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Abstract—Nowadays, breakthroughs in wireless power transfer
make it possible to transfer energy over a long distance. Existing
works mainly focused on maximizing network lifetime, optimizing
charging efficiency, and optimizing charging quality. All these
works use a charging model with the linear superposition, which
may not be the most accurate in a real life situation. We use a
concurrent charging model, which has a nonlinear superposition,
and we consider the Fast Charging Scheduling problem (FCS):
given multiple chargers and a group of sensor nodes, how can
the chargers be optimally scheduled over the time dimension so
that the total charging time is minimized and each sensor node
has at least energy E? We prove that FCS is NP-complete and
propose algorithms to solve the problem in 1D line and 2D plane
respectively. Unlike other algorithms, our algorithm does not need
to calculate the combined energy of every possible combination
of chargers in advance, which greatly reduces the complexity.
We obtain a bound in 2D cases when chargers and sensors are
uniformly distributed. Extensive simulations demonstrate that the
performance of our algorithm is almost as good as the optimal
algorithm when the distribution of chargers is not very dense.

Index Terms—Wireless charging, Nonlinear Superposition, Ef-
ficient Scheduling, Interference-Awareness.

I. INTRODUCTION

Wireless sensor networks (WSNs) have many applications:
Shen et al. [1] proposed a cyber-physical design approach
to monitor the indoor temperature. WSNs are also used to
monitor structural health [2], measure biological parameters
in cattle farm [3] and so on. However, sensors in WSNs are
powered by small batteries and constrained energy supply
limits the lifetime of WSNs. Wireless charging techniques
have been proposed to provide additional energy supply to
prolong the lifetime of WSNs [4, 5]. Recent breakthroughs in
wireless power transfer (WPT) technology make it possible to
charge sensors over a long distance.

However, long-distance charging brings a new problem: low
transition efficiency, which means that the energy harvested by
sensors is much lower than the energy sent by the chargers.
As a result, it takes a much longer time to charge a WSN than
expected. One way is to increase the chargers’ power, but this
may lead to electromagnetic radiation (EMR) pollution and
harm humans [6]. By adding more chargers in WSNs and
using multiple chargers to charge sensors at the same time,
the combined power energy will be stronger and charging time
will be shortened. To calculate the combined charging power,
almost all previous studies assumed that the combined energy
from multiple chargers is additive [6–12], but this may not
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(a) The experimental scene.
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Fig. 1. Difference between linear superposition and nonlinear superposition.
There are two chargers placed in a line and they are 11.4m apart from
each other. There is a sensor moving from c1 to c2. The x-axis of the
figure represents the distance between the sensor and c1, and the y-axis
represents the energy received by this sensor from those two chargers. Blue
line in (b) represents the combined energy of two chargers using linear
superposition model, while red line represents the combined energy using
nonlinear superposition model.

be the most accurate. Naderi et al. [13] points out that radio
interference occurs when using multiple chargers to charge
sensors at the same time.

Fig. 1 shows the difference between linear superposition
model and nonlinear superposition model. We can see from
Fig. 1(b) that when using nonlinear superposition charging
model, chargers would strengthen each other in some places
(which we call strong areas) but also weaken each other
in other places (which we call weak areas). Based on this,
Guo et al. [14] proposed a concurrent charging model and
gave algorithms to solve the concurrent charging scheduling
problem. The combined energy of two chargerps is not equal
to the sum of these two chargers’ energy. Multiple chargers
may weaken or strengthen each other depending on different
distances, therefore, we cannot know the combined energy at
a sensor node unless we explicitly know the set of working
chargers, their positions and phases. Guo et al. [14] calculates
the charging energy of each charger set at each sensor node in
advance, and algorithms were proposed based on these values.
As a result of this preparatory process, the complexity of this
step grows exponentially with the number of chargers.

However, we observe that, even though the combined energy
is nonlinear superposition, it still has some properties. With
these properties, we do not need to calculate the combined
energy of each charger groups in advance, which reduces the
complexity.

In this paper, we focus on FCS to prolong the lifetime of



WSNs. In our problem, multiple chargers can charge the same
sensor at the same time, which may cause electromagnetic in-
terference. To provide some intuitive insights into the structure
of our problem, we first consider the scenario that all chargers
and sensor nodes are distributed along a one-dimensional
(1D) line. For this scenario, we propose an algorithm called
FastPick. Then we investigate FCS in two-dimensional (2D)
WSNs. We obtain a bound when chargers and sensors are
uniformly distributed.

