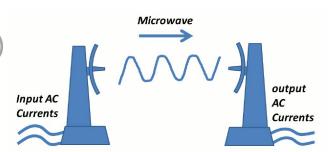
On Optimal Scheduling of Multiple Mobile Chargers in Wireless Sensor Networks

Richard Beigel, Jie Wu, and Huangyang Zheng

Computer and Information Sciences
Temple University


1. Introduction

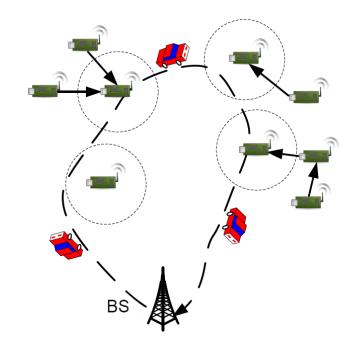
- Limited lifetime of battery-powered WSNs
- Possible solutions
 - Energy conservation
 - Cannot compensate for energy depletion
 - Energy harvesting (or scavenging)
 - Unstable, unpredictable, uncontrollable ...
 - Sensor reclamation
 - Costly, impractical (deep ocean, bridge surface ...)

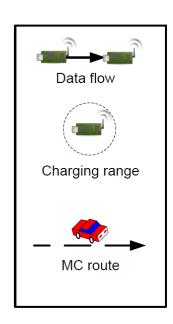
(WSNs: Wireless Sensor Networks)

2. Mobile Charging: State of the Art

- The enabling technology
 - Wireless energy transfer (Kurs '07)
 - Wireless Power Consortium

- Mobile chargers (MC)
 - MC moves from one location to another for wireless charging
 - Extended from mobile sink in WSNs and ferry in DTNs
 - Energy consumption
 - The movement of MC
 - The energy charging process


(DTNs: Delay Tolerant Networks)


Combinatorics and Graph Models

- Traveling-Salesmen Problem (TSP)
 - A minimum cost tour of n cities: the salesman travels from an origin city, visits each city exactly once, and then returns to the origin city
- Covering Salesman Problem (CSP, Ohio State '89)
 - The least cost-intensive tour of a subset of cities such that every city not on the tour is within some predetermined covering distance
- Extended CSP
 - Connected dominating set (FAU '99)
 - O Qi-ferry (UDelaware '13)

Mobile Sinks and Chargers

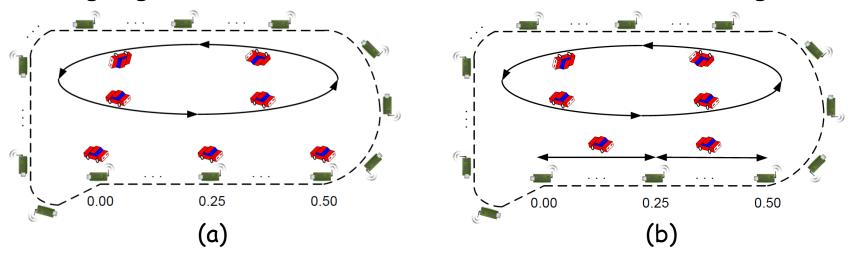
- Local trees
 - Data collections at all roots
 - Periodic charging to all sensors
- Base station (BS)
- Objectives
 - Long vocation at BS (VT '11-13)
 - Energy efficiency with deadline (Stony Brook '13)

3. Collaborative Coverage & Charging

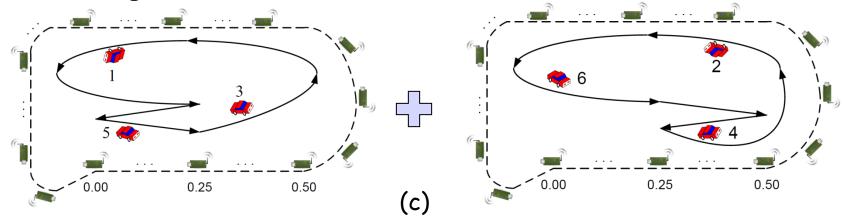
- Most existing methods
 - An MC is fast enough to charge all sensors in a cycle
 - An MC has sufficient energy to replenish an entire WSN (and return to BS)
- Collaborative approach using multiple MCs

Problem: MCs with unrestricted capacity but limitations on speed

Problem Description

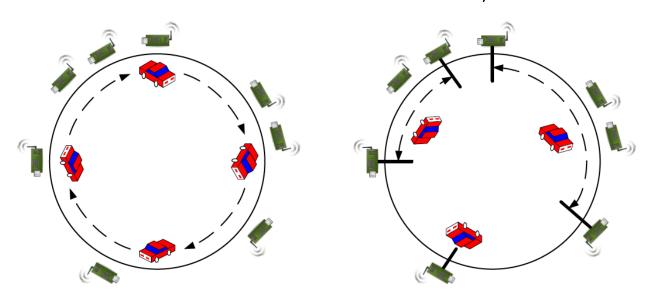

Problem: Determine the minimum number of MCs (unrestricted capacity but limitations on speed) to cover a line/ring of sensors with uniform/non-uniform recharge frequencies

