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Abstract Most of routing protocols designed for the Internet today
are for networks with bidirectional links. These protocols cannot be
easily extended to networks with unidirectional links without increas-
ing cost. In [1], Chen et al. presented a distance-vector-based routing
protocol for unidirectional networks where a routing table is derived
for each node in the network. In this paper, we extend the protocol
in [1] by keeping one path for each outgoing link of a node to main-
tain multiple paths in the corresponding routing table. The path for a
specific outgoing link is the shortest path from the node to the destina-
tion through that outgoing link. Thus, the protocol provides alternative
paths that are vital in the dynamic network environment.
Keywords: Multi-path routing protocols, routing algorithms, unidi-
rectional networks

I. I NTRODUCTION

Conventional routing protocols can be classified into link
state and distance vector protocols. In link state routing proto-
cols, each node maintains a view of the network topology with
a cost for each link. In distance vector routing protocols, each
node maintains a distance to each destination. Such information
is kept in a routing table associated with each node. Routing
protocols currently used for the Internet are based on the sim-
ple assumption that any two neighbors can bi-directionally ex-
change information. The traditional routing protocols like RIP
[2] (a distance vector protocol) or OSPF [3] (a link state proto-
col) are both based on this assumption. As more and more mo-
bile applications emerge, this assumption faces big challenges.
However, for most mobile applications, distance vector routing
protocols still use this assumption to generate routing tables.
This will cause serious problems. Therefore, new algorithms
based on the unidirectional networks topology need to be con-
sidered.

As a basic figure of the mobility patterns, the link between
two neighboring nodes is temporarily connected and often uni-
directional due to the different physical environment and the
disparity of the transmission power levels of the two nodes.
Figure 1 gives an example of ad hoc wireless networks (a spe-
cial type of wireless network without infrastructure) where host
A can receive messages from hostB while B cannot receive
messages fromA. This could happen when B has a small trans-
mission scope that cannot coverA while B is in A’s transmis-
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Fig. 1. Network with unidirectional links

sion scope.B has to getA’s message from hostC. Therefore,
the distance vector routing protocol mostly used in the Internet
needs to consider the unidirectional links between two neigh-
bors. The existence of unidirectional links may generate totally
difference paths fromA to B and fromB to A even though they
may be neighbors. In the above example, the path fromA to B
is (A,B) while the path fromB to A is (B, C,A).

In [4], Prakash pointed out that a distance vector routing pro-
tocol for unidirectional networks requiresO(n2) information
exchanges. This protocol uses ann × n D matrix to maintain
the distance between two nodes and the routing table is con-
structed thereafter. The protocol proposed by Chen [1] reduced
the complexity of information storage toO(n), with carefully
constructed FROM and TO tables of each node. This protocol,
unfortunately, needs many rounds to reach the stable status in
some cases and only one path is kept for each destination.

The protocol presented in the paper is an extension to the pro-
tocol in [1]. One path is kept for each outgoing link of the node
in the table. Thus the routing table can provide multiple paths
to each destination node. Each path for a specific outgoing link
is the shortest path from the node to the destination through that
outgoing link. The design of this protocol is based on a worst
case situation that the network topology is frequently changed
and that providing alternative paths are vital in this dynamic
network environment.

The rest of the paper is organized as follows: Section 2 gives
a brief description of some protocols for unidirectional net-
works. The extended protocol is given in Section 3. In Sec-
tion 4, we consider some situations in dynamic networks and
discuss the merits of this protocol. In the end, we draw some
conclusions in Section 5.



II. RELATED WORKS

Routing in unidirectional networks is much different from
that in bidirectional networks because routing information can
only be diffused in one direction. Based on the distance vector
protocol in bidirectional networks, the complexity of informa-
tion exchange and storage isO(n), wheren is the number of the
nodes in the network. But in the network containing unidirec-
tional links,O(n), as the amount of information exchange, is
not sufficient for each node to construct a complete routing ta-
ble. Some modified protocols have been proposed recently with
the consideration of the unidirectional links. All these protocols
are in the category of distance vector algorithms, not in that of
link state algorithms.

