaches of [5],
[6] are related to Partially Observable Semi-Markov modeling
for machine maintenance field. They consider frameworks
under both state transitions and observation uncertainties. A
different idea based on the Hidden Semi-Markov model that
considers state duration and state interval for the sequential
data events is proposed in [7]. In their model, there is only

some predictions for sequential states rather than decisions
about actions.

Many works use Markov chains to analyze behaviors of
the attacker and defender [8],[9],[10],[11],[12]. For instance,
[10] presents a MDP to model moving target defense policies.
The authors considered different Markov models for different
defenders’ actions and used complete Markov Decision model
which is a combination of MDPs associated with actions
and varying transition probabilities and costs. Authors in [13]
proposed a model for moving target defense and considered
the defender’s problem as a semi-Markov Decision Process in
which the attacker and defender are as follower and leader,
respectively. Migration cost, loss of the system, and amount
of needed time are used to find optimal defense strategy, and
it has a time-average cost objective. In [14], a stackelberg,
zero-sum, semi-markov model has been suggested to capture
relationships between advanced persistent threats and dynamic
information flow tracking while considering false negative
and required time for the defender, DIFT. Their model con-
siders the trade off between quickest detection and efficient
resource use. All of these papers did not consider the fact
that the defender does not have complete information about
the underlying system. Also, they consider infinite budgets
for the attacker and defender. Authors in [15] consider a
defender simultaneously making decisions about the state that
the system should be migrated to it and when this migration
should happened. In their approach, the target is the minimize
the losses which are caused by compromises of systems and
the cost of migration. They assume that the defender has
prior information about the distribution of the attacker type,
and there is no updating for the knowledge of the defender
in their approach. Authors in [16] propose an agent-centric
approach to address equilibrium in partially observable MDP
from a cyber defender’s perspective against a fixed attacker.
They design a Monte Carlo based sampling for dynamic
policy implementation under uncertainty. However, they did
not investigate the importance of time and constraint budget
for the defender. The approach of the paper in [17] is a state-
based model that consideres real time preserving availability
for realistic-sized cyber networks. The defender in this model
can operate under uncertainty about the attacker’s actions and
noisy security information. The defender in the given model
uses imperfect information to find the optimal strategy for the
future.

Our approach considers the fact that in the real world, a
defender does not have complete information about the real
state of the system and the actions of the attacker. Most
of the attackers’ actions and the amount of damage they
make are partially observable to the defender, and he or
she needs to update their knowledge after any new changes
in the system if they want to make right decisions about
defending. Additionally, this paper models the relationship
between the attacker and defender by taking into account the
limited budget for taking actions. Most of the approaches
related to modeling attack-defense interaction with Markov
chain consider an infinite budget for the attacker and defender



and try to minimize the cost and use infinite resources, while
in reality, there is a finite budget with a limited amount of
money and time. Another important factor in our approach is
that we consider the time of staying in each state as weight in
the reward or cost function for agents. Therefore, our model
is a constraint one-sided Partially Observable semi-Markov
Decision Process which considers constraint budget for the
defender.

III. MARKOV CHAIN

In this section, we will give a brief review of different
Markov chains. A Markov chain is a random process with
a discrete sequence of states in which the future state is only
relevant to the present state and the past one is irrelevant. A
triple (S, P,Q) can be used to represent the simple Markov
chain in which S denotes all possible states in the system,
and P denotes the state transition probability matrices and Q
denotes the initial probability of states. Transition probabilities
matrix presents as:

P =


p00 p01 p02 ... p0N
p10 p11 p12 ... p1N
... ... ... ... ...
pN0 pN1 pN2 ... pNN

 , (1)

where pij stands for transition probability from state i to j.
Initial probability shows the probability of start from each
state. If there is no particular information about the initial
status of the system, Q will be equal for all states. In such
a MC, computing steady states helps to analyze long-term
behaviors of the agent. Consider P as matrix of transition
probabilities, steady states π = [π0, π1, ..., πN ] is:

π · P = π

when
N∑
i=0

πi = 1, (2)

where N is total number of possible states.

A. Markov Decision Process

When an agent who can make decisions about taking action
based on the reward in each state is with a simple Markov
chain, such a decision process is called Markov Decision
Process (MDP) [18]. In other words, MC describes the states
of the system according to the actions of agents, and MDP
can be considered as a stochastic game with a single player.
MDP uses the reward to guide planing and choosing the next
state based on the associated reward. A MDP is a five-tuple
(S,A, P,R, γ) which stands for the set of possible states, the
set of all the possible actions, the state transitions matrix, the
benefit or reward of state transition by performing the action,
and a discount factor, respectively. Discount factor, γ helps
to consider more weight for the current obtained rewards in
comparison with the future ones. By considering γ equal to
1, there is no difference between the reward that the agent
obtains now and in the future.

