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Abstract— The topological properties of peer-to-peer overlay
networks are critical factors that dominate the performance of
these systems. Several non-constant and constant degree inter-
connection networks have been used as topologies of many peer-
to-peer networks. One of these has many desirable properties:
the Kautz digraph. Unlike interconnection networks, peer-to-peer
networks need a topology with an arbitrary size and degree, but
the complete Kautz digraph does not possess these properties. In
this paper, we propose MOORE: the first effective and practical
peer-to-peer network based on the incomplete Kautz digraph
with ����� �
	���
�� diameter and constant degree under a dynamic
environment. The diameter and average routing path length are� � �
	 � ��
������ �
	 � ������������� � and � �
	 � 
 , respectively, and are
shorter than that of CAN, butterfly, and cube-connected-cycle,
and are close to that of complete de Bruijn and Kautz digraphs.
The message cost of node joining and departing operations are
at most !#" $��%� �
	 � 
 and �&!#" $����'����� �
	 � 
 , and only � and !��
nodes need to update their routing tables. MOORE can achieve
optimal diameter, high performance, good connectivity and low
congestion evaluated by formal proofs and simulations.

Keywords: Constant degree networks, Kautz digraphs, peer-to-
peer networks

I. INTRODUCTION

Structured peer-to-peer networks, abbreviated as P2P, have
recently emerged as a good candidate infrastructure for build-
ing novel large-scale and robust network applications [1], [2],
[3], [4], [5], [6] in which participating peers share resources
as equals. In the past several years, various structured P2P
overlay networks have been proposed, and more are likely
to come. In general, the topological properties of structured
P2P overlay networks are critical factors that dominate the
performance of these systems. Therefore, it is very important
to design a suitable topology for particular applications.

Several non-constant and constant degree topologies of
interconnection networks have been used as the ideal topol-
ogy in P2P networks. The degree and diameter increase
logarithmically with respect to the size of the network for
non-constant degree topologies, such as hypercube and ring
digraph. The diameter increases logarithmically with respect
to the size of the network, but the in-degree or out-degree of

The work of Deke Guo was supported in part by the National High
Technology Research and Development Program of China under grants No.
2002AA131010 and 2003AA135110. E-mail: aeronautic@126.com. The work
of Jie Wu was supported in part by NSF grants, ANI 0073736, CCR 0329741,
CNS 0422762, CNS 0434533, and EIA 0130806. E-mail: jie@cse.fau.edu

each vertex is a constant for constant degree topologies, such
as cube-connected-cycle [7] (CCC), butterfly, d-dimensional
torus, de Bruijn [8], and Kautz [9] digraph. Among existing
P2P networks, Pastry [3] and Kademlia [4] are based on the
hypercube topology, Viceroy [5] and Ulysses [10] are based on
the butterfly topology, CAN [1] is based on the d-dimensional
torus topology, Koorde [6], Distance Halving [11], D2B [12],
[13], ODRI [14] and Broose [15] are based on the de Bruijn
topology, and FissionE [16] is based on the Kautz topology.

It is well known that there are two important requirements
for P2P network topologies. First, P2P networks always pursue
a topology with arbitrary size and degree in order to deal with
the uncontrolled dynamic operations of nodes, such as joining,
departing and failing. Second, P2P networks attempt to design
and implement a topology with the smallest diameter (the
largest number of hops needed for the shortest routing path
between a pair of source-destination nodes) possible given (
nodes and fixed degree ) (the size of routing table and links
to be maintained on each node). Constant degree topologies
can satisfy the second requirement, and the Kautz digraph can
obtain a smaller diameter than other constant degree topologies
with the same degree and order. Unfortunately, the orders
of the Kautz digraph and many other constant topologies
mentioned above are a series of discrete integers but cannot
cover all integers under a given degree ) . Therefore, they
cannot satisfy the first requirement.

In this paper, we design an incomplete Kautz digraph
with arbitrary network size and degree which can satisfy the
above two requirements and still retain the key properties
of a complete Kautz digraph. Then, we propose MOORE
(this name implies that the network topology can almost
achieve the Moore bound discussed in Sections II and VII):
the first effective and practical peer-to-peer network based on
the incomplete Kautz digraph with *,+�- .�/102(43 diameter and
constant degree under a dynamic environment. The diameter
and average routing path length are 5�- .�/ 0 +&(43�67- .�/ 0 +98;:<8#=#)>3�?
and - .�/ 0 ( , respectively, and are shorter than that of CAN,
butterfly, and CCC but close to that of complete de Bruijn and
Kautz digraphs. The message cost of node joining and depart-
ing operations are at most @BA C�)D- .�/ 0 ( and + @BA C�)E:F8G3>- .�/ 0 ( ,
respectively, and only ) and @�) nodes need to update their
routing tables. MOORE can achieve optimal diameter, high
performance, good connectivity and low congestion.



The main contributions of this paper are the following:
1) We present the definition, construction procedure and

theory results of an incomplete Kautz digraph with
arbitrary order and degree which can satisfy the two
important requirements and retain desirable properties
of a complete Kautz digraph, such as optimal diameter,
constant out-degree, simple routing scheme and low
congestion.

2) We design a new structured peer-to-peer network, called
MOORE, based on the incomplete Kautz digraph, and
provide a suitable resource distribution policy, produc-
tion methods of resource and node identifier, and a
shortest path routing scheme.

3) We propose some relevant algorithms necessary to han-
dle the uncontrolled dynamic operations of nodes, such
as node joins and departs, and network expands and
shrinks. These algorithms can preserve the desirable
structure of backbone subnetwork and guarantee the
correctness and performance of MOORE.

4) We evaluate the performance and cost of MOORE
through formal analysis and simulation, and compare it
with mainstream structured peer-to-peer networks based
on other constant degree topologies.

The rest of this paper is organized as follows. Section II
surveys the definition and emulation methods of the Kautz
digraph. Section III proposes the theory of an incomplete
Kautz digraph and its construction procedure. Section IV
describes the detailed design of MOORE. Section V proposes
the construction and maintenance algorithms of the topol-
ogy. Section VI analyzes and evaluates the characteristics of
MOORE. Our conclusions and future work are discussed in
Section VII.

II. RELATED WORK

A. Kautz digraph

It is well known that a Kautz digraph can be defined in two
different but equivalent ways: as digraphs on alphabets (the
standard method) and using congruent arithmetic [17], [18].

Definition using alphabet: Let H 0JILKGM;N 8 N A A A N );O be an
alphabet of )P:Q8 letters, and HSR0 ITK
U�V A A U R�W VXU R Y U[Z'\H 0�N]U[Z_^I`U[Z a%V and 8cbed<fhgPO is a Kautz identifier space
consisting of all Kautz identifiers with length g and base ) .
The vertex set and arc set of the Kautz digraph are H R0 andi +&j'+&) N gk3]3 I�K>l�U�VmU[n A A A U R N]U[n�N A A A U Rpo q2Y o \ H 0�N o ^IrU R O .

