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Abstract—Cloud computing is an emerging technology that
greatly shapes our lives, where users run their jobs on virtual
machines (VMs) on physical machines (PMs) provided by a cloud
service provider, saving the investment in upfront infrastructures.
Due to the heterogeneity of various jobs, different VMs on the
same PMs could have different job completion times. Meanwhile,
the PMs are also heterogeneous. Therefore, different VM place-
ments have different job completion times, and our objective is to
minimize the total job completion time of the input VM requests
through a reasonable VM placement schedule. This problem is
NP-hard, since it can be reduced to a knapsack problem. We
propose an off-line VM placement method through an emulated
VM migration process, while the on-line VM placement is solved
by a real VM migration process. The migration algorithm is a
heuristic approach, in which we place the VM to its best PM
directly, if this PM has enough capacity. Otherwise, we migrate
another VM from this PM to accommodate the new VM, if a pre-
specified migration constraint is satisfied. Furthermore, we study
a hybrid scheme where a batch is employed to accept upcoming
VMs for the on-line scenario. Evaluation results validate the high
efficiency of the proposed algorithms.

Index Terms—VM migration, job completion time, off-line, on-
line, VM placement.

I. INTRODUCTION

Nowadays, cloud computing is an emerging technology that
greatly shapes our lives. With the large pools of computing
and storage resources provided by cloud providers, many
companies can rent these resources and run their jobs on
virtual machines (VMs), saving the investment in upfront
infrastructures. In particular, the technique of VM migration
[1, 2] enables us to move a VM from one physical host to
another. This spatial flexibility is effective in server consoli-
dation, power consumption saving, and so forth.

Obviously, VMs are different among their resource demands
and their running jobs. Due to this heterogeneity, different
VMs running on the same PM could have different job
completion times. Moreover, in most circumstances, the host
PMs are also heterogeneous, such as different CPU architec-
tures, different OS, differing amounts of memory, storage, etc.
Hence, the same VM placed on different PMs would have
different completion times, and our objective is to minimize
the total job completion time of the input VM requests through
a reasonable VM placement schedule. This problem is NP-
hard, since it can be reduced to a knapsack problem.

VM migration is an efficient tool for resource provision-
ing, by dynamically rearranging the previous placement. For
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Fig. 1. An illustration of the VM placement

instance, when all PMs are heavily loaded without enough
capacity to place the new VM, through migrating one running
VM to another host, we could save space to accept the
incoming VM. In this paper, we consider both off-line and on-
line VM placement problems with the objective of minimizing
the total job completion time.

Under the off-line scenario, the information of input VMs
are known a priori. Therefore, we propose a VM placement
algorithm through an emulated VM migration process, in
which we place the VMs one-by-one. Suppose that there is
an incoming VM waiting for placement in a cloud system
with three PMs: PM1, PM2, PM3. The job completion
times of the incoming VM placed on PM1, PM2, PM3

are, respectively, t1, t2, t3. As shown in Fig. 1(a), for the
incoming VM, we could directly place it in PM1, which
has enough remaining capacity to support it. Then, the total
completion time will increase by t1. However, this option
might not optimal. Suppose that placing the VM in PM2 has
the minimal completion time t2 (among t1, t2, and t3), then
PM2 is the best choice for the incoming VM to minimize
the total completion time. However, as shown in Fig. 1(b),
the capacity of PM2 is not sufficient. Instead of placing the
incoming VM in PM1, an alternative is to migrate one VM
on PM2 to PM3, which makes room for the incoming VM.
In that case, the incoming VM could be accepted into PM2

to minimize the total job completion time.
However, migration has a preliminary constraint, even if the

remaining capacity of PM3 could accept the migrated VM. On
the one hand, by saving space to accept this incoming VM into
PM1, we could have the minimal completion time t2 for the
incoming VM. On the other hand, since the completion time of
the same VM on different PM hosts varies, for the migrated



VM, there might be a completion time increase due to the
change of host. Since we aim to minimize the total completion
time of the whole VMs set, if the time increase of the migrated
VM is too large, we would rather select the first choice without
migration. This is because migration would be meaningless in
minimizing the total completion time. Therefore, we conclude
that the migration constraint is that, even with the increased
completion time of the migrated VM, the migration-based
VM placement is still better than the direct placement in
minimizing the total completion time.