Prakash [4] proposed a protocol based on the protocols used
in ad hoc wireless networks like DSDV [5] and AODV [6]:
Each node maintains ann × n D matrix which indicates the
distance between two nodes. A node’sFrom(To) vector in-
cludes the distance and previous (next) hop from (to) all the
other nodes. The node uses theD matrices received from its
neighbor nodes to update its ownD matrix and also to construct
its From andTo vectors. Therefore,O(n2) as the amount of
information exchange and storage is needed for this protocol. It
is also proved that the routing paths determined by this protocol
are loop-free.

Another protocol proposed by Chen et al. [1] reduces the
complexity of information storage toO(n): Each node first col-
lects information from its predecessors’ FROM tables to con-
struct its FROM table. It then uses these FROM tables to gener-
ate its TO table. The algorithm used in this protocol is similar to
the one in a regular distance vector protocol. Since the FROM
table and TO table are of the sizeO(n), the total complexity for
this protocol is alsoO(n). This algorithm requires the network
be strongly connected so that a cycle exists that connects any
two nodes. In some cases, a routing table needs many rounds
to converge. In addition, only one possible path is kept in the
routing table which might be insufficient in a changing environ-
ment, especially in the dynamic network environment.

III. ROUTING PROTOCOL

Our approach is an extension of the protocol in [1]. We try
to generate the routing table of each node by maintaining more
information in each round. The TO table of a node allocates
one entry to store the path information for each outgoing link
from the node. The path for a specific outgoing link is the short-
est path from the node to the destination through that outgoing
link. The complexity of the protocol isO(|E|), where|E| is the
number of the directed links of the network. Note that multiple
paths generated from this protocol also provide alternate paths
which are vital in dynamic networks.

A. Data structure

The network can be described as a directed graphG =
(V, E), whereV is a vertex set presenting the hosts andE is
an edge set presenting the links. We follow the notations used
in [1]. (P, Q) represents the directed link from nodeP to node
Q. P is calledQ’s f -neighbor (predecessor) andQ is called
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Fig. 2. (a) a FROM entry (b) a TO entry

P ’s t-neighbor (successor). The cost of the link(P, Q) is de-
noted byd(P, Q). The path fromP to Q via nodesN1, N2, ...,
Nk is represented as(P, N1, N2, ..., Nk, Q). It is assumed that
graphG is strongly connected, which implies that any pair of
vertices inG can be reached by each other, and hence, a cycle
exists that connects any two vertices. A cycle is a path with two
end nodes being the same node.

Each node needs to maintain a FROM table (FT) and
a TO table (TT). The format of entrye in FT is
(ND,DT,NX1, NX2, TTL), shown in Figure 2(a), which
represents a path from source nodeND to the nodeI that con-
tains the FT table. The next node from nodeND is NX1,
and the node with two steps fromND is NX2 if such a node
exists, elseNX2 will set to φ. The total cost of the path
from ND to I is DT . TTL is a timer associated with the
entry. TTL is initialized to a constant valueT and is de-
creased as time goes by. WhenTTL reaches zero, the entry
will be considered expired and will be deleted from theFT .
The format of the entry of a TO Table (TT) is represented as
(ND,DT,NX1, NX2, TTL), butND here means the desti-
nation node,NX1 is the first hop from this nodeI, andNX2
is the second hop from nodeI, as shown in Figure 2(b). Also,
field NX2 will be set toφ if such a node does not exist. When
a field in the entry is not concerned in the discussion, we use
“-” in that field.

We use the following notation to represent a node’s tables,
table’s entries, and fields within the entries, such asP.FT for
the node P’s FROM table,FT.ei for theith entry in the FROM
table, ande.NX1 for theNX1 field of the entrye.