A toy example


- A circle track with circumference 3.75 is densely covered with sensors with recharge frequency f=1
- Sensors with f=2 at 0 and 0.5
- A sensor with f=4 at 0.25
- What are the minimum number of MCs and the optimal trajectory planning of these MCs? (MC's max speed is 1.)

Possible Solutions

Assigning cars for sensors with f>1 (a) fixed and (b) moving



Combining odd and even car circulations (c)

Optimal Solution (uniform frequency)

- M_1 : There are C_1 MCs moving continuously around the circle
- M_2 : There are C_2 MCs moving inside the fixed interval of length $\frac{1}{2}$ so that all sensors are covered
- Combined method: It is either M_1 or M_2 , so $C = \min \{C_1, C_2\}$

Properties

Theorem 1: The combined method is optimal in terms of the minimum number of MCs used

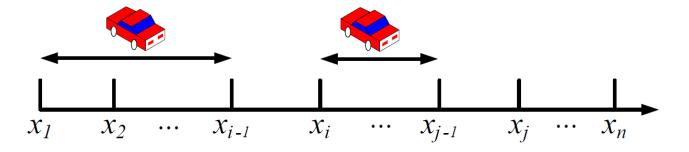
- Scheduling
 - \bigcirc Find an appropriate breakpoint to convert a circle to a line; M_2 in the optimal solution is then followed
 - A linear solution is used to determine the breakpoint

Linear Solution

- Directed Interval Graph
 - Each directed link points from the start to the end of an interval (i.e., the first sensor beyond distance 0.5)
- The number of intervals in the two solutions differ by one
- Each sensor has one outgoing, and multiple incoming links
- The process stops when a path with fewer or more intervals is found, or all sensors (with their outgoing links) are examined

Solution to the Toy Example

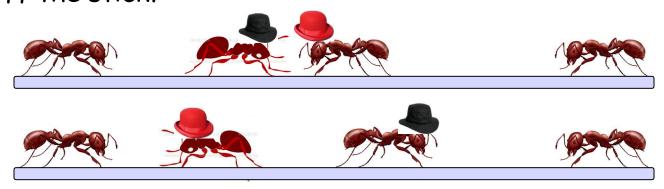
• 5 cars only, including a stop at 0.25 for $\frac{1}{4}$ time unit



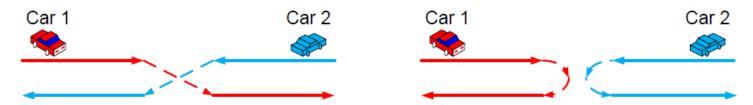
Challenges: time-space scheduling, plus speed selection

Greedy Solution (non-uniform frequency)

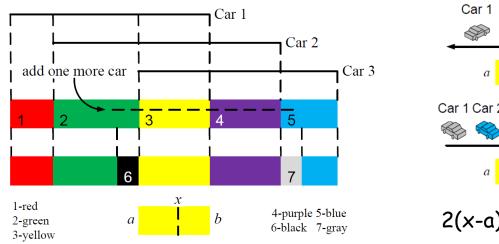
• Coverage of sensors with non-uniform frequencies $serve(x_1,...,x_n; f_1,...,f_n)$:

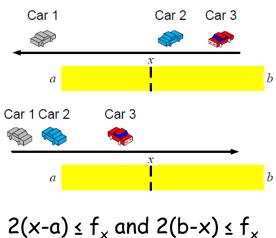

When $n \neq 0$, generate an MC that goes back and forth as far as possible at full speed (covering $x_1, ..., x_{i-1}$); serve $(x_i,...,x_n; f_i,...,f_n)$

Theorem 2: The greedy solution is within a factor
 of 2 of the optimal solution


The Ant Problem: An Inspiration

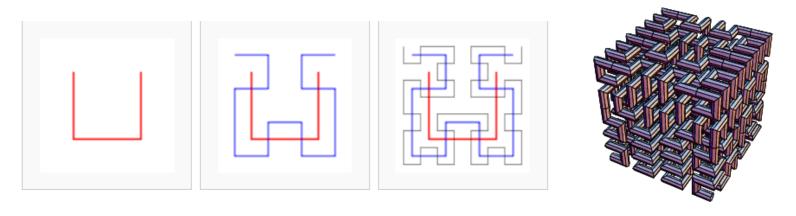
- Ant Problem, Comm. of ACM, March 2013
 - Ant Alice and her friends always march at 1 cm/sec in whichever direction they are facing, and reverse directions when they collide
 - Alice stays in the middle of 25 ants on a 1 meter-long stick
 - O How long must we wait before we are sure Alice has fallen off the stick?