Therefore, in the emulated-migration-based VM placement,
we have two options, i.e., direct placement and migration-
based placement. The insight behind the option selection
is to compare the total job completion time of these two
choices: we choose migration-based placement, if its gain
of placing the incoming VM minus the switching loss of
migrating the victim VM is larger than the gain of direct
placement; otherwise we choose direct placement. Again, note
that the migration process is only emulated in the off-line VM
placement scenario. We do not actually place the VMs until
all VMs’ final positions are determined.

Regarding the on-line scenario where pre-information is not
available, our VM placement algorithm is based on real VM
migrations, which will inevitably introduce migration delay
[3]. In fact, VM migration basically consists of transferring
its memory image from the source host to the destination.
Through experiments, Verma et al. [4] observed that there is a
linear relationship between the active memory of a VM and the
duration of migration. We refer to this delay as the migration
overhead, since it will increase the total job completion time.
Obviously, migrating a VM with larger resource demand will
lead to a longer delay, thereby, a large migration overhead.

Furthermore, we conduct a study on a hybrid scheme, where
we introduce a batch to help the VM placement in the on-
line scenario. Instead of one-by-one placement, several on-line
incoming VMs are reserved into a batch. Then, the information
of the VMs in the batch would be known to us. In that
case, we can simultaneously place them together through the
off-line placement algorithm without the migration overhead.
However, the batch will introduce the waiting time of the VM
placement. Therefore, there exists a tradeoff between the on-
line migration overhead and batch waiting time.

In this paper, we formulate the total completion time mini-
mization VM placement problem under both off-line and on-
line scenarios. Due to the NP-hardness of this problem, we
propose a heuristic migration-based VM placement (MBVMP)
algorithm to give an efficient solution. Our main contributions
are summarized in the following:

• To the best of our knowledge, our work is the first one
to adopt VM migration for the total completion time
minimization VM placement problem, considering both
off-line and on-line scenarios.

• For the off-line VM placement, we also study the case
of homogeneous resource demand, and compare our
heuristic algorithm with the optimal solution of maximal
matching problem. The results show that the performance

TABLE I
NOTATIONS

Notation Description
VMi The ith VM
PMj The jth PM
Ri The resource demand of VMi

Cj The remaining capacity of PMj

xij {0,1} variable indicates whether VMi is
placed into PMj

tij The job completion time of VMi in PMj

of our algorithm is very close to the optimal solution,
verifying the high efficiency of our algorithm.

• We also conduct a study on a hybrid scheme, where a
batch is introduced in the VM placement. In that case,
we can integrate the off-line VM placement into the on-
line scenario, which could avoid the migration overhead.

The remainder of the paper is organized as follows: in
Section II, we study the VM placement problem under the
off-line scenario, and propose our off-line MBVMP algorithm.
In Section III, we perform research on the on-line scenario.
Section IV introduces a hybrid scheme of VM placement.
In Section V, we conduct experiments to evaluate the per-
formance of our algorithms under both off-line and on-line
scenarios. In Section VI, we introduce some previous work.
Finally, we give the conclusions in Section VII.

II. OFF-LINE VM PLACEMENT

A. Off-Line Problem Description

In this subsection, we study the VM placement problem
under the off-line scenario, in which we know the information
about the incoming VMs set a priori (e.g., each VM’s resource
demand, and the total number of VM requests). Suppose a
cloud system has N PMs, where the capacity of the jth PM
is Cj . There are M VMs waiting for the placement, and the
resource demand of the ith VM is Ri. Due to the heterogeneity
of PMs and VMs, different VMs on the same host have
various job completion times. Therefore, the element of tij
in completion time matrix [tij ] denotes the job completion
time of the ith VM, which is placed into the jth PM . For
simplicity, we assume tij is a constant, which is not related to
the current load in the jth PM. Table I presents the notations
for the variables. The objective is to find an optimal placement
that minimizes total completion time of input jobs. Then, this
optimization problem is formulated as the following:

Minimize
M∑
i=1

N∑
j=1

xijtij (1)

S.T.
N∑
j=1

xij ≤ 1,
M∑
i=1

xijRi ≤ Cj , xij ∈ {0, 1} (2)

It can be seen that this problem is essentially a multi-
knapsack problem, where VMs are the items selected for the
PMs (equivalent to knapsacks). Resource demands of the VMs
are the weights of the items, and the job completion time
is equivalent to the values of the items. Note that here we



are minimizing the job completion time, rather than maximal
values in the knapsack problem (but they are essentially the
same). Therefore, this problem is NP-hard. Hence, we prepare
to give a heuristic solution to solve it.