B. FROM table construction

The algorithm FROM in [1] is used to construct the FROM
tables for the network. The FROM algorithm only maintains
one path for each node. The format of a FROM table’s en-
try is (ND, DT , NX, TTL) in which fields have the same
meanings as indicated above. Algorithm FROM uses the IF
statement (e.NX = e′.NX or e.DT ≤ e′.DT ) to maintain the
shortest path information in the entry:e.NX = e′.NX is used
to refresh the existing entry.e.DT ≤ e′.DT is used to replace
the entry if an entry with a shorter path has been found. The
procedure uses the ELSE IF statemente.DN 6= Q to keep the
cycle (fromQ to Q) away from the FROM table.

The following CFT algorithm is almost the same as the algo-
rithm FROM. Each node constructs its FROM table based on its
predecessors’ FROM table information. A node periodically re-
ceives the updated FROM table from its predecessors. The node
also sends its FROM table to its successors periodically. Since
the FROM table needs to keep an entry for each outgoing link



Algorithm 1 FROM algorithm [1]

1. Initially, all FROM tables are empty.
2. Each node periodically sends to all itst-neighbors a FROM packet

containing its FROM table.
3. When a nodeQ receives a FROM packetF from f-neighborP ,

containingP ’s FROM table:
(a) For eachf ∈ F.FT , Q generatese = {f.ND, f.DT +
d(P, Q), f.NX, T} and executes the procedure:
if ∃e′ ∈ Q.FT then

if e.NX = e′.NX ∨ e.DT ≤ e′.DT then
replacee′ by e;

end if
else

if e.ND 6= Q then
adde to Q.FT ;

end if
end if
(b) Q createse = {P, d(P, Q), Q, T} and executes the above
procedure upone.

4. The entry is deleted from the table when the timer of the entry
expires.

of a node, fieldsND andNX1 are used to identify this outgo-
ing link. There is one more fieldNX2 in the entry because we
need to use(e.NX2 = e′.NX2) instead of(e.NX = e′.NX)
in the IF statement of the procedure in step 3(a).NX2 has the
same function as the fieldNX in algorithm FROM. A specific
case needs to be considered here: When a nodeQ receives its
predecessorP ’s FT and finds an entry in which fieldNX2 is
φ, Q will just put Q in the fieldNX2 to generate a new entry.
In step 3(b), the entrye = {P, d(P, Q), Q, φ, T} indicates the
direct link (P, Q) which has noNX2.

Algorithm 2 CFT algorithm (Construct a FROM Table)

1. Initially, all FROM tables are empty.
2. Each node periodically sends to all itst-neighbors a FROM packet

containing its FROM table.
3. When a nodeQ receives a FROM packetF from f-neighborP ,

containingP ’s FROM table:
(a) For eachf ∈ F.FT , Q generatese = {f.ND, f.DT +
d(P, Q), f.NX1, NX2, T}, NX2 is either f.NX2 or Q if
f.NX2 is φ, and executes the procedure:
if ∃e′ ∈ Q.FT thate′.ND = e.ND ∧ e′.NX1 = e.NX1 then

if e.NX2 = e′.NX2 ∨ e.DT ≤ e′.DT then
replacee′ by e;

end if
else

if e.ND 6= Q then
adde to Q.FT ;

end if
end if
(b) Q createse = {P, d(P, Q), Q, φ, T} and executes the above
procedure upone.

4. The entry is deleted from the table when the timer of the entry
expires.

C. TO table construction

The TO table is the routing table used for sending informa-
tion packages from source to destination. In [1], algorithm TO
is triggered when a nodeQ receives a FROM table from its pre-
decessorP and finds an entry in whichND field is Q. Then

the algorithm uses this cycle to construct the entries from each
node to nodeQ. The same procedure used in algorithm FROM
is also used in algorithm TO to keep the most updated shortest
path in the TO table.