Our main contributions are summarized as follows:
• We apply a new charging model with nonlinear super-

position into the FCS problem, which is proved to be
NP-complete.

• We propose the FastPick algorithm to solve FCS in 1D
scenario and get a bound of 2− ε.

• We propose the RoundPick algorithm to solve FCS in 2D
scenario and get a bound.

• Simulations are conducted to evaluate the proposed solu-
tions. The results are shown from different perspectives
to provide conclusions.

The rest of the paper are organized as follows. Section
II describes the concurrent charging model and formulates
the problem. Section III analyzes the problem and proposes
solutions. Section IV includes the simulation results. Section
V surveys related works, and conclusions follow in section VI.

II. MODEL AND PROBLEM FORMULATION

In this section, we first propose our models, including
network model, charging model and harvesting model. Dif-
ferent from previous works, our charging model is nonlinear
superposition. Then we use these models to define FCS.

A. Network Model

We consider a set of N stationary sensor nodes S =
{s1, s2, ..., sn} distributed over a two-dimensional area. The
location of the ith node si is denoted as (xi,yi), and each node
consumes energy for sensing, data reception, and transmission.
There are also M chargers, defined as C = {c1, c2, . . . , cm},
distributed in this area. The location of the jth charger is de-
noted as (xj , yj). There is a set {dij |1 ≤ i ≤ N, 1 ≤ j ≤M}
of distance between ci and sj .

B. Charging Model and Harvesting Model

As we all know, chargers use electromagnetic waves to
transmit energy. According to [14], we suppose that the
amplitude of the frequency component ω0 in the chargers’
power spectral density (PSD) curve is A0 and that the cor-
responding initial phase is ϕ0. Therefore, the power density
of each charger at ω0 is p0=A2

0

2 . Since the charging powers
from wireless chargers weaken nonlinearly with distance, we
assume for simplicity, that the power attenuation factor is 2.
The radio signal of the frequency component ω0 arriving at
the sensor node sj from the charger ci is expressed as :

ai0(t) =
A0

4πdij/λ
cos(ω0t+ ϕ0 − 2π

dij
λ

) (1)

Based on this, Guo [14] proposed the compound radio signal
of frequency component ω0 at sj from a group of chargers C
is:

Aj
0(t) =

∑
ci∈C

ai0(t) =
∑
ci∈C

A0

4πdij/λ
cos(ω0t+ ϕ0 − 2π

dij
λ

)

(2)

Then, we get the power of compound radio signal at sensor
sj from charger set C as follows:

Pj|C =

∫
[Aj

0(t)]2dω

= P
∑
ci∈C

1

d2ij
+ P

∑
ci∈C

∑
cm∈C
cm 6=ci

1

dijdmj
cos(2π

dij − dmj

λ
)

(3)

where P =
∫
pidω is the radio power of each charger.

From this equation, we can see the nonlinear superposition
charging effect in the concurrent charging. The equation above
considers only distance and assumes that all sensors’ initial
phases are the same. With an adjustable initial phase, a new
problem can be derived: how can the chargers initial phases
be optimally controlled so that the total charging time is
minimized? We leave this problem in our future work.

Denote PG
j |c as the power that sensor sj get from a group of

chargers C. We assume PG
j |c = α∗Pj |C , where α(0 < α < 1)

is the transition coefficient. From the former research [15], we
know that if the radio power is lower than a threshold, then the
energy received by sensors is zero. Taking this into account,
we present the harvesting model as follows:

ej |C,t =

{
0 if Pj |C < ε

αt(Pj |C − ε) otherwise

where ej |C,t denotes the energy that sj harvested from a set
of chargers C during time t, and ε is the threshold of the radio
power.

Each sensor also has an electric capacity. We set this ca-
pacity as E. So the energy harvesting model can be expanded
as follows:

ej |C,t =


0 if Pj |C < ε

0 if Pj |C > ε and e′j > E

αt(Pj |C − ε) otherwise

where e′j denotes the energy sj has now, and ε is the threshold
of the radio power.