B. Off-Line Problem Analysis

In this section, we analyze the off-line VM placement
problem, which is based on the idea of VM migration. The
VMs are placed one after another. As discussed before, for
VMi, there is an optimal PMj with minimal tij . If the
remaining capacity Cj is enough, we could finish placing VMi

and switch to the next VM. Otherwise, if Cj is not sufficient,
we have two options below to place it.

• Direct Placement: Among those PMs which have enough
resources to accept the incoming VM, we select the one
with the minimal completion time.

• (emulated) Migration-based Placement: We try to migrate
one VM placed on the optimal PM to another host for
saving space to accept the incoming VM. In the off-line
scenario, the migration process is emulated. Therefore,
we call it (emulated) Migration-based Placement.

Obviously, Direct Placement is not the optimal choice for
the incoming VM, since we should not miss the opportunity
of placing the incoming VM into the PM corresponding to the
minimal completion time, especially under some circumstance
that the completion time of the first-choice is much less than
that of the others. Therefore, we want to take advantage of
VM migration to do the placement.

The key for the feasibility of Migration-based Placement
is to satisfy the migration constraint, i.e., the Migration-based
Placement is better than Direct Placement in terms of the total
completion time. To achieve our Migration-based Placement,
we need to find a qualified victim VM placed on the optimal
PM to migrate, which is not always searchable. There are three
qualifications that such a qualified victim VM must meet:

1) Could save enough resources for accepting a new VM.
2) Could find a new available host with enough current

capacity to accept the victim VM
3) With the increased completion increase of the migrated

victim VM, the completion time by migration-based
placement is less than direct placement.

If such a qualified victim VM is found on the min-
completion time PM, then we would directly choose
Migration-based PM. If more than one qualified victim VMs
exists in the min-completion time PM, we would choose the
VM with the minimal completion time increase to migrate.
Of course, there could exist some special circumstances for a
particular incoming VM.

• We could not find a qualified victim VM on the min-
completion time PM. We then try to place the incoming
VM in the next-min-completion time PM. If the incoming
VM still could not be placed, we continue to try the next-
next-min-completion time PM. The search process is ter-
minated when the incoming VM is placed, or encounters
the best available PM found by Direct Placement.

Algorithm 1 VM placement Algorithm
1: for i=1 to M do
2: Sort PMs increasingly by tij .
3: for j=1 to N do
4: if Cj is sufficient for VMi then
5: Place VMi in PMj

6: if Migration-Based Placement (VMi,PMj) then
7: Do VM migration and place VMi into PMj

8: if VMi is still not placed then
9: Reject VMi

Algorithm 2 (emulated / real) Migration-Based Placement
1: for all the VMs (VMk) on PMj do
2: if VMk’s migration makes enough room for VMi then
3: for all the PMs (except PMj) do
4: Find the best available PM (except PMj) for VMk

5: Select the best qualified victim VM running on PMj

6: if migration constraint is satisfied then
7: return true
8: else
9: return false

• After trying all the PMs, and if the incoming VM is still
not placed, we have no choice but to reject it.

As we discussed before, under the the off-line scenario, VM
migration is not actually implemented. However, the emulated
migration process shows great promise in dynamically improv-
ing the previous placement to lower the total completion time.