Algorithm 3 TO algorithm [1]

1. Initially, all TO tables are empty.
2. WhenQ receives a FROM packet F from anf -neighborP and

F.FT contains an entry whoseND = Q, then
(a) Q traces the path fromQ to P in F.FT : (Q =
N0, N1, N2, ..., Nm = P ), m ≤ 1. Let e1, ..., em be the cor-
responding entries inF.FT whereei = {−,−, Ni,−}.
(b) For i = 1 to m, Q generates the entrye = {Ni, di, N1, T},
wheredi = di−1 + [ei.DT − ei+1.DT ] andd0 = dm+1 = 0,
and executes the procedure:
if ∃e′ ∈ Q.FT then

if e.NX = e′.NX ∨ e.DT ≤ e′.DT then
replacee′ by e;

end if
else

if e.ND 6= Q then
adde to Q.FT ;

end if
end if
(c) Q sends a TO packetT containing its TO table toP using
algorithm SOURCE ROUTE.

3 WhenP receivesT from its childQ,
(a) for eacht ∈ T.TT , it generatese = {t.ND, t.DT +
d(P, Q), Q, T} and executes the above procedure.
(b) P generatese = {Q, d(P, Q), Q, T} and executes the above
procedure upone.

4. The entry is deleted from the table when the timer of the entry
expires.

The CTT algorithm follows the same idea. TheF.FT keeps
the shortest paths from all other nodes toP , including nodeQ,
thenQ can find the shortest path fromQ to P in F.FT . Thus,
Q can construct its partial TO table with this path information.
As used in steps 2a and 2b.Q uses the entry’sDT field in P ’s
FROM table to calculate theDT field of the entry inQ’s TO
table, from nodeN1 to nodeNm along this path. The procedure
used in CFT algorithm is also used here in step 2b.P ’s TO table
can be updated if a new shorter path is found. WhenP ’s TO
table is constructed, this TO table is sent to its predecessorQ
so thatQ can constructQ’s TO table by just appending link
(Q, P ) to P ’s TO table entries. This is what step 3 does. In
step 4, nodeP will perform the loop-free check for the newly
added entry since step 3 will introduce some entries that may
cause a loop in its path to the destination. Algorithm TO differs
significantly from algorithm CTT: algorithm TO just keeps one
shortest path for each node and there will be no loop. The loop-
free check procedure uses the node’s FROM table to detect the
loop in an entry because the FROM table keeps each node’s
shortest paths from all other nodes without any loop. Therefore,
if an entry like{P, e.DT, e.NX1, e.NX2,−} cannot be found
in the FROM table of nodee.ND, entrye in nodeP ’s TO table
must contain a loop in its path. This type of entry is dangerous
for the routing table and must be excluded from the TO table.

D. Case study

In this subsection, we first use the example in [1] to show
the difference between the extended algorithm and the previous



Algorithm 4 CTT algorithm (Construct a TO Table)

1. Initially, all TO tables are empty.
2. WhenQ receives a FROM packet F from anf -neighborP and

F.FT containse such thate.ND = Q, it does the following
steps:
(a) For the shortest path fromQ to P : (Q =
N0, N1, N2, ..., Nm = P ) with each outgoing link ofQ
in F.FT , find the entriese1, e2, ..., em in F.FT , where
ei = {Ni−1,−, Ni,−,−}.
(b) For i = 1 to m, Q generatese = {Ni, DT i, N1, NX2, T},
whereNX2=N2 if i 6= 1 or phi if i = 1, DT i = DT i−1 +
(ei.DT − ei+1.DT ), DT 0 = 0, em+1.DT = 0, and executes
the procedure:
if ∃e′ ∈ Q.FT thate′.ND = e.ND ∧ e′.NX1 = e.NX1 then

if e.NX2 = e′.NX2 ∨ e.DT ≤ e′.DT then
replacee′ by e;

end if
else

if e.ND 6= Q then
adde to Q.FT ;

end if
end if
(c) Q sendsQ’s TO table toP using SOURCE ROUTE algorithm
via the path(Q, N1, N2, ..., P ).