Fig. 2. Updating belief state at any time slot based on the current belief states,
Transition probability and Observations probability for particular action

B. Hidden Markov Model

In some systems there is uncertainty about the current
state, and information about the true state of the system can
be estimated through relevant and possible observations. A
Markov chain with hidden states is called Hidden Markov
Model (HMM), which can be represented by a five-tuple
(S,O,A,B, PI ). S stands for the set of hidden states, O is the
set of observation states, A is the state transition probabilities
matrix, B shows the observation symbol probability matrix,
and the initial state distribution of this Markov model is pre-
sented by PI . The agent in HMM can learn something about
its environment and actual state by sensing and observing, and
then the sequence of states in the system can be predicted.

C. Partially Observable Markov Processor

The combination of MDP and HMM is called Partially
Observable Markov Processor (POMDP) which is represented
in the model by using tuples (S,A, T,R,O, γ). New variables
in this model in comparison with previous ones are T and O
which represent the relation between states and actions and
the observation probability in resulting state s ∈ S because
of taking action a ∈ A respectively. In POMDPs, the steady
states is not decidable, and the agent cannot ensure about the
current state of the system. The agent uses their beliefs b(s)
on the probability distribution over states [19]. The belief state
is computed based on the history of actions and observations
seen by the agent.

In addition to the incomplete observations in a given system,
utility function might be unknown [20]. This means that the
cost and reward should be estimated in order to make decisions
about taking actions, and there is no exact information or value
for them. The choice of the agent as action is based on the
belief state and the best value. For all s ∈ S, the summation of
belief states is unity,

∑
s∈S b0(s) = 1; that is, b0 is probability

distribution over initial states [21]. A belief state summarizes
the knowledge of the agent at a given time and shows the
likelihood of being in each state. Formally, belief state for
St based on the past experience, initial belief states, actions
at ← A, and observations, ot, is:

b(St) = Pr(St = s|s0, a1, o1, a2, o2, ..., at−1, ot−1). (3)



Action always results in a transition to a new belief state,
depending on the observation that is received, Fig. 2. When the
agent chooses an action, state likelihoods are updated based on
new observations and Bayes’ rule. Since the current state is s
with probability T (s, a, s′) which is probability of transition
from state s to state s′ due to the particular action a and
receiving observation o in s′ with the probability of O(a, s′, o),
the new belief state is:

b′(s′) =

∑
s∈S b(s) · T (s, a, s′) ·O(a, s′, o)

pz
, (4)

where

pz = O(a, s′, o)
∑
s∈S

b(s)
∑
s′∈S

T (s, a, s′). (5)

In order to have a valid probability distribution over states,
belief states must be normalized by dividing by the total
probability of observing, pz .

Thanks to the updating belief states, POMDP will be
converted into a fully observable MDP in which agents can
make decisions to take proper action. In this version of Markov
chain, the expected reward obtained for taking action a ∈ A
can be computed based on belief state and the reward function
R(s, a, s′) which shows obtaining reward of taking action a
in state s and ending up in s′:

ra =
∑
s∈S

∑
s′∈S

b(s) ·R(s, a, s′). (6)

Solving a POMDP in order to find the optimal policy can
be done by the frameworks of Value iteration (VI) and Policy
Iteration (PI) [22] which are based on iteration over value
space and policy space. The iterative calculation is called
dynamic programming and the value function, V (b), according
to to the belief state b is:

V (s) = max
a
{b(s) ·R(s, a)

+ γ
∑
s′∈S

T (s, a, s′) ·O(a, s′, o) · V (s′)}, (7)

where the first term, R(s, a), is immediate reward, and the sec-
ond term,

∑
s′∈S T (s, a, s′) · V (s′) is the expected reward of

future with parameter γ that is a discount factor. After enough
iterations, the value function converges to a stationary policy,
Vt+1(s) ≈ Vt(s), and does not change much any more. This
means that with a small number of ε if |Vt+1(s)−Vt(s)| ≤ ε,
no need to find better value. Although POMDP is very close
to a real scenario, there is some limitation in this model.
First of all, it is assumed that the agent knows the complete
POMDP model, such as transition probabilities, observation
probabilities, and rewards, which is not realistic for many
problems. Secondly, it is required time to compute belief state
if the resource and information for updating belief states are
not available [23].

D. Semi-markov Decision Process

In the types of Markov chains mentioned above, every
transition is based on time units; while actions need some
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Fig. 3. Simple Markov chain with transition probabilities

time to execute and states can be defined for any given time.
To shed light on this statement, consider an agent takes action
a in state si and remains in this state for time τn, then transits
to the next state sj and receives the reward r. In other words,
taking action a in si and transitioning to the next state takes
an amount of time which is presented by τi. Therefore, the
transition from one state to another one depends not only on
the current state and action, but also on the time the action
has been taken. This kind of MDP is called Semi-Markov
Decision Process which is considered time for transitioning to
the following state. Formally:

pij = P{X(τn + 1) = j|X(τn) = i}. (8)

It should be noted that Semi-Markov Decision Process does
not consider the uncertainty about the current state of the
system. Therefore, combination of Semi-Markov with POMDP
would be useful in modeling scenarios in the real world.