Definition using congruent arithmetic: Let stj'+&) N]u 3
denote the generalized Kautz digraph with degree ) and orderu , respectively. The vertex set and arc set of the general-
ized Kautz digraph are vw+&stj'+&) N]u 3]3 IxKGM;N A A N]u 6y8�O andi +&stj'+&) N]u 3]3 IzK>l d N +96p)�{|d%6 o 3 mod u q2Y 8}b o b~);O [19],
[20].

The order ( of a digraph with maximum out-degree ) and
diameter g is bounded by the so-called Moore bound [21]:

(�b�) R :k) R�W V :_A A A�:k) n :k)�:_8 I +&) R a%V 6P8G3�=B+&)D6P8G3XA (1)

The Moore bound is provably not achievable for any non-
trivial digraph. Kautz digraphs come close to the Moore bound

and can be built with ( I ) R :') R�W V
nodes. P2P networks

are always concerned with the order/diameter problem: Given( nodes and a fixed degree ) , what is the minimum diameter �
The following lower bound can be derived from (1):

g��Q5�- .�/ 0 +&(c+&)76�8G3%6�8G3�?p6�8�A (2)

B. Emulation of Kautz digraph

The topology is incrementally extendable if its definition
allows graphs of arbitrary size and degree. According to
the above definition, the Kautz digraph is not incrementally
extendable. The generalized Kautz digraph can be defined
for any number of vertices, but it is also not incrementally
extendable because its index of expandability1 is too large,
proportional to the number of arcs [17], [18].

The most related research work revolves around FISSIONE,
which uses a Kautz graph j'+ @ Nm� 3 as its static topology and
proposes some emulation methods of j'+ @ Nm� 3 to deal with
the dynamic operations of nodes. The topology of FISSIONE
does not support graphs of arbitrary degree, and is not a
definite constant degree digraph because it is regular , and
not out-degree regular. Furthermore, the emulation methods
of j'+ @ Nm� 3 are not suitable to a general Kautz graph j'+&) Nm� 3 .
Thus, FISSIONE is not incrementally extendable.

III. INCOMPLETE KAUTZ DIGRAPH

A. Incomplete Kautz digraph

Let s I + v N i 3 be a strongly connected digraph. The vertex
set and arc set are denoted as v I vw+&s73 and

i I i +&s73 ,
respectively. An arc from vertex � to � is denoted l � N � q

.
The arc is said to be incident from vertex � and incident on
vertex � . The set of vertices incident on vertex � is denoted as� W� +���3 I�K � \ vw+&s73 Y l � N � q \ i +&s73mO , and � W� +���3 I Y � W� +���3 Y
is the in-degree of vertex � . Similarly, the set of vertices
incident from � is denoted as

� a� +���3 IyK � \ v�+&s73 Y l � N � q \i +&s73mO , and � a� +���3 I Y ��a� +���3 Y is the out-degree of vertex � .
Definition 1: Let digraph s be a complete Kautz digraphj'+&) N gk3 , and

i7����i +&s73 be a subset of arcs which are inci-
dent from all vertices of s , that is, K �|� l � N � q \ i}� O I vw+&s73 .
A digraph of fixed out-degree ) and order u , ��j'+&) N]u 3 , is
an incomplete Kautz digraph only if the following conditions
hold, and s is the predecessor Kautz digraph of ��j'+&) N]u 3 .

1) Vertices of ��j'+&) N]u 3 represent the arcs of
i}�

, that is,vw+&��j'+&) N]u 3]3 I�K �[�[� l � N � q \ i7� O , and
Y i7� Y Iru ;

2) Vertex �[� of ��j'+&) N]u 3 is adjacent to the vertices � � �
,

for each
� \ ��a� +��B3 , where

� � I
� � N � � \ i �

any vertex of
� W� + � 3 N otherwise. (3)

According to Definition 1, any arc l � N � q
of j'+&) N gk3 can

be denoted as a vertex labeled �[� I � V � n � R � R of ��j'+&) N]u 3 .
In this paper, we will not distinguish strictly between an arc
of j'+&) N gk3 and its corresponding vertex in ��j'+&) N]u 3 . For ex-
ample, we may use l � N � q

to denote a vertex of ��j'+&) N]u 3 . The

1The index of expandability is the minimum number of arcs that have to
be deleted from ���}���G�&�p�k �¡ to obtain a subgraph of ���}���G�&�B¡ .
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Fig. 1. A complete Kautz digraph �}��¢
� ¢�¡ , and incomplete Kautz digraphs���}��¢
� £�¡������}��¢
� ¤�¡ induced by the factorization of �}��¢
� ¢�¡ .

arc l �[� N � � q
will be called an o -arc if � � \ i}�

. Otherwise,
we say that l �[� N � � � q

is a ¥ -arc. It is straightforward that the
out-degree of any vertex of ��j'+&) N]u 3 is ) .

According to Definition 1, it is straightforward to design
an incomplete Kautz digraph ��j'+&) N]u 3 through the following
general construction procedure:

1) Discover the largest complete Kautz digraph j'+&) N gk3
satisfying )�Rc:c)�R a%V f u .

2) Construct a subset
i}�

of
i +&j'+&) N gk3]3 and

i7� Iru , such
that each vertex of j'+&) N gk3 is covered by at least one
arc of

i7�
.

3) Produce all vertices of ��j'+&) N]u 3 by presenting each arc
of

i7�
as a vertex. Then, establish links among vertices

according to the constraint (3) mentioned above.
The general construction procedure can produce many dif-

ferent incomplete Kautz digraphs with same order for different
arc set

i7�
, but only ensures that the minimum in-degree of

the resulting incomplete digraphs is not less than 8 . Thus, this
procedure alone is not strong enough to produce an incomplete
digraph that inherits the desirable properties of the complete
one in a deterministic manner. Therefore, a method for careful
selection of arc set

i}�
is necessary.

B. Construction of incomplete Kautz digraph

Let s I + v N i 3 be a strongly connected digraph. An arc ¦
covers a vertex U if ¦ is incident from U . An arc set

i§�2¨�i
is

an arc-covering of s if every vertex of s is covered by at least
one arc of

i �
. If

Y i � Y I Y v Y
,

i �
is called a 1-arc-covering.

If ©ª� \ v ; � W��« +���3 I � a��« +���3 I 8 for s � I + v N i7� 3 , then
i7�

is called a 1-factor of s . Hence, a 1-factor is a spanning 1-
regular subdigraph and consists of cycles and possibly loops. A
digraph s has a 1-factorization if its arc set can be partitioned
into some arc-disjoint 1-factors.