3 When a nodeP receives a TO packetT from its t-neighborQ, it
generatese = {t.ND, t.DT + d(P, Q), Q, t.NX1, T} for each
t ∈ T.TT , it also generatese = {Q, d(P, Q), Q, φ, T}. P exe-
cutes the procedure in step 2(b) upon eache.

4 If P ’s outgoing links are more than one, for a newe, P will do the
loop-free check procedure:
(a)P sends(P, e) that combinesP ande to e.ND using the path
found in theP .TO table.
(b) When e.ND receives (P, e), it searches e′ =
{P, e.DT, e.NX1, e.NX2,−} in its FROM table.
(c) e.ND sends an acknowledgement message back toP indicat-
ing if e′ is found ine.ND’s FROM table or not.
(d) WhenP receives this acknowledgement that indicatese′ is not
found,P removese from its TO table.

5. The entry is deleted from the table when the timer of the entry
expires.

one presented in [1]. The network topology of the example is
shown in Figure 3(a). Since these tables need several rounds of
information exchange to be fully filled, we show the tables of
each round until they become stable.

We can use the CFT algorithm presented in the above section
to get the FROM table in each round:
1) First round

A B C D E
- A,1,B,φ,- A,2,C,φ,- - -
- - B,2,C,φ,- - -
- - - C,3,D,φ,- -
- - - - D,2,E,φ,-

E,2,A,φ,- - - - -

2) Second round

A B C D E
- A,1,B,φ,- A,2,C,φ,- A,5,C,D,- -

A,3,B,C,-
- - B,2,C,φ,- B,5,C,D,- -
- - - C,3,D,φ,- C,5,D,E,-

D,4,E,A,- - - - D,2,E,φ,-
E,2,A,φ,- E,3,A,B,- E,4,A,C,- - -

3) Third round

A

B

C D

E

1

2

2

3

2

2
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C D

E
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2

2

3

2
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1
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Fig. 3. (a) example 1 (b) example 2

A B C D E
- A,1,B,φ,- A,2,C,φ,- A,5,C,D,- A,7,C,D,-

A,3,B,C,- A,6,B,C,-
- - B,2,C,φ,- B,5,C,D,- B,7,C,D,-

C,7,D,E,- - - C,3,D,φ,- C,5,D,E,-
D,4,E,A,- D,5,E,A,- D,6,E,A,- - D,2,E,φ,-
E,2,A,φ,- E,3,A,B,- E,4,A,C,- E,7,A,C,- -

4) Fourth round

A B C D E
- A,1,B,φ,- A,2,C,φ,- A,5,C,D,- A,7,C,D,-

A,3,B,C,- A,6,B,C,- A,8,B,C,-
B,9,C,D,- - B,2,C,φ,- B,5,C,D,- B,7,C,D,-
C,7,D,E,- C,8,D,E,- - C,3,D,φ,- C,5,D,E,-
D,4,E,A,- D,5,E,A,- D,6,E,A,- - D,2,E,φ,-
E,2,A,φ,- E,3,A,B,- E,4,A,C,- E,7,A,C,- -

The TO table can be generated by the CTT algorithm with
the same assumption described above:

1) First round
a) TO table after step 2 of CTT algorithm

A B C D E
- A,9,C,D,- A,7,D,E,- A,4,E,A,- A,2,A,φ,-

B,1,B,φ,- - B,8,D,E,- - -
C,2,C,φ,- C,2,C,φ,- - C,6,E,A,- C,4,A,C,-
C,3,B,C,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,φ,- -
E,8,B,C,-

b) TO table after step 3 of CTT algorithm

A B C D E
- A,9,C,D,- A,7,D,E,- A,4,E,A,- A,2,A,φ,-

B,1,B,φ,- - B,8,D,E,- - B,3,A,B,-
B,10,C,D,-
C,2,C,φ,- C,2,C,φ,- - C,6,E,A,- C,4,A,C,-
C,3,B,C,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,φ,- -
E,8,B,C,-

c) TO table after step 4 of CTT algorithm

A B C D E
- A,9,C,D,- A,7,D,E,- A,4,E,A,- A,2,A,φ,-

B,1,B,φ,- - B,8,D,E,- - B,3,A,B,-
C,2,C,φ,- C,2,C,φ,- - C,6,E,A,- C,4,A,C,-
C,3,B,C,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,φ,- -
E,8,B,C,-