IV. MODELLING RELATIONSHIP

In this section, we discuss modeling the defender’s and the
attacker’s relationships. Most of the attacks have a sequential
set of attack steps and can be decomposed to some sub-stages.
When all sub-stage pass successfully, the attack succeeds. As
an application, consider installing a malware on a host for
DDoS attack [24][25]. Generally a sophisticated DDoS attack
can be decomposed with five steps as a multi-step attack
scenario. These phases are:

1) Sending echo-request for live hosts.
2) Finding live IP’s to look for the sadmind daemon on

hosts.
3) Breakins by the sadmind vulnerability on hosts.
4) Installing trojan mstream DDoS software on hosts.
5) Launching the DDoS.

For simplicity, we can consider four phases: “Intrusion
Attempt”, “Compromised System”, “Planting Virus”, and “De-
nial of Service” as the states of the system under a sequential
DDoS attack. Fig. 3 shows a Markov model for such an attack
where each state shows one of the steps of DDoS. First state,
s0, shows “Intrusion Attempt” when there is not any attack
over the system, and the system is in a safe status. If the
attacker sends broadcasting ping to the system and finds live
hosts, the system will transit to the “Compromised System”
which state s1 in Fig. 3. There is a 60% chance that this
transition will happen . On the other hand, there is a 40%
chance that the system will stay in s0 and the attacker will
not be successful in finding live hosts. Executing a daemon in
background by the attacker is the next step after finding hosts.



With a 25% probability the attacker can perform this step and
system transits to ”Critical State” or state s2. Ultimately, by
installing malware or trojans with the help of daemon and
launching DDoS attack, total damage is done, and system will
transit to state s3 which is status of ”Totally Damaged” for
given system. It is worth to mentioning that in each state, the
defender can take actions in order to defend and recover the
system to a safer state.

A. Simple Markov Model

The simplest scenario for Markov model in Fig. 3 is when
there is an infinite budget for the attacker and defender.
The attacker tries to make more damage and transits system
to a more unsafe state, while the defender tries to recover
the system to a safer state. Note that there are different
probabilities for transitions and self-transition (an option for
agents to wait in a given state which shows staying in state
without any actions). For example, suppose that system is in
state s1 and the attacker does attack in order to transit system
to the next state. According to the Markov model in Fig. 3,
there is a chance 25% the attacker is successful and transits
system to s2, and there is a 45% chance, defending action
recovers system to a safer state s0. There is a 30% chance,
the attacker cannot further damage the system, and the system
remains in s1. After a long-round, the steady states, π, for the
Markov Model of Fig. 3 can be computed:

π ·


0.4 0.6 0 0
0.45 0.3 0.25 0

0 0.3 0.2 0.5
0 0 0.35 0.65

 = π

and
π =

[
0.20 0.26 0.22 0.32

]
This means that after a long period of time, system will

be in state s0 with a 20% chance, in state s1 with the 26%
probability, and so on. Staying in each state has a reward for
agent and formally long-term total reward, R, can be computed
with steady states with:

R =

N∑
i=0

πi · r(si), (9)

where r(si) is the reward function that represents obtained
reward of being in state si. Suppose that the reward function
for the Markov model of Fig. 3 is r(si) = 10 ∗ i, then the
expected total reward after a long time will be 334.6.

B. Markov Chain with Budget Constraint

Taking action has cost, and certainly, there is not an infinite
budget for agents. In case of limited budget, the relationships
between the attacker and defender will not continue forever
and this process will be finished the case that they run out of
their budget. For example, consider the attacker and defender
have only $120 to spend for their actions. Fig. 4 shows a
Markov model with different costs for different transitions.
In this model, although two-hop transitions costs more for

Algorithm 1 POMDP
Input: Initial Belief b, Observation Function O, State Transi-

tion T
Output: Expected reward and Updated belief state.
π ← Value Iteration ()
a ← π(s)
for each s′ ∈ S do
b(s′)← O(o, a, s′) ·

∑
s T (s, a, s′) · b(s)

agents, they convert system to a safer state in the defender’s
view or a state with more damage in the attacker’s view. If
after some relationships between the attacker and defender,
defender runs out their budget, he or she cannot do anything
in order to defend the system and the attacker will continue
to make more damage.

It is possible that the attacker and defender do not have
same budget. Analysing the behaviors of the attacker and
defender in such a different scenario that defender has more
budget in comparison with the attacker or the attacker has
more budget would be interesting. Consider a scenario for
Fig. 4 in which the attacker has $150 and the defender has
$100 as budget and the attacker starts from s0. The attacker
does s0

attack−−−→ s1
attack−−−→ s2

attack−−−→ s3, thereby spends $90 for
his or her actions. In this state, the defender detects this attack
and recovers system to s1 which is safer by spending $75 and
then recover to s0, (s3

defend−−−→ s1
defend−−−→ s0), thereby running

out his or her total budget ($75+$25). In such a situation, the
defender cannot continue defending because he or she does not
have any budget to spend for making actions, so the attacker,
with the help of the rest of his or her budget, $60, can continue
attacking and making more damages without any interference
from the defender. Therefore, the attacker transits system from
s0 to state s2 which has more security damage for system and
stays there. The amount of budget for the attacker and defender
and the sequence of relationships have a vital impact on the
final results of the scenario.