Definition 2: Let ¬E­G®;d9¯[° denote a binary operation such
that ¬E­G®;d9¯[°�+ U�V A A A U R�W VXU R N d93 IrU�V A A A U R�W VXU �R A If + U R�W V :<dB6)�6~8G3§f U R�W V f U R or U R�W Vk±²U R and U R�W Vk±²U R :�d ,

then U �
R I + U R :_d93 mod +&)�:c8G3XA Otherwise, U �

R I + U R :_d;:8G3 mod +&)�:r8G3 [18].
Definition 3: Let ³t­G®;d9¯[° denote a binary operation such

that ³t­G®;d9¯[°�+ U�VmU[n A A A U R�W VXU R N d93 IeU � V U[n A A A U R�W VXU R A If U[n :d%6J)}6�87f U�V f U[n or U�Vt±�U[n and U�V 6Jd ±�U[n , then U � V I+ U�V 6§d93 mod +&)%:|8G3XA Otherwise, U � V I + U�V 6§d�6<8G3 mod +&)%:|8G3 .
Definition 4: For U~I´U2VXU[n A A U R \ vw+&j'+&) N gk3]3 and M bdDb�)µ6<8 , the left � -shift operation and right � -shift operation,

denoted as ¶ Z· and ¶ W Z· , respectively, are defined as follows:

¶ ZV + U 3 I
� ¬E­G®;d9¯[°�+ U[n A A U R U�V#N d93 N if U�V}^I�U R¬E­G®;d9¯[°�+ U[n A A U R U[n�N d93 N if U�VpI�U R (4)

¶ Z· I ¶ ZVD¸E¶ Z· W V (5)

¶ W ZV + U 3 I
� ³t­G®;d9¯[°�+ U R U�V A A U R�W V#N d93 N if U�V}^I�U R³t­G®;d9¯[°�+ U R�W V�U�V A A U R�W V#N d93 N if U�VpI�U R (6)

¶ W Z· I ¶ W ZV ¸E¶ W Z· W V A (7)
For vertex U , vertex ¶ ZV + U 3 and vertex ¶ W ZV + U 3 are its+�dG:P8G3�¹&º successor and predecessor, respectively. Furthermore,l�U�N ¶ ZV�+ U 3 q and l ¶ W ZV + U 3 N]U q

denote its +�d�:48G3�¹&º out-arc and in-
arc. In fact, the +�d�:48G39¹&º out-arc and in-arc of each vertex are
unique under the ¶ ZV operation and ¶ W ZV operation.

Theorem 1: The arc set
i +&j'+&) N gk3]3 can be partitioned

into ) arc-disjoint 1-factors »�¼ N A A A N » 0 W V under corresponding
operation ¶ ZV , such that j'+&) N gk3 has a 1-factorization.

Proof: Let any vertex, as the beginning point, take a
walk through j'+&) N gk3 . For each vertex U under this walk, it
always walks along the +�d2:r8G3 ¹&º out-arc l�U�N ¶ ZV�+ U 3 q under left
shift operation ¶ ZV . The walk will meet a covered vertex after
at most ) R :c) R�W V

steps. This walk will not meet any inner
vertex because the +�d½:z8G39¹&º in-arc of each inner vertex in
the walk is unique and has been used by its predecessor in
this walk. Therefore, this walk will get back to the beginning
vertex along its +�d�:r8G3 ¹&º in-arc, and finally form a cycle.

According to the above discussions, each vertex of j'+&) N gk3
is covered by at least one cycle under the operation ¶ ZV .
Let us suppose there is a common vertex ¾ covered by a
pair of cycles under operation ¶ ZV . It is easy to conclude
that the two cycles must also cover the vertex satisfying the
fact that its +�dµ:�8G3�¹&º out-arc is incident on vertex ¾ . From
point of recursive operation, we can conclude that the two
cycles are identical. Therefore, each vertex is covered by only
one cycle under operation ¶ ZV , and cycles are mutually vertex
disjointed. The cycles under operation ¶ ZV form a spanning 1-
regular subdigraph, and produce a 1-factor » Z of j'+&) N gk3 .
Furthermore, for any vertex U of j'+&) N gk3 the arc covering it
is different for a different 1-factor. Therefore, those 1-factors
are mutually arc-disjoint, and j'+&) N gk3 has a factorization.
Therefore, Theorem 1 holds.

Corollary 1: The identifier of 1-factor containing the cor-
responding arc of any vertex U of ��j'+&) N]u 3 is determinate.

Proof: According to Algorithm 1, the corresponding arc
in j'+&) N gk3 of vertex UPI�U�V A A A U R U R a%V belongs to the 1-factor
labeled »§+ U 3 I Distance +&¶ ¼V>+ U�VXU[n A A U R 3 N]U[n�U[¿ A A U R a%V 3 .

Theorem 2: The incomplete Kautz digraph ��j'+&) N]u 3 in-
duced by any � 1-factors of j4¦��[°9À[+&) N gk3 is a ) -regular
digraph for all 8tb � b�) , where u_IÁ� {J+&)>Rc:c)�R�W V 3 .
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Algorithm 1 Distance( ¾ , À )
Require: Â and Ã are different d-ary Kautz identifiers with lengthÄ �Å� .

1: if
ÄÇÆFÈ

then
2: ÉSÊ`��Ã�Ë�ÌªÍ��<Â#Ë�ÌªÍ9� mod �����J���ª�4�
3: else
4: if ÎtÏ Ð���Â#Ë�ÌªÍmÑ9Ã�Ë�ÌªÍ9�%Ò4Â#ËJÒ4Î7Ó�Ô���Â#Ë�ÌªÍ�Ñ9Ã�Ë�ÌªÍ9� then
5: if Ã�Ë�ÌªÍµÕ4Â#Ë�ÌªÍ then
6: ÉSÊ´Ã�Ë�ÌªÍ2�kÂ#Ë�ÌªÍ2�4�
7: else
8: ÉSÊ´Ã�Ë�ÌªÍ2�kÂ#Ë�ÌªÍª�|�E�J�
9: else

10: if Ã�Ë�ÌªÍµÕ4Â#Ë�ÌªÍ then
11: ÉSÊ´Ã�Ë�ÌªÍ2�kÂ#Ë�ÌªÍ
12: else
13: ÉSÊ´Ã�Ë�ÌªÍ2�kÂ#Ë�ÌªÍª�|�
14: return É

Proof: Each vertex U of j'+&) N gk3 is covered by an
arc l�U�N ¶ ZV�+ U 3 q of 1-factor » Z

. According to Definition 1, the
vertex labeled l�U�N ¶ ZV�+ U 3 q is incident on other ) vertices of
the ��j'+&) N )�Rr:�)�R a%V 3 induced by » Z

. This proves that the
incomplete Kautz digraph induced by » Z

is ) -out-regular.
On the other hand, vertex l�U�N ¶ ZV + U 3 q is incident from vertexl ¶ W ZV N]U q

through an o -arc in the incomplete Kautz digraph
induced by » Z

, because the arc l�U�N ¶ ZV + U 3 q is incident on the arcl ¶ W ZV N]U q
in a cycle of » Z

. Furthermore, vertices ¶ W;ÖV +&¶ ZV�+ U 3]3
for M b'×kb~)76�8 and × ^I d are incident on the vertex ¶ ZV�+ U 3
and covered by arcs l ¶ W ZV +&¶ W;ÖV +&¶ ZV + U 3]3]3 N ¶ W;ÖV +&¶ ZV + U 3]3 q of » Z

.
This proves that the incomplete Kautz digraph induced by » Z
is a ) -in-regular and ) -regular digraph.