2) Second round

a) TO table does not change its contents after step 2 of CTT
algorithm

b) TO table after step 3 of CTT algorithm



TABLE I
THE FROM TABLE

A B C D E
- A,1,B,- A,2,C,- A,5,C,- A,7,C,-

B,9,C,- - B,2,C,- B,5,C,- B,7,C,-
C,7,D,- C,8,D,- - C,3,D,- C,5,D,-
D,4,E,- D,5,E,- D,6,E,- - D,2,E,-
E,2,A,- E,3,A,- E,4,A,- E,7,A,- -

TABLE II
THE TO TABLE

A B C D E
- A,9,C,- A,7,D,- A,4,E,- A,2,A,-

B,1,B,- - B,8,D,- B,5,E,- B,3,A,-
C,2,C,- C,2,C,- - C,6,E,- C,4,A,-
D,5,C,- D,5,C,- D,3,D,- - D,7,A,-
E,7,C,- E,7,C,- E,5,D,- E,2,E,- -

A B C D E
- A,9,C,D,- A,7,D,E,- A,4,E,A,- A,2,A,φ,-

B,1,B,φ,- - B,8,D,E,- B,5,E,A,- B,3,A,B,-
B,10,C,D,-
C,2,C,φ,- C,2,C,φ,- - C,6,E,A,- C,4,A,C,-
C,3,B,C,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,φ,- -
E,8,B,C,-

c) TO table after step 4 of CTT algorithm

A B C D E
- A,9,C,D,- A,7,D,E,- A,4,E,A,- A,2,A,φ,-

B,1,B,φ,- - B,8,D,E,- B,5,E,A,- B,3,A,B,-
C,2,C,φ,- C,2,C,φ,- - C,6,E,A,- C,4,A,C,-
C,3,B,C,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,φ,- -
E,8,B,C,-

For the first example, the algorithms FROM and TO in [1]
use four rounds and three rounds, respectively, to form the sta-
ble FROM table and TO table.

The stable FROM table getting from the FROM algorithm
and the TO table from the TO algorithm are shown in Table I
and II:

Although the CFT algorithm also uses four rounds to con-
struct the stable FROM table, the FROM table maintains two
paths for a node from nodeA which has two outgoing links.
The TO table needs two rounds to be stable with the CTT. In
step 3 of the CTT, a self-looped entrye = (B, 10, C, D,−)
will be introduced to nodeA’s TO table. This entry indicates
the path(A,C, D,E,A, B) which has a cycle fromA to A.
The loop-free check procedure in step 4 is executed to find this
loop entry: NodeA will send a package(A, e) to B, thenB
searches its FROM table for entry(A, 10, C, D,−). Since such
an entry cannot be found inB’s FROM table,B will send a
message toA indicating thate is a self cycled entry. WhenA
receives this message, it will removee from the table. After the
TO table is stable, nodeA will keep two paths to all other nodes
1 in its TO table sinceA has two outgoing links.

As a second example, we add one more link(D,A) to the
previous example, shown in Figure 3(b). In this example, node
A has two incoming links and two outgoing links.

1There is only one path fromA to B because another path contains a self
cycle and is removed fromA’s TO table.