C. MBVMP Algorithm

As we could observe from Algorithm 1, for each incoming
VMi, we first sort the completion time tij of each PM and
accordingly rearrange the PMs set. After that, starting from
the first PM (the best choice to place VMi in minimizing total
completion time) in the rearranged PMs, we try to place the
incoming VMi. If PMj’s remaining capacity Cj is sufficient,
we could directly place VMi and switch to place the next
VM. Otherwise, by using the Direct Placement to test the
migration constraint, we try to adopt the migration-based VM
placement. Considering the two loops in Algorithm 1, the
total time complexity of our off-line MBVMP algorithm is
O(M2N ). Again, note that the Migration-based Placement is
only emulated for the off-line scenario.

In Algorithm 2, we try to achieve the Migration-based VM
placement. That is, we try to find the qualified victim VM
among all VMs on PMj to migrate. For each VMk already
placed in PMj , if it could make enough room for the incoming
VMj , we then try to find it a best new host. That is, among
all the other PMs (except PMj itself) with enough remaining
capacity to accept VMk, we select the PM that could yield the
minimal completion time increase as the best new host. Among
these VMs that could make enough room for the incoming
VMj , we select the best victim VM that has the minimal
increased completion time. After that, we verify whether
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the victim is qualified by testing the migration constraint.
Through comparing the Direct Placement and Migration-based
Placement in minimizing the total completion time, we could
know if the selected best victim VM is qualified. If the
migration constraint is satisfied, the victim VM is qualified.
Then, we do the migration and place the incoming VMi.

D. Case Study

Now we consider a special case under the off-line scenario,
in which the resource type is uniform. That is, each PM’s
resource capacity could be sliced into unit slots, and all of
the VMs have the same resource demand of one slot. Each
VM is placed into the one slot in the PM, thus there exists
a unique correspondence with each VM and each PM’s unit
slot. Given this, we could transfer the VM placement into a
minimal matching problem in the Graph Theory. We would
use Fig. 2 to illustrate the mapping from VM placement to
minimal matching.

In Fig. 2, each VM and PM unit pair is regarded as
the vertices in the bi-partite graph, and the weighted edge
connecting each VM and PM unit pair refers to the completion
time of placing VM in that unit of the PM. Thus, finding
a minimal total completion time VM placement is equal to
finding the minimal matching between VM and PM unit pairs
in the weighted bi-partite graph. There is an optimal Kuhn-
Munkras (KM) algorithm [5] to solve this problem, and we
use an example to compare our proposed MBVMP algorithm
with the optimal solution.

We assume that each PM in the cloud system has the
capacity of 6 VM slots, and we vary the number of PMs from
50 to 250. We set that the total resource demands of VMs
are equal to the total capacity of PMs. In that case, given the
N PMs, we have a set of N ∗ 6 VMs to be placed into the
cloud system. Since all of the VMs have the same resource
demand of one slot, each VM should have a corresponding
slot in the PM to place into. We also randomly generated the
set of each element in completion time matrix [tij ]. From the
comparison results in Fig. 3, we could see that the performance
of our proposed algorithm is very approximate to the optimal
solution. Given M incoming VMs and N PM hosts, the time
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Algorithm 3 Multiple-hop VM placement
1: for each PM in the set do
2: Sort PMs set increasingly by completion time of the

VM to be placed
3: Select the best PMj with the minimal completion time

for the incoming VM
4: if Cj is sufficient for VMi then
5: Place the VM in PMj

6: for all the VMs running on the best PM do
7: Select the best victim VM by comparing migration gain
8: Recursively call this algorithm to place the best victim

VM among PM ∈ P − PMj

complexity of the KM algorithm is O(M2N ), which is equal
to our off-line MBVMP algorithm.

E. Multiple-hop Migration

In the previous discussion, we only consider the one-hop
migration, which will benefit for the time complexity. Howev-
er, multiple-hop migration might lead to a better performance.
In Algorithm 3, we present the multi-hop algorithm. Suppose
the average number of placed VMs on a PM is K, then the
time complexity of Algorithm 3 is K times as much as that of
Algorithm 1. Obviously, Algorithm 3 introduces multiple-hop
migrations with a better performance on minimizing the total
completion time, as the tradeoff of a higher time complexity.

III. ON-LINE VM PLACEMENT

Under the on-line scenario, the VM requests are coming one
by one without knowing the information beforehand. Hence,
we place VM one after another through a emulated process.
Since our MBVMP algorithm places VMs one after another
for the off-line scenario, it could still work in the same way
for on-line VM placement.