The union of any � 1-factors, 8,b � bÇ) , also produces a) -regular incomplete Kautz digraph ��j'+&) Nm� {_+&)>RÅ:Å)�R�W V 3]3
according to similar reasoning, but the number of o -arcs and¥ -arcs are � and +&)§6 � 3 , respectively, among the ) out-arcs
and ) in-arcs of each vertex. Therefore, Theorem 2 holds.

The general construction method of ��j'+&) N]u 3 does not
propose any method for selection of arc set

i§�
. Random

selection cannot ensure that the connectivity of an incomplete
Kautz digraph is close to that of its complete Kautz digraph
predecessor. We will use results of Theorem 1 and Theorem 2
to construct the arc set

i}�
, and enable the resulting ��j'+&) N]u 3 to

achieve better connectivity. The ideal arc set
i§�

and ��j'+&) N]u 3
can be achieved by following a special construction procedure
based on the 1-factorization of j'+&) N gk3 :

1) In order to construct a ��j'+&) N]u 3 where � +&)>R§:,)�R�W V 3�bu bØ+ � :²8G3�+&)�R�:�)�R�W V 3 , we start with a ) -regular
incomplete Kautz digraph ��j'+&) N )>Rr:~)�R�W V 3 induced
by one 1-factor » Z

of j'+&) N gk3 through Algorithm 3.j'+&) N gk3 can be achieved from a initial small complete
Kautz digraph by invoking this procedure repeatedly.

2) Then, add vertices corresponding to arcs of other � 6c8
1-factors to the ) -regular digraph mentioned above, and
achieve a new ) -regular digraph ��j'+&) Nm� +&)>R_:_)�R�W V 3]3 .
This can be realized by using Algorithm 4 recursively.

3) Then, add vertices corresponding to u 6 � +&)BRÅ:Å)�R�W V 3
arcs, denoted » · «

, of another 1-factor » ·
to the new

) -regular digraph. This process can also be realized by
using Algorithm 4 recursively.

The last step in the above procedure is based on proper
choice of the added arcs as discussed in Section IV. In order
to achieve higher connectivity, the arc selection polices must
make the minimum in-degree of the final digraph as larger as
possible. Theorem 3 shows the bounds of minimum in-degree
of a ��j'+&) N]u 3 that resulted from above procedure.

Theorem 3: For all � , 8wb � f�) , and for all u such that� +&)�R�:�)�R�W V 3�b u bÙ+ � :Á8G3�+&)�R�:�)�R�W V 3 , any incomplete
Kautz digraph ��j'+&) N]u 3 satisfied that � b��>WE+&��j'+&) N]u 3]3Eb�) .

Proof: We know that the number of 1-factors of j'+&) N gk3
used to produce the ��j'+&) N]u 3 is � :�8 . For the sake of
generality, we select the first � :y8 1-factors » ¼ N » V A A A N » ·

,
but the result is same for any � :z8 1-factors. The special
construction procedure can produce the needed incomplete
Kautz digraph mentioned in this theorem. Theorem 2 can also
guarantee that the incomplete Kautz digraph induced by any� 1-factors of j'+&) N gk3 is a ) -regular digraph.

The adding operation of any vertex U induced by » · «
mentioned above has an effect on one out-arc of at most )
existing nodes. Node U needs to inform its predecessor ¶ W ZV + U 3
for M b²d}b � 6Ç8 to update its +�dµ:�8G39¹&º -out-arc (a ¥ arc)
with a new o -out-arc incident on node U . This also results
in the in-degree of the node at other end of the original+�d½:y8G3�¹&º -out-arc of node ¶ W ZV + U 3 decreasing by one. If the
arc corresponding to its predecessor ¶ W ·V + U 3 has been added
previously, node U also informs this predecessor to add an o -
arc to itself. For � :<8�b�dDb�)%6w8 , other )%6 � 6w8 predecessors
of node U are induced by 1-factors » Z

and do not exist in��j'+&) N]u 3 , but there may exist other Ú nodes corresponding to
arcs l ¶ W ·V +&¶ W ZV + U[n A A U R a%V 3]3 N ¶ W ZV + U[n A A U R a%V 3 of » · «

, which are
incident on node U through a ¥ arc and M b�Ú%b�)t6 � 6�8 .

According to the above analysis, the in-degree of vertices
induced by » · «

should be at least � and less than ) , unless�ÇI )<6y8 and arcs of » Z
forms cycles. The in-degree of

vertices induced by previous � 1-factors should not be less
than )�6c8 , and can reach ) at some scenarios such as Figure
1 +&)>3 . Thus, � b���WE+&��j'+&) N]u 3]3�b�) , and Theorem 3 holds.

IV. MOORE DESIGN

A. Overview

To organize peers in an efficient overlay network, a struc-
turing strategy that is easy to understand and implement is
required. Typically, a structured P2P overlay network is built
such as to guarantee logarithmic diameter while maintaining
a compact routing table of logarithmic or constant size. An
incomplete Kautz digraph inherits many desirable characteris-
tics of a complete one, and is more practical than a complete
one because its order can be of an arbitrary size. Therefore,
MOORE selects an incomplete Kautz digraph over a complete
one as its topology in a dynamic environment.

In this paper, we use two Kautz identifier spaces HSÛ0 IK
U�V A A U Û�W VXU Û Y U[Z�\rKGM;N 8 N A A N )§6~8�O�O and HpÜ0 as the resources
identifier space and nodes identifier space of MOORE. The
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length of the resource identifier should be larger than that
of the node identifier, but not necessarily too much larger.
If we fix the out-degree ) of MOORE, then we can infer
that Ý I 5�- .�/�Þ�ß0 6P- .�/;à V9a%V]ám0mâ0 ? and Ú I 5�- .�/�Þ�ã0 6P- .�/Bà V9a%V]ám0mâ0 ?
where u Þ and u2ä denote the maximum number of nodes and
resources, respectively, of MOORE.

Furthermore, we also need to consider the policy for dis-
tributing resources among nodes of MOORE. In the case of a
complete Kautz digraph, the resource with identifier U�VmU[n A A U Û
is stored and maintained by node labeled ¾ V ¾ n A A ¾ Ü if and
only if ¾ V ¾ n A A ¾ Ü is a prefix of U�VmU[n A A U Û . This is the same
as in the case of an incomplete Kautz digraph if the node
labeled ¾ V ¾ n A A ¾ Ü exists in the digraph. Otherwise, the resource
will be taken over by another node corresponding to an arcl ¾ V ¾ n A A ¾ ÜSW VGN ¶ ·V +�¾ V ¾ n A A ¾ ÜSW V 3 q in � +&) N Ýh6Á8G3 . According to
Definition 4 and Theorem 1, � denotes the identifier of the
1-factor that was selected to induce the incomplete Kautz
digraph with the same order as j'+&) N Ý´6�8G3 , and the default
value of � is M in general.