The FROM table generated by the FROM algorithm using
the protocol in [1] will be stable after three rounds:

A B C D E
- A,1,B,- A,2,C,- A,5,C,- A,7,C,-

B,6,C,- - B,2,C,- B,5,C,- B,7,C,-
C,4,D,- C,5,D,- - C,3,D,- C,5,D,-
D,1,A,- D,2,A,- D,3,A,- - D,2,E,-
E,2,A,- E,3,A,- E,4,A,- E,7,A,- -

The TO table generated by the TO algorithm also needs after
three rounds to be stable:

A B C D E
- A,6,C,- A,4,D,- A,1,A,- A,2,A,-

B,1,B,- - B,5,D,- B,2,A,- B,3,A-
C,2,C,- C,2,C,- - C,3,A,- C,4,A,-
D,5,C,- D,5,C,- D,3,D,- - D,7,A,-
E,7,C,- E,7,C,- E,5,D,- E,2,E,- -

The FROM table generated by the CFT algorithm needs four
rounds to reach stable:

A B C D E
- A,1,B,φ,- A,2,C,φ,- A,5,C,D,- A,7,C,D,-

A,3,B,C,- A,6,B,C,- A,8,B,C,-
B,6,C,D,- - B,2,C,φ,- B,5,C,D,- B,7,C,D,-
C,4,D,A,- C,5,D,A,- - C,3,D,φ,- C,5,D,E,-
D,1,A,φ,- D,2,A,B,- D,3,A,C,- - D,2,E,φ,-
D,4,E,A,- D,5,E,A,- D,6,E,A,-
E,2,A,φ,- E,3,A,B,- E,4,A,C,- E,7,A,C,- -

The TO table generated from the CTT algorithm after four
rounds

A B C D E
- A,6,C,D,- A,4,D,A,- A,1,A,φ,- A,2,A,φ,-

A,4,E,A,-
B,1,B,φ,- - B,5,D,A,- B,2,A,B,- B,3,A,B,-

B,5,E,A,-
C,2,C,φ,- C,2,C,φ,- - C,3,A,C,- C,4,A,C,-
C,3,B,C,- C,6,E,A,-
D,5,C,D,- D,5,C,D,- D,3,D,φ,- - D,7,A,C,-
D,6,B,C,-
E,7,C,D,- E,7,C,D,- E,5,D,E,- E,2,E,D,- -
E,8,B,C,-

In this example, algorithms CFT and CTT need one more
round to construct the stable FROM table and TO table com-
pared with the algorithm used in [1] because the tables have
to gather more information from every other node to construct
the multiple paths. And two self-cycled entries will be gener-
ated by the CTT algorithm:(B, 7, C,D,−) in nodeA’s TO
table and(E, 8, A, C,−) in nodeD’s TO table. These entries
correspond to the path(A,C, D, A, B) and (D,A, C, D,E, )
respectively. These looped entries can also be removed by exe-
cuting the loop-free check procedure. Note that when the num-
ber of nodes that have multiple outgoing links increases, the
rounds for a stable table and the self-cycled entries will also
increase.

IV. D ISCUSSION

The FROM table generated will remain stable if the topology
of the network does not change as time goes on. But for the
dynamic network, the link between two nodes may be broken
or the cost of the link may increase/decrease due to the dynamic
physical environment. These changes will affect the cost of
a link, and hence, the corresponding value in the table. We
consider the following two cases:

Link failures : When a link is broken, the timer for this link will
expire and the entry will be deleted from the table. In example
2 (Figure 3(b)), let us suppose that link(D,A) is broken. After



some time, node A will delete the expired entries of its FROM
table: (B, 6, C,D,−), (C, 4, D, A,−), (D, 1, A, φ,−) and
then insert updated entries:(B, 9, C,D, T ), (C, 7, D, E, T ).
NodesB andC ’s FROM tables will also update their corre-
sponding entries when nodeA updates its FROM table. If link
(D,A) does not come back up again, the FROM table of exam-
ple 2 will finally be the same as the table of example 1.