The major difference between on-line and off-line VM
placement is that, the migration process is actually imple-
mented. Hence, it is a real process which would introduce a
migration delay, increasing the total completion time. There-
fore, for the victim VM, not only do we have the completion
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time increase caused by migration, but we also have an extra
migration overhead due to the on-line migration process.

Similar to the off-line scenario, we place the incoming VM
one after another. When a new VM ′ comes, we first try to
place it into the PM that corresponds to the min-completion
time value. If the corresponding min-completion time PM does
not have enough resources, we would have the same two
options (Direct Placement and Migration-based Placement) as
in the off-line scenario.

However, the migration constraint is different. Due to the
migration overhead, the migration constraint would be that,
even with both the migration overhead and the completion
time increase, Migration-based Placement is still better than
Direct Placement in minimizing the total completion time.
Thus, compared to the off-line, the third item of qualifications
for a qualified victim VM under on-line scenario should be
changed into: Even with both the completion time increase
and migration overhead, the completion time by Migration-
based Placement is still better than Direct Placement. We want
to choose the qualified victim VM with the minimal sum of
migration overhead and completion time increase. Besides,
we could have similar special circumstances as in the off-line
VM placement; constrained by the literature, here we do not
discuss them further more.

Besides, for on-line VM placement, we are not aware of
the information of the incoming VMs, such as how many total
VMs will arrive. Thus, when all the PMs are so fully-loaded
that even migration is not helpful to accept more VMs, we
need to stop the placement process for this PMs set. This
requires us to reserve a buffer to determine when we should
directly reject the new VM request. In our evaluation, we set
the size of a buffer to 10. That is to say that if 10 consecutive
VMs are rejected, we then conclude the VM placement.

IV. A HYBRID SCHEME

Obviously, the major disadvantage of on-line scenario is the
migration delay, which will cause much overhead in the total
completion time. However, the off-line scenario does not have
such a drawback, because we know all the VMs’ information
beforehand, and they could all be placed at one time together.
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Fig. 6. The utility functions of the user (left) and the provider (right).

Thus, there is no migration overhead in the off-line scenario.
This advantage of off-line scenario leads to the intuition that
we could adopt a hybrid scheme that integrates the off-line
scheme into the on-line scenario.

In fact, we could reserve a batch to store the on-line VM
requests. In that case, the reserved VMs’ information is known
to us. Therefore, we could place the VMs in a batch according
to the off-line scenario. In that case, we could avoid the
migration overhead.

However, the batch will introduce a waiting time overhead,
since we need to wait for the VMs in the batch to reach
a ceratin number, and then place them together. Therefore,
this waiting overhead will also increase the total completion
time, although we avoid the migration overhead. Therefore,
there is a tradeoff between the migration overhead and the
waiting overhead. Due to this, there are two batch models:
user-oriented and provider-oriented.

A. Provider-oriented

The provider-oriented batch model is that we place all the
VMs in the batch until it is full, as shown in Fig. 4. By
this, the advantage of the batch could be fully utilized, and
the migration overhead could be largerly reduced, which is
beneficial to the cloud providers. An extreme case is that, the
batch size is very large, and we place the VMs together until
the total resource demands of VMs are up to the total capacity
of PMs. In that case, it is equivalent to the off-line scenario.

However, this waiting overhead will also largely increase
the total completion time, since we have to wait for the batch
to be full, and then, place the VMs together. Obviously, the
larger the batch is, the larger the waiting overhead will cost.
Under the on-line scenario, we do not know when a VM will
arrive, and how long it will take to fulfill the batch. If the batch
waiting overhead is too large, users will suffer the degradation
of their applications’ performance. Hence, we have another
user-oriented batch model.