C. Partially Observable Markov Decision Model

In the real world, the defender does not have complete
information about exact state of the attacker or the impact
of actions on system. Therefore, the defender has to make
decisions to prevent attackers with incomplete information.
On the other side, most of the time attackers have a full
observation, and their information about states of systems and
type of defenders is complete. Such a scenario can be modeled
by a MDP with partially observable states, or POMDP which
is more close to reality compared to MDP. In POMDP, there is
an initial belief states about the probability of being in states at
the first time slot. After any action, the defender has some new
observations that helps him or her to update information about
the current state of system, but not exactly. Actually, based on
these new observations, belief states can be updated to show
the probability of being in states after taking action a. As
mentioned before, the defender does not have full observation,
so updating belief states based on observations helps him or
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Fig. 4. Attack-defense Markov model with considering cost for actions.

her to estimate the current state of system and to make the
right decision about required actions. Certainly, with more
knowledge, there would be a better estimation about states
for the defender.

Suppose that based on the prior knowledge of the defender,
the initial belief states in the defense-attack model of Fig. 4 is
[50%, 30%, 20%, 0%]. This means that the state of system at
the start, the first time slot, is state s0 with the chance of 50%,
state s1 with the chance of 30%, state s2 with 20%, and there is
no chance to be in state s3. Also, the defender has knowledge
about the chance of detecting the attack in different status of
the system. For example, 90% for detection rate means that
agent after taking action can detect the following state with
90% probability. According to the equation 4, new belief state
for each state is summation of all possible transitions from
other states to this state due to taking particular action a← A.
Consider three actions A = {NoAction, Defend, Reset} for
the defender in Fig. 4. Suppose the action is a = Defend,
the observation probability O in resulted probable states is:

O(s, a = Defend) =


0.9 0.1
0.85 0.15
0.6 0.4
0.4 0.6


Therefore if the defender takes action Defend and has

initial belief b(s) = [50%, 30%, 20%, 0%], the new belief
for state s0 according to the equation 4 will be 0.9[(0.3 ×
0.35)+(0.20×0.25)] = 0.14. As mentioned before, new belief
states should be computed for all states, then normalization for
obtained values is needed to bring probabilities to the same
range. Ultimately, the normalized new belief state after the first
action, Defend, for Fig. 4 will be [69%, 25%, 8%, 0%]. As
mentioned before, with the help of value iteration, the optimal
action based on the maximum reward is obtained (Algorithm 2
shows associated pseudo code). Value iteration function in
any MDP helps agents to select optimal decision based on
the immediate reward and an estimation about the expected
reward which will be obtained in the future .

D. Partially Observable Semi-Markov Decision Model

In a real scenario, in addition to considering partial view
for the defender, it is of great importance to find how long
the agent stays in a given state. In other words, time of being
in each state is how much it takes for transitioning from one
state to another after taking particular action. In such a case

Algorithm 2 Value Iteration
Initialize V0(s)← 0, ∆← 0, i← 0, ε← Small number
repeat

for ∀s ∈ S do
Vi+1(s) ← maxa∈A{P (s, a, s′) · b(s) · [R(s, a, s′) +
γ
∑

s′∈S Vi(s
′)]}

∆← max(∆, |Vi+1(s)− Vi(s)|)
i← i+ 1

until ∆ < ε
Output: π(s)← arg maxa∈A(V (s))

when the defender has partial view and the time it takes to
take action is important, Partially Observable Semi-Markov
Decision Process or POSMDP can be used for modeling and
analysing relationships between the attacker and defender, Fig.
5. Needs to find the probability of staying in a particular
state i for period time of m after taking action a. Taking
action a results in the state j [6]. Conditional time distribution
Fij(m, ai) shows average time to stay in each state i and the
following state j for every action a. Formally, F is defined
as:

Fij(m, ati) = p(m|Xti = i,Xtj = j, ati), (10)

where m = |ti−tj | and is the length of the time between when
system is in state i at ti and in state j at tj . By choosing action
a in state i at time ti after m amount of time, the system will
be in state j with the probability of:

Qij(m, ati) = Pij(ai) · Fij(m, ati), (11)

where Pij is the transition probability of transition from si
to sj with taking action a. In POSMDP, in order to find the
optimal decision to get the most reward, we need to consider
Qij(m, ati) in updating belief regarding the probability of
being in a particular condition at the specific time.