B. Mapping resource onto resources identifier space

Each resource accessible through MOORE will receive an
identifier taken from HpÛ0 , and different resources are allowed to
receive the same identifier. The mapping of resources onto HSÛ0
can be implemented in several ways. Literature [16] proposed
a determinate algorithm to generate an identifier with base 2
for each resource. In reality, the base of an incomplete Kautz
digraph used by MOORE is often larger than @ for the sake of
decreasing its diameter and improving its connectivity. There-
fore, this paper considers another determinate j4¦��[°9À ®1¦B­G®
algorithm to generate an identifier with any base for each
resource. The j4¦��[°9À ®1¦B­G® uses three parameters: �Bå ¾ denotes
the original identifier of resource such as name or keyword;) and Ú denote the base and length of expected Kautz strings,
respectively. j4¦��[°9À ®1¦B­G® is detailed below.

First of all, it achieves a binary string with a larger length
by hashing the �Bå ¾ according to a given consistent hash table
such as æµç_è_6|8 . Then, it converts the resulting binary string
to a new string æ�¼ with base ) , and substitutes all substrings
consisting of any identical number with a single one. If the
length of æª¼ is less than Ú , it appends d I 8 to �Bå ¾ and achieves
a new Kautz string æ Z with base ) , and then appends æ Z to æª¼ .
If the length of æ�¼ is still less than Ú , it appends the value ofd2:r8 to �Bå ¾ and repeats the procedure again until the length
of æª¼ becomes larger than Ú . Finally, the substring consisting
of the first Ú numbers of æ�¼ from left to right is returned as
the identifier of the resource.

C. Mapping node onto nodes identifier space

In practice, MOORE starts with )>Ü�é%:Å)�Ü�éXW V
initial nodes

and forms a structured P2P network according to a complete
Kautz digraph j'+&) N ÝP¼G3 , then enlarges or shortens its scale
through a series of dynamic operations at run time. Thus, the
nodes’ identifier space should not be a static one compared
to the resources’ identifier space. It should start with an
initial identifier space, then is enlarged or shortened with the

increase or decrease of MOORE scale, respectively. The initial
identifier space is H Ü�é0 where Ý<¼tf'Ý , and each identifier of
this space will be allocated to a unique node. If all identifiers
of H Ü�é0 were allocated and new nodes apply to participate in
the initial system, the initial nodes’ identifier space should be
extended to H Ü�é a%V0 and allocate free identifiers to new nodes.
Note that the new identifier space is a ) multiple of the old
one and can be achieved according to Definition 1.

As a direct result of this operation, the original identifiers of
initial nodes also need to be updated by the first )BÜ�éª:<)�Ü�é�W V
new identifiers induced by the 1-factor » ¼ of j'+&) N Ý<¼G3 , then
the initial nodes form another ) -regular incomplete Kautz
digraph ��j'+&) N )�Ü�é�:Ç)�Ü�éXW V 3 according to Algorithm 3. In
order to maintain better structuring properties under a dynamic
environment, we must focus on the policy used to allocate
identifiers to new nodes, and this policy is equivalent to the
arc choice policy used by the special construction procedure
of the incomplete Kautz digraph mentioned above. Any arc
choice policy takes first arcs of the second 1-factor » V

, then
arcs of the third 1-factor » n

, and so on. But existing policies
are different in the selection order of arcs in each 1-factor.

The arc choice policy proposed in literature [17], [18]
suggests to take first arcs of one cycle in each 1-factor, then
arcs of the second cycle, and so on. The random choice policy,
denoted as ¯ª¦>êX°9ëGì#³�¦ u )�ëGÝ , selects arcs randomly from given
1-factor. The difference between these two policies is that the
former can make the in-degree of more new vertices reach � :}8
than the latter. In this paper, we propose an enhanced policy
denoted as cycleSequence , which takes arcs of one cycle along
its direction continuously, then the second cycle, and so on.
Our new policy can make more vertices reach � :J8 in-degree
than the policy proposed in literature [17], [18], because the+ � :r8G3 ¹&º predecessor of a newly added arc has been added
previously except if it is the first selected arc of a cycle. The �
satisfies that +&) Ü�é :|) Ü�éXW V 3Eb u b�+ � :J8G3�{<+&) Ü�é :|) Ü�é�W V 3 ,
and u denotes the number of existing nodes in MOORE.

Let u denote the number of nodes or allocated identifiers.
Recall that each new added node U can result in the in-
degree of at most � nodes induced by previous � 1-factors
and incident from the old + � :'8G39¹&º -out-arc of its predecessor¶ W ZV + U 3 decreases by one, where M bÁdpb � 6�8 and � is the
largest number such that ) · :w) · W V b u . As an example, if we
add new vertex 8G@B8 to the ��j'+ @ N�í 3 induced by 1-factor » V
of j'+ @ N�î 3 in Figure 1 +&ê�3 , the original ¥ -out-arc from vertexM 8G@ to M @B8 will be updated with a o -out-arc from vertex M 8G@
to 8G@B8 . Thus the in-degree of vertex M @B8 decreases by one. No
existing arc choice policies focus on this problem. Therefore,
we propose a different policy denoted as inDegreePreserved
to deal with it. The basic idea is to allocate the identifier of the+ � :r8G3�¹&º predecessor of existing nodes once their + � :�8G3]¹&º -
in-arc is canceled by previous node’s adding operation, and
reestablish its + � :r8G3�¹&º -in-arc with a o -arc incident from its+ � :z8G3�¹&º predecessor. This policy tries to preserve the in-
degree-regularity of nodes induced by previous � 1-factors,
and is very efficient if �4I )§6Á8 or ) I @ . Thus, MOORE
can achieve the best structuring properties if it combines the
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policies inDegreePreserved and cycleSequence.
On the other hand, an identifier allocated to a node may

become a free identifier if the node failed or departed from
the network and did not recover during a given time interval.
All arc choice policies should give these kinds of identifiers
priority when they allocate an identifier to a new node. If this
identifier is induced by previous » Z

for M b�d�b � 6~8 , this
operation is helpful to preserve the desirable structure of the
backbone subnetwork consisting of nodes induced by previous� 1-factors. Otherwise, this operation can make the in-degree
of more nodes reach � :r8 for the cycleSequence policy.

D. Routing scheme

In order to route messages to destinations correctly, each
node U of MOORE must establish links with selected neigh-
bors and construct a routing table according to Definition 1
and Algorithm 4, and update its links and routing table when
other nodes join, depart or fail. The routing table consists of )
entries, and each entry includes the identifier and address (such
as IP and port number) of one neighbor node. Furthermore,
node U may initiate a lookup message to find a given resource
or node with identifier ¾ , and initiate a insert message to
distribute its resource with identifier ¾ to a responsible node.
We propose Algorithm 2 to route these kinds of messages to
the destination node along the shortest path.