B. User-oriented

The performance of users’ applications need to be guaran-
teed by the cloud provider, according to SLA. Therefore, the
batch overhead cannot be so large as to harm the user’s ap-
plications’ performance requirements. The user-oriented batch
model is that, after waiting for a certain period of time, we
place the VMs in the batch no matter whether the batch is
full or not, as shown in Fig. 5. In that case, the applications’
performance could be guaranteed as the users’ requirements.
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(b) Number of PMs: N=150
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(c) Number of PMs: N=200

Fig. 7. Performance comparisons of total completion time vs. number of PMs
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(a) variance of VMs’ resource demand:[10,50]
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(b) variance of VMs’ resource demand:[10,100]
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(c) variance of VMs’ resource demand:[10,150]

Fig. 8. Performance comparisons of total completion time vs. variance of VMs’ resource demand

C. Qualitative Analysis on Batch Size

In the former sections, we have discussed the implementa-
tion method of the batch, i.e., provider-oriented batch and user-
oriented batch. In this section, we give out qualitative analysis
on the batch size. According to [6], the time consumption
of virtual machine migrations usually varies from 30 to 150
seconds, due to the transmission time of the memory (usually
several GBs). Therefore, the bandwidth has significant influ-
ence on the migration time. On the other hand, the acceptable
waiting time of the user greatly depends on the application.
For example, web services [7] generally respond in less than
1 second. In this case, migration-based placement is not
practical, i.e., the batch is useless and we should place the
VMs as soon as possible. Therefore, the batch model should
be applied to user applications which takes a relatively long
time (e.g., several hours or more).

For most cases, we can determine the batch size through
a utility model. The user’s utility monotonously decreases
with respect to the batch size, while the providers’s utility
monotonously increases with respect to the batch size. The
objective is to maximize the summation of the user’s utility
and the providers’s utility. Moreover, the utility function
should exhibit some certain properties, as shown in Fig. 6.
According to the experience of daily life, the utility function

of the user should have three stages as follows. (1) In the
first stage, the utility is high and decreases slowly, since the
user is not sensitive to a small waiting time. For example, the
waiting time of 2 and 10 milliseconds do not make too much
difference, since people is not aware of such a small time
duration. (2) Generally speaking, the user has an expected
maximal waiting time (no one wants to wait for a too long
time). Once this time is approaching, the utility decreases
quickly in the second stage. (3) In the third stage, the user has
been waiting for a too long time. The utility is very low such
that waiting for an addition time does not greatly turn down
the utility. Meanwhile, the utility function of the provider is
very simple, since it should has a diminishing return property.
The utility gain should decrease with respect to the batch size.

The two utility functions should be designed according
to real systems and applications, i.e, different systems and
applications should have different function format, although
they should have the properties discussed above. If the user’s
utility dominates (usually in some real-time applications and
user interactive applications), then a small batch size is desired.
If the provider’s utility dominates (usually in some large
computation applications), then a large batch size is desired.
This tradeoff always exists in the cloud system.
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(a) variance of PMs’ capacity:[50,150]
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(b) variance of PMs’ capacity:[100,150]
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Fig. 9. Performance comparisons of total completion time vs. variance of PMs’ capacity

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed MBVMP algo-
rithms under both off-line and on-line scenarios. We made
comparisons with first-fit and best-fit algorithms. Notably,
for the off-line scenario, we adopt the first-fit-decreasing
and best-fit-decreasing algorithms [8]. In order to compare
the performance of one-hop and multiple-hop migration, we
conduct extended simulation by adopting two-hop migration
under off-line scenarios. As for the on-line, multiple-hop
migration would largely increase the migration cost. Therefore,
we usually do not consider it as an alternative in the on-line
VM placement.

A. Off-Line MBVMP Algorithm Evaluation

We evaluate the performance of our off-line MBVMP algo-
rithm under three groups of simulations on the total completion
time. We use mathematical abstraction to describe the physical
meaning of PM’s capacity and VM’s resource demand. The
measuring unit of resources is unit slot, which could be easily
interpreted to real configuration. For instance, one unit slot
for Amazon S3 could be interpreted as unit storage space for
renting. The set of each element in completion time matrix
[tij ] is randomly generated.

1) Simulation Settings:

• Group 1: We deploy PMs’ numbers N=100,150 and 200.
We set all PMs’ resource capacity range [150,150] and
all the VMs’ resource demand range [10,100], which
conforms to the real proportional relationship.

• Group 2: We deploy all VMs’ resource demand ranges
[10,50], [10,100], [10,150]. We set PMs’ number N=150
and all PMs’ current capacity range [150,150].