The quality of a strategy in a partially observable semi-
Markov model is determined by utility which is based on
the weighted summation of percentages at different states,
from a safe state with the highest weight, a compromised
state with a reduced weight, to a totally damaged state with
zero weight. The objective function is to maximize sum of
immediate reward and future expected reward associated with



Fig. 5. Updating belief state at the end of each period. τi shows the amount of time that system stays in a particular state.

given decision. The utility function for state s and action a if
the system stays in s for time with length of m is:

Utility(s, a) = R(s, a) + F (t, a) · r(s, t)− C(s, a), (12)

where R(s, a) is the obtained immediate reward in state s
due to taking action a, r(i, a, t) is the reward per unit time
in transition period, and C(s, a) is the cost associated with
taking action a in state s. Certainly staying longer time in
states which are safer will have more rewards for the defender,
and time can be used as a weight in finding total reward of
the defender. As an example, suppose that immediate reward,
R(s, a), for taking action Defend in state s1 in Markov model
of Fig. 4 is 50 and reward per time, r(s, a, t), is 20t. If
defender takes action Defend in s1 and can keep system in
this state for 10 minutes, he or she will find 50+20×10 = 250
as reward. In order to find the best action in each state, the
defender needs to have some estimations about the future
of taking action. Value function for POSMDP is a modified
version of VI which includes the immediate reward of the
current time, the expected transition time and previous time
period:

V (s) = max
a
{b(s) · (R(s, a) + F (t, a) · r(s, a, t)− C(s, a))

+ γ ·
∑
s′∈S

Q(m, a) ·O(s, a, s′) · V (s′)}.

(13)
In a nutshell, with a semi partial observable MDP, both

of the time of being in each state and partial view of the
defender has an effect on the value of utility. Partial view
plays an important role in updating belief of the defender, and
the impact of time in each state as a weight in the reward
function is considerable.

V. SIMULATIONS RESULTS

In this section, we present the results of analysing optimal
policy and impact of different parameters on utility. We try
to show what is the impact of different amounts of total
budgets for the attacker and defender, varying initial belief
states, different detection rates (partially observation), cost of
Reset action and the probability of defense and attack on total
utility for the defender.

A. Dataset and Settings

For simulation, we used Markov model of data that was
drawn from MIT 2000 DARPA [26]. This dataset is related
to an off-line intrusion detection dataset, LLDOS 1.0, and
includes different scenarios of a distributed denial-of-service
attack based on the stealthy level of attack and slightly mod-
ified as demand. The target of the attacker in these scenarios
is to install components and then carry out a DDOS attack.
Each step of this attack can be considered as one of the states
of the system. Any action that transits the system to a safer
state can be considered as a defend or reset action. Thus, this
implementation is a mimic of a real application. P. Holgado
et al. [25] designed a HMM with the help of clustering tag
of alerts which detect intrusive activity as the observations
for each step of attacking in order to train the Markov chain
with both unsupervised and supervised methods. He found
the transition probability matrix, the observation probability
matrix, and the probability of starting intrusion from each
state. Clustering is done based on the tags of denial-of-service,
buffer overflow, cross-site scripting, remote attackers, remote
users, and information for alerts. This clustering helps to
predict the transition probability of attacks over states which
show the status of the system. According to the HMM, the
predicted transition probability for S ={Intrusion Attempt,
Compromised system, Planting Virus, Denial of Service} are:

P =


0.48 0.52 0 0
0.33 0.33 0.34 0
0.24 0.24 0.25 0.27

0 0 0 1


and initial probability distribution over states is:

π =
[
0.348 0.238 0.414 0

]
Transition between states in this model is based on the prob-

ability of defense and probability of progressing attack in each
state. Authors in [25] considered a naive defender that only has
two simple actions Silent and Alert. In this paper, we con-
sider a defender with more reaction related to the status of the
system whose actions are A = {NoAction,Defend,Reset}.
Another trace we consider to analyze the results in Markov
model is moving target defense [10] which has different
transitions between states. It is important to mention again
that the following state of each action is based on some
probabilities, transition probability. For example, if system is



in the state of Intrusion Attempt and takes action NoAction,
with the chance of Pa, probability of finding live hosts, system
will transit to state of Compromised System and with the
chance of 1−Pa, system will stay in state of Intrusion Attempt,
as a self transition. There is a similar situation for other
actions, Defend and Reset.

We assume that there is a cost for each transition between
states that comes from the cost of taking action for the agent.
This cost depends on the type of action. For example, there is
a cost imposed on the defender when he takes defense or does
a reset action. The final expected reward of the defend action
is the baseline reward subtracted by the cost associated with
the defend action. We consider different costs and rewards
associated with different actions in states of system, and the
cost of Defend and Reset actions should be added to the cost
of attacking. Fig. 4 shows the cost of each transition between
states for a particular action. The unit of the cost and budget
is dollars. The cost of reset is set to be larger than the cost
of defend. That is because for the reset action, the defender
needs to pay a higher cost for the system come back to the
first state. The reset action is taken only when there are no
other defensive solutions.