C. Problem Formulation

We use the vector HiHiHi to denote ith charging schedule.
For example, H2H2H2=[1,0,1,0] means that in the second charging
period, the first and the third charger are open while the second
and the forth charger are closed. And we use ∆ to represent



Fig. 2. Experiment environment.

each charging duration, which are considered to be the same.
Therefore, the main problem studied in this paper is:

Problem 1: Given a set C of chargers with fixed position, a
set S of rechargeable sensors, a set {dij |1 ≤ i ≤ N, 1 ≤ j ≤
M} of distance between ci and sj , and an energy capacity
E of each sensor, FCS is to find a set of multiple charging
periods {H1H1H1, H2H2H2,..., HkHkHk} to charge each sensor with energy
no less than E, and k is minimized.

III. ALGORITHMIC DESIGN

In the first three subsections, we show that FCS is NP-
complete, then we discuss the FCS in a 1D line and propose an
algorithm for this problem. Once we prove that this algorithm
has a bound of 2 − ε, we expand the 1D line to 2D network
and propose an algorithm to solve FCS. We also get a bound
in 2D plane.

A. Hardness Analysis

Theorem 1: The FCS is NP-complete.
Proof: We prove this by using the decision version of the

problem: given a threshold k, does there exist a collection of
charger sets {C1, C2, . . . , Ch}(Ci ⊆ C, i = 1, 2, . . . , h) and a
a corresponding number of charging periods H1H1H1, . . . , HkHkHk that
satisfy the constraint above and where h is equal or less than
k?

We prove this decision problem by reduction from the k-
napsack problem [16], which is NP-hard. The decision version
of the knapsack problem is as follows: given a set of items
U = {e1, e2, . . . , em}, each with a weight and a value, and
an integer k, does there exist a collection of these items so
that the total weight is less than or equal to the limit W and
the total value is V ? Given an instance of the decision version
of the knapsack problem, we construct an instance of FCS as
follows:
• For each element ej in U, we construct a charging period
HiHiHi in FCS.

• For the weight of the item, we construct the charging pe-
riod duration in FCS, for the value of item, we construct
the total energy harvested by the network in this period;
we assume all charging periods’ durations are equal to
∆.

• For the weight of knapsack, we use k ∗ ∆ to represent
the limit. And for the given value V , we set M ∗ E as
the value.

• After we pick a period HiHiHi, we need to recalculate other
periods’ value, because while some sensors in this period
may harvest energy, it is not sufficient to reach E.
Therefore, we need to reduce other periods’ value, as
this complexity is the number of periods.

Combining these elements, we get the following special case
of the decision version of the FCS problem: given a limited
time k ∗ ∆ and a period set, does there exist a collection of
periods whose total size is less than or equal to k so that all
the sensors will harvest no less than E energy (total is ME)?

The construction can be finished in polynomial time; thus,
we reduce solving the NP-hard knapsack problem to a special
case of FCS, implying that FCS is NP-hard.

B. One-Dimensional Line

In this section, we first show how initial phases influence
charging, then we propose an algorithm when phases and
distances are considered at the same time.

1) Rationale: In this paper, we assume that the frequency of
all chargers are the same. Then according to our observation,
when the difference of phases between two chargers is less
than λ/4, these two chargers will strengthen each other. And
when the difference is between λ/4 and λ/2, two chargers
will weaken each other, where λ represents the wavelength.
As we can see from Fig. 3, the initial phases of chargers c1
and c2 are the same, and green lines represent the interaction
areas of c1 and c2, and sensor s2 is distributed in their
strong area while s3 lies in their weak area. If we increase
the phase of c1 by π/2, then the total size of their strong
areas and weak areas remain the same, but the positions will
change: original strong areas become weak and original weak
areas become strong. Generally speaking, in 1D line, once the
distance and initial phase are determined, then the strong and
weak areas are determined. When we change initial phases to
different values, these areas will move along the line. Based
on these observations, we propose FastPick, a 2-approximation
algorithm, to solve the FCS with adjustable initial phases in
1D line.

2) The FastPick Algorithm: FastPick is shown in Algorithm
1. Under the condition that the initial phases are adjustable, all
chargers can be opened together and the initial phases of each
charger are the only variable to be changed (line 1). Then
we choose the sensor with the least energy (line 3). Next,
we choose two chargers that are the closest to this sensor,
and adjust their initial phases to make as many sensors as
possible lie in their strong areas (lines 4-5). As we all know
that areas will move parallel when initial phases change, so
we can make all chargers strengthen each other in the same
places by adjusting their phases (line 6). In line 8, we reverse
the original weak and strong areas, make original weak areas
become strong while strong areas become weak, this step
ensures that our algorithm is 2-approximation. Algorithm 1
ends when all sensors are fully charged (line 2), and after
each charging period, it will check whether a sensor is fully
charged (lines 9-11).