• Group 3: We deploy all PMs’ current capacity ranges
[50,150], [100,150], [150,150]. We set PMs’ number
N=100 and all VMs’ resource demand range [10,100].

2) Simulations Results: Results for three groups of simu-
lations are shown in Figs. 7, 8 and 9. From Figs. 7, 8 and
9, we can see that under all settings of the number of PMs,
our MBVMP algorithm could achieve a significantly higher

total completion time than the other two heuristic algorithms.
Besides that, we could still have the following observations:

1) In each of subfigures (a), (b) and (c), with the increase
of the number of VMs, the total completion time grows.
This is quite straightforward, since more VMs are placed
in the PMs, thus bringing more completion time.

2) By comparison of (a), (b) and (c) of Fig. 7, we find
that when the number of PMs increases, the gap of
the total completion time between the 250 VMs and
200 VMs is increasing. This is due to the fact that,
when PMs numbers are few, given a 250 VMs input,
many VMs actually cannot be accepted. Thus, there is
not much difference between 200 VMs input and 250
VMs. However, due to the increase of PM hosts, and
thereby more resources, more VMs could be accepted
into the cloud system, and we could get an increase
in total completion time. This reason also applies to
comparisons between Figs. 9 (a), (b) and (c), due to
the increase of PM’s capacity. On the other hand, Figs.
8 (a), (b) and (c) have the opposite trend, due to the
increase of VM’s resource demand.

B. On-Line MBVMP Algorithm Evaluation
For the on-line scenario, we could not know how many

VM requests would come, therefore, we set it so that if
10 consecutive VM requests could not be placed, we then
would stop the whole VM placement process. As discussed
before, migration overhead has a positive correlation with the
VM’s resource demand. For analysis simplicity without loss
of generality, we set a linear coefficient α to show that the
migration overhead is α times the VMi’s resource demand,
which is ci=α × Ri. We also conducted three groups of
simulations with settings similar to the off-line scenario. In
the first group, we change the number of PMs, while keeping
the PMs’ capacity and migration cost coefficient stable. In the
second group, we vary the migration cost coefficient α to test
its effect on the performance. At last, we vary the variance of
PMs’ capacities, while keeping the number of PMs and cost
coefficient α stable. Simulation results are presented in Table
II. Table II shows that our MBVMP algorithm outperforms
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Fig. 10. Performance comparisons of total completion time vs. number of PMs
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Fig. 11. Performance comparisons of total completion time vs. variance of VMs’ resource demand

the best-fit and first-fit algorithms under the on-line scenario
in all settings of variables.

C. One-hop and two-hop comparison
We can see from the comparsion in Figs. 10, 11, and 12, the

performance is almost comparable between one-hop and two-
hop migration. This indicates that two-hop migration will not
largely increase the performance, however, with a longer time
complexity. Therefore, our one-hop migration-based virtual
machine placement algorithm will be good enough.

VI. RELATED WORK

As a new paradigm of distributed computing, cloud comput-
ing has brought several key advantages into our lives, such as
on-demand scaling and pay-as-you-go metered service. The
development of virtualization technologies has boosted the
spread of cloud computing. Through management by virtual
machine monitor (VMM) [9–12], the physical resources of
one PM could be sliced into multiple VMs. Such resource
multiplexing largely reduces the total cost of ownership, and
significantly improves the resource utilization. As a contri-
bution of virtualization technology, VM migraton [13–18]
improves the resource rearrangement on the fly.

Much work has been done regarding VM placement in
the cloud computing environment, which is a complicated

task involving various constraints, including performance [19],
availability [20], network [21], and cost [22]. Economic inter-
ests are one popular topic that shows up in research literature
[23, 24]. They tried to find an optimal VM placement that
could either minimize the revenue for the cloud provider, or
minimize the costs for the customers. In [24], for minimizing
the total economic completion time of the cloud provider, the
author introduced an SLA-based dynamic resource allocation.
The pricing mechanisms are related to the performance of QoS
that the cloud provider could guarantee. The better perfor-
mance the cloud provider could offer, the more revenue the
cloud provider could obtain. Since different service requests
have different pricing, higher priced service can get more
resource provisioning from the cloud provider. The author also
used a convex optimization to present the optimal resource
allocation. On the contrary, the author in [23] proposed an
optimal VM placement with the objective of minimizing the
total renting of the users. In this paper, the author gives
another pricing mechanism, referring to two payment plans:
reservation plan and on-demand plan. Since the total resource
demand is uncertain, and reservation plan has to be decided in
advance, it may not meet the future demands of the user. For
that reason, the author used the optimal solution of stochastic
integer programming to give an optimal VM placement that
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Fig. 12. Performance comparisons of total completion time vs. variance of PMs’ capacity