There is an initial total budget for the defender and attacker.
To take any action, an agent should spend the cost of a given
action from his budget. The initial total budget of the defender
and attacker can be the same or different. In simulation, there
is an analysis of scenarios when the attacker has a higher
total budget than the defender and vice versa. In addition, we
assume there is a reward R that is received due to defense
action and a general reward due to making decisions against
attackers. The values of future discount factor γ = 0.9 and
ε = 0.001 are fixed. Generally, we considered initial belief
state [25%, 25%, 25%, 25%] and observation probability 85%
rather than scenarios which investigate impacts of changing
initial belief states and observation probability. We analyze two
scenarios for the POMDP model. In the first model, the agent
selects the action according to his belief about the current state
of system and tries to select the best action. In the second
model, the agent selects an action randomly when he has a
partial view.

The time of being in each state plays an important role in
the value of the reward. Therefore, time of being in each state
can be considered as a weight in computing total utility. To
this end, the more time the system is in a safer state, the more
rewards the defender will have. On the other hand, being more
unsafe in compromised states have more cost and then less
reward for him or her. In order to find the optimal policy at
any particular state, the maximum of value function for three
actions is computed repeatedly according to the associated
transition probability and cost of different actions. Finally, at
the convergence, proper action in each state will be selected
as the optimal policy. It should be noted that after taking any
action, the defender has to update his belief, and in the next
value iteration he will use this new belief in order to find
the best policy. Therefore, after any action, because of new
knowledge about the current state of system, the defender will

have new optimal policy. Analysing the impact of costs, initial
belief states, detection rates of the defender and the amount
of total budget in finding optimal policy and utility will be
illustrated in the following parts.

B. Impact of Attack and Defense Budgets on Utility

In this part, we investigate the impact of increasing the
attacker’s budget on total utility. If either the attacker or
defender uses all of his or her budget, then the opponent agent
can continue their actions and obtain more rewards due to
no interference from the. Fig. 6 shows impacts of increasing
total budget of one side when opponent side’s budget is fixed
on utility. Figs. 6(a) and (c) illustrate that increasing the
defender’s total budget increases the utility. This is because
of the attacker does not have any budget to progress his
attack to target state, while the defender has enough budget
to recover the system to the safest state without any concern
about damage or cost from the attacker. On the other hand,
increasing the attacker’s total budget has more cost for the
defender as Figs. 6(b) and (d) represent. This is because after
running out of their budget, the defender cannot recover the
system to a safe state, while the attacker transits system to the
states which have more damage for the defender. By doing so,
the more the attacker’s budget, the less utility for the defender.

In addition, in Fig. 6, we can see the difference between two
model: a POMDP model in which the agent selects the best
action according to the current state of system and a model
that the agent selects action randomly when he or she has
a partial view. Although the trend of utility due to changing
the budget of the defender and attacker is approximately the
same for these two models, selecting the best action based on
the estimated value of each action and new belief has more
utility in all situations. In addition, Figs. 7 and 8 show error
bar diagram for the impacts of changing total budget on total
utility for two models.

C. Impacts of Detection Rate

As mentioned before, in a POMDP, the agent does not
have complete information about the current status of the
system and needs to update his belief to figure out with which
probability can the system be in each state. After any action,
the agent will have some new observation about the underlying
environment, and this observation will be used in updating
their belief. In this part we want to consider impacts of dif-
ferent observations on total utility. For a defender, observation
can be the power of detecting the status of the system, so we
can call it detection rate. Fig. 9 shows the impact of different
detection rates in state Compromised System on utility. As
depicted in figures, increasing detection rate or partially view
of the defender increases total utility value. This is because
with larger detection rates, defenders find current critical states
of systems sooner. By doing so, there is less damage for the
system and less cost for the defender. In other words, as a
result of a better detection rate, the agent will have better and
more precise belief states.



(a) (b) (c) (d)

Fig. 6. Impact of changing total budget of one side while keeping budget of other side on total utility. (a) and (b) show result when agent selects an action
based on his belief of current state. (c) and (d) show results when agent selects an action randomly.

(a) (b)

Fig. 7. Impact of changing budget on total utility when agent selects an action based on his belief of current state

(a) (b)

Fig. 8. Impact of changing budget on total utility when agent selects an action randomly.

There is a similar trend in the scenario with random
action, but selecting an action totally randomly has less utility
compared to selecting the best action. In the random scenario,
the agent selects the next action randomly without considering
probable effects of this action in the future. Conversely, in
the best action scenario the agent uses the value function
to select the next action according to the current belief and
also estimation of obtained value in following. Detection rate
or observation probability has a direct effect on estimation
value of future. Therefore, it plays an important role in value
function and then in selecting the best action.

D. Impact of Probability of Attack and Defense on Utility

In this section we investigate the impact of attack and
defense probabilities on utility. Probability of attack presents
frequent of attacking and larger probability shows more ag-
gressive attack and therefore more cost. In the Markov model
for IDS, probability of attack is the probability of transit from
the first state, intrusion attempt, to the next state which is the
state of compromised system. Larger chance for this transition
shows larger frequency of attack. Defense probability repre-
sents the probability that the defender selects Defense action

(a) Agent selects an action based on
the current state.