Exchange "hats" when two ants collide

Proof of Theorem 2

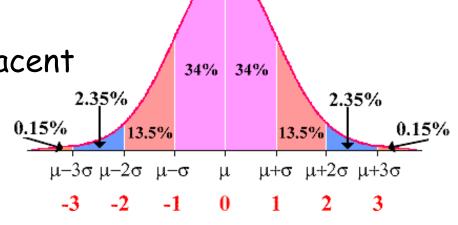
- Two cars never meet or pass each other
- Partition the line into 2k-1 sub-regions based on different car coverage (k is the optimal number of cars)
- Each sub-region can be served by one car at full speed
- One extra car is used when a circle is broken into a line



Possible Extensions

Charging time: converting to distance

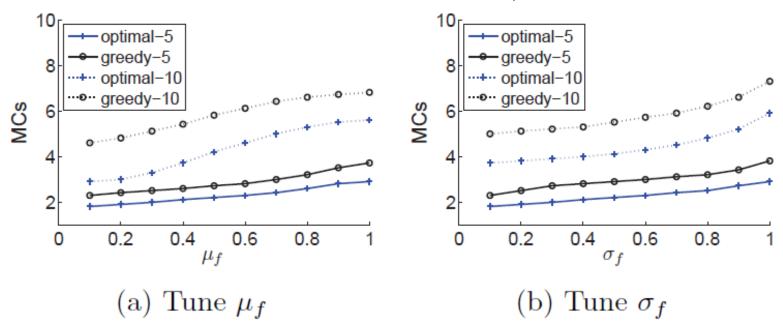
- Hilbert curve for k-D
 - Mapping from 2-D to 1-D for preserving distance locality


4. Simulations

- Heterogeneous WSNs on a line are studied
 - ogreedy algorithm vs. optimal algorithm
- The speeds of MCs are either zero or one unit
- Small-scaled scenarios are studied due to the complexity

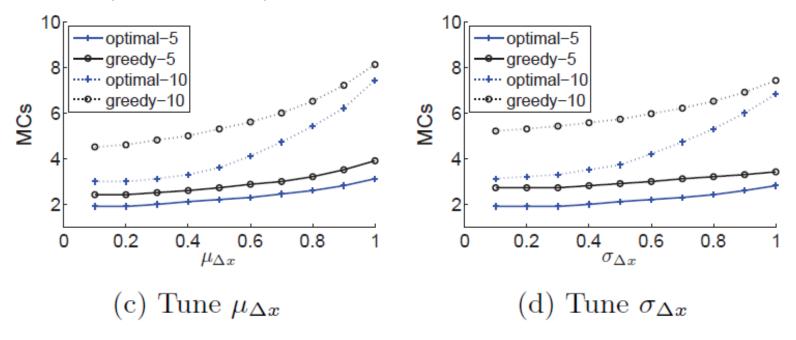
Simulation Settings

The frequencies of sensors (f) follow normal distribution, i.e., $N(\mu_f, \sigma_f^2)$ where μ and σ are mean and variance


The distances between adjacent sensors (Δx) follow normal distribution $N(\mu_{\Delta x}, \sigma_{\Delta x}^2)$

• Fix three parameters among $\mu_f, \, \mu_{\Delta x}, \, \sigma_f, \, \sigma_{\Delta x}$ at a time to be 0.5; then, tune the remaining one

Simulation Results


The influences of the sensor frequencies

- For (a), the ratio varies from 1.6 to 1.2
- For (b), the ratio varies from 1.4 to 1.2

Simulation Results

The influences of the sensor distances

- For (c), the ratio varies from 1.4 to 1.1
- For (d), the ratio varies from 1.7 to 1.1

Simulation Summary

- Larger frequencies and distances (μ_f and $\mu_{\Delta x}$)
 bring larger demands on MCs
- Larger fluctuations of frequencies and distances also bring larger demands on MCs
- The greedy algorithm has a lower (i.e., better) ratio, when $\mu_f, \, \mu_{\Delta x}, \, \sigma_f, \, \sigma_{\Delta x}$ are larger

5. Conclusions

- Wireless energy transfer
- Collaborative mobile charging & coverage
 - Unlimited capacity, but limitations on speed
- Other extensions
 - Charging efficiency
 - MCs as mobile sinks
 - O ...