Algorithm 2 Route( ¾ , message, scheme)
Require: Identifier Â is not less than ï

1: ÃpÊðÂ
2: if the length of Â is larger than

Ä
then

3: Â�ÊðÂ�Í�Â#ñ�" " Â#Ë
4: if ï Æ Â or ï[Í�ï;ñ�" " ï;Ë�ò[Í Æ Â�Í�Â#ñ�" " Â#Ë�ò[Í then
5: Process the message locally, and return ómô>õ�õmö�ó�ó .
6: ï>÷BÊ forward orientation( Â )
7: if ï>÷�øÆJù ôBú�ú then
8: return ï>÷�" Route( Ã�Ñ message, scheme)
9: else

10: return û�ü�ý&ú ô>þ
ö to the source node.
forward orientation( Â )

1: Let ô be the largest integer such that ï1Ë�òBÿ
Ì�� Æ Â�� for � � ý �ô , and þ
ö�ómôBú ��Ê ù ôBú�ú
2: for ý ÆFÈ

to � do
3: �FÊðþ���ô���ý ù
	 ��ü�ú �mö
� ý���" ý���ö ù ��ý û�ý&öXþ
4: if ô ÆFÈ

and � Æ Â then
5: return �
6: else if �½Ë�òBÿ#ò[Í Ì�� Æ Â�� for � � ý � ô��J� then
7: þ
ö�ómôBú ��Ê��
8: if þ
ö�ómôBú � ÆFù ôBú�ú and ómõ��>ö��,ö Æ þ
ö�ó���ô>þ�õmö then
9: return ���Í ��ï;�

10: else
11: return þ
ö�ómôBú �

Fiol proposed a method to achieve a short path from U to¾ in [22]: find the largest suffix � of U that coincides with a
prefix of ¾ , then walk towards a neighbor À of U such that
its largest suffix � coincides with a prefix of ¾ and the length
of � is larger than that of � . Note that the exhibited path
does not necessarily have the shortest length, because of the¥ -out-arc. As an example, consider the graph in Figure 1(c).

Suppose node M @B8 needs to route to node M 8G@ along the short
path M @B8��Ø@B8 M � 8 M 8�� M 8G@ , but the shortest path should
be M @B8S6 M 8G@ resulting from a ¥ -out-arc incident from nodeM @B8 . In order to deal with this problem, Algorithm 2 will check
whether there is a routing entry corresponding to node ¾ if the
length of � is zero. Note that, Algorithm 2 can also achieve
similar lower congestion as the long path routing scheme [9],
[16], this will be proved by our simulation results.

Algorithm 2 uses three parameters: ¾ denotes the identifier
of a target resource or node; Ý å ­G­
¦�� å denotes the real
message needed to be routed; ­
ê�® å Ý å denotes the type of
message, and can be ì å ­
ëG�[ì#ê å (lookup or insert resource)
or u ë#) å (find the address of node). Recall that the resource
distribution policy of an incomplete Kautz digraph is different
from that of the complete one, because any resource has two
possible exclusive destination nodes. Therefore, if ­
ê�® å Ý å�Iì å ­
ëG�[ì#ê å and the method forward orientation in Algorithm
2 does not find the node whose identifier is a prefix of the
identifier of target resource, it will forward the message to
another destination node defined by the resource distribution
policy mentioned above.

V. TOPOLOGY CONSTRUCTION AND MAINTENANCE OF
MOORE

MOORE selects incomplete Kautz digraph as its topology,
and its topology can evolve from an initial Kautz digraph
in a distributed manner by using Definition 1 recursively.
The initial Kautz digraph can be constructed through many
mature centralized methods, so we do not focus on it in this
paper. In practice, MOORE needs to deal with the following
operations: node joins, node departs, network expands, and
network shrinks. It is these operations that drive the evolution
of the MOORE topology. This section proposes some relevant
algorithms necessary to implement these operations.

A. Topology expands

We know that the topology of MOORE is a ��j'+&) N]u 3 , andu is covered by an unique range � )>R|:_)�R�W V N )�R a%V :_)�Rp3 . In
practice, the topology will become a complete Kautz digraph
if u reaches the upper boundary of this range. In this situation,
if other nodes apply to join MOORE, it needs to expand
the topology to a new incomplete Kautz digraph with order
of u equal to the lower boundary of a new range � )BR a%V :)�R N )�R a2n :_)�R a%V 3 . The expanding operation includes at least
the following two steps. First, each existing node needs to
update its original identifier according to Definition 1 with the
1-factor » ¼ of j'+&) N gk3 as the arc set

i}�
. Second, all existing

nodes form a new structured P2P network according to the new
topology ��j'+&) N]u 3 . These operations can be implemented by
following Algorithm 3. The parameter � used by Algorithm 3
denotes identifier of the 1-factor that was selected to induce
the incomplete Kautz digraph with the same order as j'+&) N gk3 ,
and the default value of � is M .

B. Node joins
As for most P2P networks, we assume there are some

existing nodes as entry points of MOORE, which can receive
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Algorithm 3 Extend ( j'+&) N gk3 Nm� )
Require: �P���>Ñ Ä � is a � -regular complete Kautz digraph with

diameter D. And
È ��� Ò4�>"

1: for each node ï labeled ïªÍ�ï;ñ�" " ï;Ë in �P���>Ñ Ä � do
2: ï[" ú ü �mö�ú;Ê"!�ï[Ñ#���Í ��ï;�%$
3: Node ï constructs a temporary routing table.
4: Â Æ Â�Í�Â#ñ�" " Â#Ë�ÌªÍ�Ê"!����Í ��ï;�]Ñ%���ñ ��ï;�%$
5: for ý ÆFÈ

to �p�4� do
6: if

� Æ ý then
7: Ã Æ ÃGÍ9Ã�ñ�" " Ã�Ë�ÌªÍ%Ê"!����Í ��ï;�]Ñ#���ñ ��ï;�%$
8: ü��#�#þ
ö�ó�óDÊðï[" þ���ô���ý ù
	 � � ��" ü��#�#þ
ö�ó�ó
9: else

10: Ã Æ ÃGÍ9Ã�ñ�" " Ã�Ë�ÌªÍ%Ê"!�� ò �Í ��� �Í �����Í ��ï;���]Ñ#� �Í �����Í ��ï;���%$
11: ü��#�#þ
ö�ó�óDÊ Route ��� ò �Í ��� �Í ��� �Í ��ï;���]Ñ�Ñ node ���
12: ÉSÊ Distance ��ÂBÑ9Ã#�
13: Node ï adds !�Ã�Ñ�ü��#�#þ
ö�ó�ó&$ as the � ÉE�J���#'�( entry of the

temporary routing table.
14: for each node ï in �P���>Ñ Ä � do
15: Updates its routing table with the temporary routing table, then

updates links according to new routing table.

and process the node joining message. The joining procedure
includes three stages: receives a node identifier; redistribute
resources; update routing tables. These operations can be
implemented by following Algorithm 4.

Let U�VXU[n A A U R a%V denote a node joining MOORE, and¾ V ¾ n A A ¾ R a%V denote an entry point of MOORE. Node U
achieves its node identifier and identifier Ú&¦
) å Ú of current 1-
factor according to the management policy of nodes identifier
space. In reality, there exist at least two cases of node joining
operation. The first case is »§+ U 3 I Ú&¦
) å Ú , which means that the
new node belongs to the current 1-factor »�Û *&+#,�Û . The second
case is »§+ U 3Ef�Ú&¦
) å Ú , which means that the new node belongs
to the previous 1-factor and a node with the same identifier
has either joined MOORE but failed or departed.