Algorithm 1 FastPick (FP)
Input: C: Charger set, S: Sensor set, E: Energy capacity
Output: The ith charging schedule: HiHiHi

1: Open all chargers together.
2: while S 6= ∅ do
3: Find a sensor with the least energy.
4: Choose two chargers that are the closest to this sensor.
5: Adjust their phases to that make as many sensors as

possible lie in their strong areas and record their phases
in HiHiHi.

6: Adjust the initial phases of other chargers to make their
strong and weak areas overlap with the previous ones
and record their phases in HiHiHi.

7: Make all chargers work for time ∆.
8: Change initial phases of all chargers and make original

weak areas become strong while original strong areas
become weak and record their phases in HiHiHi.

9: Make all chargers work for time ∆.
10: for every sensor in S do
11: if si is fully charged then
12: Remove si from S.

3) Approximation Ratio Analysis: Now we show that Fast-
Pick holds a bound of 2− ε. First, we show a lower bound on
the optimal charging time. Imagine that all chargers strengthen
each other in all places (which cannot be achieved in reality);
in this case, we can always open all chargers without interfer-
ence. In doing so, we have a charging time Ta. Obviously, Ta
is a lower bound on the optimal charging time.

Next, we show that the charging time achieved by our
algorithm FastPick is at most 2 times longer than Ta.

We know that sensors lie either in strong or weak areas.
Sensors which lie in strong areas will get the most energy
they can get from the chargers in this charging period. Sensors
which lie in weak areas can hardly get energy in this period,
but in the next period, weak and strong areas will reverse (line
8 in Algorithm 1), so these sensors will get most energy in the
next period. If we put these two periods together to construct a
big period, then each sensor will get a little more energy in this
big period than in the hypothetical situation that all chargers
strengthen each other in all places. So the total charging time
is 2Ta− ε, which ensures 2OPT − ε. Therefore, Algorithm 1
holds a bound of 2− ε.

4) Example in 1D: After computing, we get the combined
energy of chargers which is showed in Table I. Then algorithm
begins to select the sensor with the least energy; in the first
iteration, all sensors have energy 0. Without loss of generality,
we choose s1, since s1 does not distribute in any strong area,
the algorithm adds c1 in H1H1H1, then adds c2, c3 in H1H1H1. That
is the first charging period schedule and after charging, the
sensors’ energy are {2, 2, 2, 0, 2}. In the second iteration,
algorithm selects s4 as the least energy sensor and adds c3 in
H2H2H2. Then algorithm adds c1 only in H2H2H2, because if added c2
then, the total energy harvested by all sensors would decrease.

s1

-
-

+

c1 s2 s3 c2 c3 s4 s5

++Sensor

Charger

c1,c2

c2,c3

Fig. 3. One-dimensional strong and weak areas. Green lines represent the
interactional areas of c1 and c2, and red lines represent the interactional
areas of c2 and c3. c1 and c3 have no interactional area because they are too
far away from each other.

After charging, the sensors’ energy are {4, 4, 4, 2, 3}. In
the third and forth iterations, the algorithm does the same

TABLE I
THE RECEIVING ENERGY OF SENSORS DURING ONE TIME DURATION IN

1D LINE.

s1 s2 s3 s4 s5

c1 2 2 1 0 0
c2 0 1 2 1 1
c3 0 0 1 2 1

c1, c2 2 0 3 1 1
c1, c3 2 2 2 2 1
c2, c3 0 1 0 0 2

c1, c2, c3 2 2 2 0 2

operation. After this, the sensors’ energy are {8, 8, 8, 6, 5}.
In the fifth iteration, the least energy sensor becomes s5. and
s5 is distributed in the strong area of c2 and c3, so c2, c3
are added into H5H5H5. Then algorithm keeps adding c1 in H5H5H5

because c1, c2, c3 could provide more energy to all sensors
than c2, c3. After charging, the sensors’ energy are {10, 10,
10, 6, 7} and s1, s2, s3 are fully charged. Under this situation,
c1 becomes useless because it cannot charge s4 and s5. In
the sixth iteration, the least energy sensor becomes s4 and the
algorithm adds c3. After charging, sensors energy are {10, 10,
10, 8, 8}. In the seventh and eighth iterations, the sensor with
least energy is s4, so we add c2 only, that allows the total
charging periods of this example to be 8.