TABLE II
PERFORMANCE COMPARISON FOR ON-LINE SCENARIO

Total Completion Time /s Number of PMs Coefficient of Migration Cost Variance of PMs’ Capacity
100 150 200 0.1 1 10 [10,50] [10,100] [10,150]

MBVMP 52.4475 55.2926 83.9606 56.1748 58.3576 53.1326 51.2983 53.9628 52.8962
First-fit 140.7237 214.7462 265.3581 150.1385 254.9847 284.9215 147.4251 221.2317 251.1223
Best-fit 130.2293 206.0019 233.3534 127.9724 215.9011 201.1946 125.9402 237.7812 263.9472

could minimize the total renting. However, the VM placement
problem in [23] and [24] could achieve an optimal solution,
which is not a common case. Many VM placement issues
are NP-hard, thus we need to find a good heuristic algorithm
to solve the problem, such as the first-fit and best-fit greedy
algorithm used in [8].

Apart from the problems above aiming to get an optimal
economic interest, network is another constraint needing con-
sideration in the VM placement problem. In [21], a network-
aware VM placement is proposed. In [21], when performing
VM placement, not only the physical resources (like CPU
and memory) are considered, but also the traffic demands
between different VMs are taken into account. The author
gave a heuristic algorithm to allocate placement to satisfy
both the communication demands and physical resource re-
strictions. In [25], Oktopus uses the hose model to abstract
the tenant’s bandwidth request, including both virtual clus-
ter and oversubscribed virtual clusters. The virtual cluster
provides tenants with guarantees on the network bandwidth
they demand, which, according to [26], could be interpreted
as min-guarantee requirements. In [27], the author proposes
to minimize the traffic cost through VM placement. Their
objective is to place VMs that have large communication
requirements close to each other, so as to reduce network
capacity needs in the datacenter. A quadratic-assignment for-
mulation of the traffic-aware placement problem is presented
and solved with an approximation algorithm. However, their
algorithm did not take into account the VM migration traffic,
leading to a near complete shuffling of almost all VMs in
each round. To alleviate this, VirtualKnotter [28] minimizes
the continuous congestion mainly in core and aggregation links
with controllable migration traffic, which enables online VM

replacement. In [29], a distributed cloud system is studied. The
authors propose a network-aware VM placement algorithm,
which consider the difference of latencies between inter-
data-center and inner-data-center. They developed data-center
selection algorithms for VM placement that minimize the
maximum distance between the selected data centers.

Moreover, our work is also potentially related to the process
assignment problem in both symmetric and asymmetric multi-
processing (SMP and AMP [30]). In that technology, processes
can also be migrated from one processor core to another. In
the case of non-uniform memory access (NUMA) model, the
pages on the NUMA nodes are migrated. The idea of process
migration is further applied into our VM placement strategy,
where we emulate a VM migration process for the objective
of off-line VM placement.

VII. CONCLUSION

In this paper, we studied the VM placement problem,
focusing on minimizing the total completion time of cloud
providers under both off-line and on-line scenarios. Due to
the NP-hardness of this problem, we propose our heuristic
migration-based VM placement algorithm. In particular, for
the off-line scenario and homogeneous resource type, we
compare our algorithm with the optimal maximal matching
solution, which shows a high approximation of our algorithm
with the optimal one. Furthermore, we study the hybrid
scheme of integrating off-line placement into on-line scenario,
and propose two batch models considering users or providers
separately. The simulation shows the high efficiency of our
proposed heuristic algorithms, compared to the best-fit and
first-fit heuristic algorithms.
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