In both cases, node U needs to first find its successors
and establish links and a routing table, then inform at most) existing predecessors to update their links and routing
table, and finally take over its responsible resources from one
existing node. The detailed process has been proposed when
proving Algorithm 3. The +�d�:r8G3 ¹&º predecessor and successor
of node U exist for M b'd½b � 6'8 . Furthermore, its + � :�8G39¹&º
successor does not exist unless it is the last arc of the current
cycle, and its + � :c8G3 ¹&º predecessor exists unless it is the first
arc selected from a cycle. Other ×�¹&º predecessors of node U
do not exist for � :|8�fF×�b�) , and it needs to find a substitute
from nodes belonging to 1-factor »�Û *&+#,�Û , even nodes belonging
to previous 1-factors in order to keep constant out-degree. So
do other successors, but they do not find a substitute from
nodes belonging to previous 1-factors in order to keep their
connectivity.

C. Node departs

Let U denote a node departing from MOORE, and Ú&¦
) å Ú
denote the identifier of current 1-factor. In practice, there exist
at least two cases of node departing operation. The first case
is »§+ U 3 I Ú&¦
) å Ú , which means that node U belongs to the
current 1-factor »�Û *&+#,�Û . »§+ U 3�f�Ú&¦
) å Ú is another case, which

Algorithm 4 Node joins( U , ¾ , Ú&¦
) å Ú )
1:

� Ê.-���ï;�
2: for ý ÆFÈ

to � do
3: if ý � ú ü �mö�ú and node !�ï;ñ]ï
/�" " ï;Ë�ÌªÍmÑ%� �Í ��ï;ñ]ï
/
" " ï;Ë�ÌªÍ9�%$ exists

then
4: Node Â finds the ü��#�#þ
ö�ó�ó of node Ã . Then nodeï adds !�Ã�Ñ�ü��#�#þ
ö�ó�ó
Ñ102$ as its ��ý}�h��� '�( routing en-

try, and establishes a link to node Ã , where Ã Æ
!�ï;ñ]ï
/�" " ï;Ë�ÌªÍmÑ%� �Í ��ï;ñ]ï
/�" " ï;Ë�ÌªÍ]�%$ ,

5: else
6: Node ï asks node Â to find the ü��#�#þ
ö�ó�ó of node Ã labeled

!�� ò �Í ��� �Í ��ï;ñ]ï
/�" " ï;Ë�ÌªÍ]���]Ñ%� �Í ��ï;ñ]ï
/�" " ï;Ë�ÌªÍ]�%$
7: if node Ã does not exist then
8: Node ï asks node Â to find the address of a node Ã labeled

!�� ò 3Í ��� �Í ��ï;ñ]ï
/�" " ï;Ë�ÌªÍ]���]Ñ%� �Í ��ï;ñ]ï
/
" " ï;Ë�ÌªÍ9�%$ , where É is a
random integer such that

È � ý � ú ü �mö�ú and can node Ã
exists.

9: Node ï adds !�Ã�Ñ�ü��#�#þ
ö�ó�ó
Ñ546$ as the ��ý[�c��� '�( entry of its
routing table, and establishes a link to node Ã .

10: for ý ÆFÈ
to � do

11: if ý � ú ü �mö�ú then
12: �cÊ"!�� ò
�Í ��ï[Í�ï;ñ�" " ï;Ëµ�]Ñ�ï[Í�ï;ñ�" " ï;Ë7$
13: else
14: �cÊ"!�� ò �Í ��� ò
�Í ��ï;ñ�" " ï;Ë�ÌªÍ]���]Ñ%� ò
�Í ��ï;ñ�" " ï;Ë�ÌªÍ9�
15: Node � updates one original 4 link with an 0 or 4 link

incident on node ï , then updates its routing table.
16: Node ï gets resources satisfied that ï is their prefix of identifier

from node !�ï[Í�ï;ñ�" " ï;Ë½Ñ8�:9Í ��ï[Í�ï;ñ�" " ï;ËD�%$ .

means that node U belongs to the previous 1-factors. The node
departing operation harms the topology structure and results
in unsuccessful message routing. Algorithm 5 can compensate
for the negative impact of the node leaving operation.

In the first case, node U needs to inform its in-neighbors
to update the link incident on node U with another link
incident on another node, and transfer its resources to another
responsible node defined by the resource distribution policy
mentioned above. In the second case, node U needs to find a
substituted node ¾ to replace it, and informs the in-neighbors
of node ¾ to update related links and routing entries. Then,
node ¾ takes over the identifier, resources, links and routing
table of node U and its original identifier becomes free. Finally,
node ¾ updates its links according to the new routing table and
informs its in-neighbor about its change of address. Note that
node ¾ should select first from nodes belonging to 1-factor»SÛ *&+#,�Û , then nodes belonging to 1-factor »�Û *&+#,�Û�W V

and so on.
This policy can preserve the structure of backbone subnetwork
consisting of nodes belonging to previous 1-factors before»SÛ *&+#,�Û .
D. Topology shrinks

We also need to consider the topology shrinking operation
when the number of nodes decreases to an order of the
predecessor Kautz digraph. Let U2VmU[n A A A U R denote any existing
node, node U just needs to update its identifier as U�n�U[¿ A A A U R ,
and update the identifier of each routing entry in the same way.
The implementation of this operation is simple and results in
the least overhead. As an example, Figure 1(b) becomes Figure
1(a) through this operation.
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Algorithm 5 Node departs ( U�N Ú&¦
) å Ú )
1: if -���ï;��ÒÅú ü �mö�ú then
2: Â�Ê�û�ý ù ��;ªô<�Xó=��ý���ô���ö#��ï;�
3: update( ÂBÑ9ú ü �mö�ú&Ñ>-���ï;� )
4: Node ï transfers its resources and routing table to node Â , then

departs from MOORE. Node Â updates its identifier, routing
table, and links with that of node ï , and informs in-neighbors
about its change of address.

5: else
6: Node ï transfers its resources to node corresponding to arc

!�Â�Í�Â#ñ�" " Â�?½ò[Í�Ñ%�:9 Í ��Â�Í9Â#ñ�" " Â�?½ò[Í��%$ before departing.
7: update( ï[Ñ9ú ü �mö�ú&Ñ>-���ï;� )

update( Ã�Ñ�ú ü �mö�ú&Ñ9ú )
1: for ý ÆFÈ

to � do
2: if ý2ÒÅú ü �mö�ú then
3: �cÊ"!�� ò
�Í ��ÃGÍ9Ã�ñ�" " Ã�ËD�]Ñ9ÃGÍ9Ã�ñ�" " Ã�Ë@$
4: Informs node � to update the link to node ï with a new 4

link to node !�� �Í ��Ã�ñ�Ã&/�" " Ã�Ë�ÌªÍ]�]Ñ9Ã�ñmÃ&/�" " Ã�Ë�ÌªÍ>$ .
5: else
6: �cÊ"!�� ò
AÍ ��� ò
�Í ��Ã�ñ�" " Ã�Ë�ÌªÍ]���]Ñ%� ò
�Í ��Ã�ñ�" " Ã�Ë�ÌªÍ]�%$
7: Informs node � to update the link to node ï with a new

4 link to node !�� 3 Í ��Ã�ñ�Ã&/�" " Ã�Ë�ÌªÍ]�]Ñ9Ã�ñmÃ&/�" " Ã�Ë�ÌªÍ>$ , where É is a
random integer satisfied

È � ÉwÒrú ü �mö�ú such that the new
destination node exists.