(b) Agent selects an action randomly.

Fig. 9. Impacts of changing detection rate on total utility in the Compromised
state of system.

rather than NoAction or Reset. A higher defense probability
shows a more effective response of the defender and notices
the success rate of defending against the attacker.

Fig. 10 shows the impact of increasing attack and defense
probabilities on utility. According to the diagram, increasing
probability of attack decreases total utility because higher
probability attack, Pa, leads to transit system to the states with
more damage and cost for the defender. On the other hand, the



(a) Agent selects an action based on
the current state.

(b) Agent selects an action randomly.

Fig. 10. Impact of changing attack and defense probabilities

(a) Agent selects an action based on
the current state.

(b) Agent selects an action randomly.

Fig. 11. Impact of changing detection rate on total utility in state Compro-
mised System.

higher defense probability, Pd, the better utility due to help
system to transit to the safer states. As a result, analysing these
probabilities and their impacts on total utility would be helpful
in analysing the attacker’s and defender’s strategies.

E. Impact of Reset Cost on Policy and Utility

This part illustrates the relationship between cost of Reset
action on optimal policy and total utility. Fig. 11 shows the
effect of reset cost for different defense probabilities on total
utility for two models.It is noticeable that in some points, in
spite of increasing cost of reset, there is no change in the
value of utility. This because when the cost of Reset action
is more than the cost of taking Defend or NoAction actions
agent will not select this action as the best one and other two
actions based on the current state and other parameters will be
selected. Therefore, there is a threshold point for cost where

Fig. 12. Impact of reset cost on utility of different actions in particular state
S3.

TABLE I
UTILITY AND NUMBER OF ITERATION FOR VARYING INITIAL BELIEF

STATES

Belief State Utility Iterations
[1,0,0,0] 73.9021 32

[0.25,0.25,0.25,0.25] 73.8914 29
[0.5,0.5,0,0] 73.931 32
[0.2,0,0.8,0] 73.9011 29

[0,1,0,0] 73.9142 30
[0,0.5,0.5,0] 73.8942 29

[0.1, 0.2, 0.4, 0.3] 73.9021 29
[0, 0, 1, 0] 73.9101 30
[0, 0, 0, 1] 73.9573 31

[0, 0, 0.5, 0.5] 73.9226 30
[0, 0, 0.5, 0.5] 73.9131 30

after this point, increasing cost of Reset will not have any
impact on the total utility.

Let us consider the impact of cost of Reset action in
more detail. The observation in Fig. 12 shows the impact of
changing cost of Reset action on utility and selecting the best
action in at a particular state of Denial of Service. It implies
that before point 1, the defender prefers to select reset action
because this action has less cost and therefore more rewards
for him. In the following, with increasing cost of Reset action,
the total utility decreases for this given action and the best
action is Defend due to more utility in comparison with
Reset and NoAction. After point 2 in Fig. 12, there is less
utility associated with taking action Reset than utility which
is obtained with action NoAction. However, Defend has the
most utility and is selected as the best action. It should be
noted that in some states, such as Denial of Service state
in DDoS, there is no defend action for agent and he has to
select between NoAction and Reset. In such a case, although
generally the cost of Reset is higher than NoAction, the agent
selects Reset action because staying in this particular state has
more damage and cost than cost of Reset. But with high cost
of Reset action, the agent will select NoAction instead of
Reset.

F. Impact of Belief States on Policy

In this part, we aim to investigate the impact of initial belief
states about an environment on utility and select optimal policy
in scenarios with different uncertainty about the current state
of system. Initial knowledge about history of the underlying
system helps a defender with partially observation to predict
the current state of system and select the best action associated
with the current status. Certainly, how much the agent knows
about the current position of system has an effect on his
or her decision making. Different assumptions have different
cascading effects and lead to different following a sequence of
actions. In our models, because of the fact that there is close
reward functions for different states, changing initial belief
does not have considerable impact on total utility.

Table I shows total utility and number of iterations to con-
verge for different initial belief states. If there is considerable
reward for a particular state in comparison with other states,
initial information states or belief states will have noticeable



TABLE II
OPTIMAL DECISION FOR STATE DENIAL OF SERVICE WHEN

b(s) = [20%, 80%, 0%, 0%]

Time Optimal Decision Belief State
1 No Action [0.2, 0.8, 0, 0]
2 Defend [0.1,0.7,0.2,0.1]
3 Defend [0.1,0.6,0.2,0.2]
4 Defend [0,0.4,0.2,0.3]
5 Defend [0,0.3,0.2,0.5]
6 No Action [1,0,0,0]
7 Defend [0.7,0.2,0.1,0]
8 Defend [0.4,0.4,0.1,0]
9 Reset [0.1,0.3,0.2,0.4]
10 No Action [1,0,0,0]

TABLE III
OPTIMAL DECISION FOR STATE DENIAL OF SERVICE WHEN

b(s) = [25%, 25%, 25%, 25%]