Link cost changes: Besides all the fields of FROM and TO
tables in [1], there is a new added fieldNX2 in both FROM
and TO tables. This field is used to deal with the problem
of link-cost changes. In these algorithms, under the condition
(e′.DN = e.DN ande′.XN1 = e.XN1), the old entry will
be replaced by the new one ife′.XN2 = e.XN2. For the ex-
ample 2, suppose that the cost of link(D, A) changes its cost
from 1 to 3, the entries of the FROM table in nodesA, B and
C will be updated to the following:

A B C
- A, 1, B, φ, - A, 2, C,φ, -

A, 3, B, C, -
B, 8, C, D, - - B, 2, C,φ, -
C, 6, D, A, - C, 7, D, A, - -
D, 3, A, φ, - D, 4, A, B, - D, 5, A, C, -
D, 4, E, A, - D, 5, E, A, - D, 6, E, A, -
E, 2, A,φ, - E, 3, A, B, - E, 4, A, C, -

If the cost of link (D, A) increases its value to 5, the
entry (B, 6, C, D,−) of node A will be first updated to
(B, 10, C,D,−) when nodeA receives the FT packet from
node D, and then this entry will update its value again to
(B, 9, C,E,−) whenA receives another FT packet from node
E and finds a shorter path(B, C, D, E,A) from B to A. Cor-
respondingly,(C, 4, D,A,−) and(D, 1, A, φ,−) in nodeA’s
FROM table will also be updated. The final FROM table of the
graph is as follows:

A B C D E
- A,1,B,φ,- A,2,C,φ,- A,5,C,D,- A,7,C,D,-

A,3,B,C,- A,6,B,C,- A,8,B,C,-
B,9,C,D,- - B,2,C,φ,- B,5,C,D,- B,7,C,D,-
C,7,D,E,- C,8,D,E,- - C,3,D,φ,- C,5,D,E,-
D,4,E,A,- D,5,E,A,- D,6,E,A,- - D,2,E,φ,-
D,5,A,φ,- D,6,A,B,- D,7,A,C,-
E,2,A,φ,- E,3,A,B,- E,4,A,C,- E,7,A,C,- -

The proposed algorithm can keep multiple paths in both
FROM and TO tables. The storage requirement for the table
is O(|E|), where|E| is the number of links in the graph, since
each outgoing link of a node will have a corresponding entry
in the table. The complexity of this protocol will be much
higher than the protocol in [1] for the dense network topology
because in the dense network,O(|E|) = O(|V |2). But for the
sparse network,O(|E|) = O(|V |) and the protocol benefits
from keeping multiple paths in a routing table with reasonable
cost.

The merit of keeping multiple paths in a routing table is that
it can greatly improve the tolerance of the network link failures
without any package exchanges. When the primary shortest
path in the routing table fails, an alternate path will be chosen
without invoking the path finding process. In the dense net-
work, each node may have many outgoing links to its neigh-
bors, therefore, each pair of two nodes may normally have bidi-
rectional links, or have a very short path with just one or two
intermediate nodes. Keeping a path for every outgoing link of
a node won’t be an effective solution. In sparse networks, the
path between two nodes will consist of more nodes, and thus,

the path is more easily broken. If each node has just a few adja-
cent links, the cost of keeping multiple paths in the table will be
reasonable. Multiple paths can also be used for a specific node
to balance the data stream through different paths. Therefore,
keeping more than one path in the routing table is more benefi-
cial than just keeping the shortest path in the routing table.

V. CONCLUSIONS

In this paper, we have proposed a multi-path routing protocol
for unidirectional networks. The protocol has extended the pre-
vious protocol by keeping one path for each outgoing link of the
node in the table so as to providing multiple paths in a node’s
routing table. Each path for a specific outgoing link is the short-
est path from that node to the destination through that outgoing
link. The protocol is expected to converge more rapidly com-
pared with the previous one in [1]. With the complexity of size
O(|E|), the protocol will have good performance in the sparse
network.
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