VI. ANALYSIS AND EVALUATION

We use PeerSim to implement MOORE. PeerSim is a P2P
simulation framework aimed at developing and testing any
kind of P2P protocols in a dynamic environment [23]. Our
simulations are cycle based, and the MOORE topology with
any size is evolved from the smallest Kautz digraph j'+&) N 8G3
through those dynamic operations of nodes mentioned above.
In this section, we will evaluate the following characteristics
of MOORE: degree distribution, diameter, average path length,
and congestion. The value of each characteristic under differ-
ent network configurations is the average value of a sample
achieved from at least 100 round simulations.

A. Degree distribution of MOORE

Corollary 2: MOORE is ) -regular and has constant degree
if its order equals to � multiple of u ¼ for 8Qf � bT)
where u ¼ denotes the order of its predecessor Kautz digraph.
Otherwise, it is d-out-regular and has constant degree. Its index
of expandability is not larger than �>WE+&��j'+&) N]u 3]3 .

Proof: The proof has been proposed in Section III.
Theorem 3 proposes the bound on its minimum in-degree.

In this section, we focus on the in-degree distribution of
MOORE with order 7680 and 18000 under node identifier
choice policies ¯ª¦>êX°9ëGì#³�¦ u )�ëGÝ and êX¾Bê�Ú å æ å�B � å
u ê å .

Figure 2 shows the in-degree of most nodes are adjacent
to ) , and that of the remaining nodes are close to the trails
of its in-degree distribution figure. The in-degree of more
nodes are close to ) and far away from the trails of its
in-degree distribution if MOORE adopts the node identifier
choice policy êX¾Bê�Ú å æ å�B � å
u ê å rather than ¯ª¦>êX°9ëGì#³�¦ u )�ëGÝ
policy. Thus, êX¾Bê�Ú å æ å�B � å
u ê å is more suitable to MOORE
for improving its connectivity and robustness, especially if its
order is close to that of its predecessor Kautz digraph.
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(a) The in degree of peers in a network with order 7680.
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We know that the order of ��j'+HG N�I#í�J�M 3 and ��j'+HG N 8 J�M�M�M 3 is
covered by ranges + u ¼ N @ u ¼&K and � î�u ¼ N G u ¼&K , where u ¼ denotes
the order of j'+HG N C�3 and G u ¼ equals that of j'+HG N�í 3 . Thus, the
least in-degree of ��j'+HG N�I#í�J�M 3 and ��j'+HG N 8 J�M�M�M 3 is 8 and î
according to Theorem 3, as shown in Figure 2. Furthermore,
the in-degree of most nodes is around ) and that of few nodes
is around the tail of its in-degree distribution figure, if the
order of MOORE is adjacent to any multiple of u ¼ .

B. Diameter and path length distribution of MOORE

Corollary 3: Given a MOORE with arbitrary order ( and
out-degree ) , its diameter is g Û I 5�- .�/ 0 +&(43>6,- .�/ 0 +98ª:_8#=#)>3�? .

Proof: First, let’s calculate g such that ) R�W n +&)�:�8G3Ef(xfz)�R�W V +&)§:Ç8G3 . Thus, the length of node identifier must
be g , and we can always find a pair of vertices at distanceg . Thus g Û I 5�- .�/>0�+&(43�6Å- .�/B0�+98E:~8#=#)>3�? .

According to (2), this is the smallest diameter for any
number of vertices ( , ) R�W V :Á) R�W n b�( b´) R :Á) R�W V

,
and solves the order/diameter problem. A lookup for resource
or node initiated by any node can reach its destination in*,+�- .�/B02(43 hops, and the same result holds for the resource’s
publishing operation.

We evaluate the average path length of MOORE in different
scales (from 256 peers up to î @�j peers) and compare it with
other constant degree digraphs with the same degree G , such
as CAN with ) I @ , 4-dimensional butterfly, de Bruijn, and
Kautz. In each experiment, we sample at least ( � I 5�(w=�@G?
nodes randomly, and let each sampled node launch a routing
to other ( 6Á8 nodes, then analyze the average path length
over ( � {J+&(e6�8G3 routings.
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The simulation result is shown in Figure 3. The curves of
the average path length of butterfly, de Bruijn and Kautz are
dashed lines because their orders are discrete sequences, as
opposed to continuous ranges. The average path and diameter
of MOORE are denoted as MOORE(avg) and MOORE(max),
respectively, and their curves are solid lines because of their
arbitrary order size. MOORE(avg) and MOORE(max) are only
a little more than - .�/ � ( at partial points of order axis, but less
than the curve of 8�A @�{|- .�/ � ( , butterfly and CAN at whole
order axis. We do not compare MOORE with k-dimensional
CCC directly in Figure 3 because the degree of CCC is onlyî , but the average path length and diameter of MOORE with
out-degree 3 is less than that of CCC in reality. Furthermore,
the average path length of MOORE with different scales is
trivially different if the scales are covered by identical range.

Corollary 4: With the shortest path routing scheme,
MOORE can achieve low congestion.

Proof: Figure 4 shows the distribution of routing path
lengths of ��j'+HG N 8G@ J�M�M 3 and ��j'+HG N 8 M @
G M 3 , more than L M<M
of routing path length are close to the diameter of MOORE.
We also find that there exists a similar result under any scale
of MOORE. This is closer to the result of the ideal, long path
routing scheme used by [9], [16]. Therefore, it is reasonable
that MOORE also can achieve the similar low congestion
characteristic discussed by Xu [10] and Li [16], although our
algorithm adopts a shortest path routing scheme.

Corollary 5: Messages caused by node joining and depart-
ing operations are at most @BA C�)D- .�/ 0 ( and + @BA C�)E:F8G3>- .�/ 0 ( ,
and only ) and @�) nodes need to update routing tables.

Proof: Algorithm 4 must find ) out-neighbors in order
to construct its routing table, and inform ) in-neighbors to
update their routing table. Algorithm 5 may need to find a
substitute node first. Therefore, the former part of Corollary 5
holds because the routing length is less than 8�A @�- .�/B02( , and
the latter part also holds according to the two algorithms.

VII. CONCLUSION

MOORE is the first effective and practical P2P network
based on the incomplete Kautz digraph, and is *,+�- .�/102(43 in
diameter with constant degree. It constructs an overlay digraph
for all network sizes and any constant degree, and achieves
optimal diameter, high performance, good connectivity and
low congestion. In the future, we will improve MOORE to

support more query types such as range and multi-attribute
query, and consider the locality of the physical network to
reduce latency.
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