Time Optimal Decision Belief State
1 Defend [0.25, 0.25, 0.25, 0.25]
2 Reset [0.1,0.2,0.2,0.5]
3 No Action [1,0,0,0]
4 No Action [0.7,0.2,0.1,0]
5 Defend [0.4,0.4,0.1,0.1]
6 Defend [0.2,0.4,0.2,0.2]
7 Reset [0.1,0.3,0.2,0.4]
8 No Action [1,0,0,0]
9 Defend [0.7,0.2,0.1,0]
10 No Action [0.4,0.4,0.1,0.1]

impact on total utility. As mentioned before, agent uses beliefs
to have approximate view from the current status of the system
and then makes decision about the best action. The initial
belief states with low probability for being in a state with
more rewards guides agent towards states with less reward.
As a result the total utility will be less than the scenario with
an initial belief which assigns more probability for being in a
given state. Hence, the impact of initial utility on total utility
and speed of convergence in value iteration is based on the
reward function associated with the given model.

In addition, Table II shows details of updating belief states
and optimal action in each step for initial belief states b0(s) =
[20%, 80%, 0%, 0%]. The best action in any given time is
selected based on the best action associated with the current
state of system. More probability for safer state leads to select
NoAction because this action has less cost for the defender.
Conversely, if the probability of being in states which have
more cost and damage for the defender are larger, then the
defender will select Defend or Reset based on the current
situation. NoAction in such states has more cost for the
defender.

In a case that the defender has high uncertainty about the
status of underlying system and does not have enough prior
information to distinguish between states in order to find
what is the real current of system, initial belief state will
be b0(s) = [25%, 25%, 25%, 25%]. Table III shows optimal
decision and details of updating belief for a defender with high
uncertainty. A defender with high certainty has initial belief
b0(s) = [100%, 0%, 0%, 0%]. He or she knows that system
in the first state at first without any doubt. Therefore, such a

TABLE IV
OPTIMAL DECISION FOR STATE DENIAL OF SERVICE WHEN

b(s) = [100%, 0%, 0%, 0%]

Time Optimal Decision Belief State
1 No Action [1, 0 ,0, 0]
2 No Action [0.7,0.2,0.1,0]
3 Defend [0.4,0.4,0.1,0.1]
4 Defend [0.2,0.4,0.2,0.2]
5 Reset [0.1,0.3,0.2,0.4
6 No Action [1,0,0,0,]
7 Defend [0.7,0.2,0.1,0]
8 No Action [0.4,0.4,0.1,0.1]
9 Defend [0.2,0.4,0.2,0.2]
10 Reset [0.1,0.3,0.2,0.4]

defender can select the best action according to the maximum
value function, Table IV shows the best action in each time
based on the new belief states with a high certainty belief.

Finally, from above simulation results we can conclude that
total utility of the defender and the action selected as the best
one for defending in each state are under effect of different
parameters. It is also observed that a partially observable semi-
Markov decision process with budget constraint is a proper
model to analyze the behaviors of the defender in order to
improve defending strategies. Because it considers partial view
and importance of time for the defender, limitation of budget
for both the attacker and defender exist in the real scenarios
in security domain.

VI. CONCLUSION

In cybersecurity, one of the major obstacles to achieve
effective defense is the fact that an attacker knows more
about the defender than the defender knows about the attacker.
In this paper, we proposed to use finite-state, finite-action,
and stationary Partially Observable Semi-Markov Decision
Process to model the relationship between a defender and an
attacker. We investigated different scenarios for behaviors of
the attacker and defender and analysed optimal decision and
utility in respect of cost, total budget, initial belief and rate of
observation. Also, we considered the impact of staying time
associated weight based on the security level of each state.
When there is a lack of information on one side, say the
attacker side, the attacker does not have enough information
to select the best action against the action of the defender. He
needs to learn more and try to make his belief of the defender
more accurate. Certainly, it will take more time in comparison
with the complete information. This approach can be used
when both sides have partial information. The only difference
is the duration of learning time. In this case, both the attacker
and defender need to update their beliefs in multiple rounds,
based on what they receive from the actions of other side in
previous rounds.

In the future, we would like to work on different behav-
iors for the attacker and defender. For example, a “Patient”
defender pays more attention to resource efficient and waits
until detecting a critical situation to consume his or her
budget, while an “Impatient” defender considers short term
reward and penalty, rather than resource efficiency and tries to



detect attacks quickly and make reactions, in spite of finishing
resources. Also, a “Smart” attacker prefers to make small
damage in order to stay undetected and can obtain more
rewards because of transition to more unsafe states. Also it is
possible that there are different type of attacks some of which
may spend more budget compared with others. Analysing
different scenarios with varying behaviors for the attacker and
defender would be interesting and useful. Another issue as a
future work is taking into account the reward function as the
feedback for agent in order to reduce the uncertainty about
the state of the system. In general POMDP, agent only uses
prior belief states and new observations after taking action to
have a better view from underlying system. The amount of the
reward that the agent receives as a result of taking particular
action can help him have more certainty about state of system.
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