C. Two-Dimensional Plane

In this section, we propose an algorithm to solve FCS in
2D plane where initial phases of all chargers are the same.
Then, we prove that under some conditions, our algorithm has
a bound which is showed in the next section.

In 1D line, the strong and weak areas are line segments,
and in 2D plane, the strong and weak areas are interspaces
between some hyperbolas as showed in Fig. 4. Given any pair
of chargers, we can find their strong and weak areas, and use
the area information to make our schedule.

In order to reduce calculation, we propose a way to partition
the WSN. After partition, we just need to focus on each slot
independently. As we all know, the coverage areas of chargers
would coincide in some place; with concurrent charging mod-
el, we cannot just look at one charger and leave other chargers



Fig. 4. Two-dimensional strong and weak areas. c1 and c2 represent chargers.
’+’ represents the strong areas of these two chargers, ’-’ represents the weak
areas.

irrespective. We will show that our partition holds a bound,
and this bound is related to the distribution of this WSN.

1) Partition: The partition should hold three conditions:
Condition 1: Every sensor in one slot should be covered by

chargers in this slot.
Condition 2: There is at least one charger in a slot.
Condition 3: The length of slot side should be minimized,

but no less than 2 ∗R (R is the charging radius).
After every charging period, we need to move the slot

position by moving the slot towards the direction of the sensor
with the least energy and condition 3 guarantee that after
moving, two chargers, which cause the overlap, will be in
the same slot.

With these three conditions, we can find a bound of our
algorithm. The worst case of the partition is that we can only
get one slot, which means we do not make any partition. The
best case of the partition is that every slot has exactly one
charger.

2) Approximation Ratio Analysis: We take uniform distri-
bution as an example and show the relation between bound and
distribution. Hypothesis model is that all chargers strengthen
each other to every sensor, so the schedule is to open all
chargers together. This charging time is less than the optimal
way. Under these three conditions, errors between neighbour-
ing slots depend on the number of sensor sets in overlap areas.
Suppose that sensors and chargers are uniformly distributed,
then the most overlap areas of a slot are 4, and the sensors
in these overlaps are half of sensors in this slot. If chargers
in other slots will strengthen these overlaps, we just ignore
them. If chargers will weaken the overlaps, the worst case is
that half the sensors would get less energy. But after every
period, we do the movement operation, which will make
sensors in weak areas in a new slot without charging conflict
with other slot. But one operation of movement can only
make one direction in 2D plane becomes conflict-free, which
means that we should do another movement to make another
direction become conflict-free. In every charging period, we
first choose a pair of chargers that can charge the most energy,
then a new charger can be added if only if this charger has
the same strong area with the first two chargers. So in every
charging period, we can make sure that half sensors charge
the most energy. Since half of them are influenced by other
slots, eventually, only 1/4 sensors get the most energy. The
bound is α ∗ (Nd + 1) − ε, where α is the charging ability

Algorithm 2 RoundPick (RP)
Input: C: Charger set, S: Sensor set, E: Energy capacity
Output: The charging schedule: H1H1H1, H2H2H2, H3H3H3, . . .

1: Choose a charger say ci that can charge the most sensors.
2: for every sensors in the coverage of ci do
3: if sj has the farthest distance to ci on x or y axis then
4: Record sj .
5: Use these two sensors as the border to partition the WSN
6: while partition is not under three conditions do
7: Add a new charger in this slot that has the least side

length.
8: while S 6= ∅ do
9: for every slot do

10: Compute each two chargers’ strong area, called St.
11: Choose a sensor sj with the least energy, do SP (sj).
12: Make chargers in HiHiHi work for time ∆.
13: Choose a sensor sj that has the lowest energy and

lies in a overlap.
14: Compute the distance L between the sb and the

charger cd that cause the overlap.
15: Move slot to the direction of sb-cd with distance L.
16: for every sensor in S do
17: if si is fully charged then
18: Remove si from S.

Algorithm 3 sub-procedure SinglePick (SP)
Input: C: Charger set, S: Sensor set, E: Energy capacity
Output: The ith charging schedule: HiHiHi

1: for every area in St do
2: if sj is in this area then
3: Add these two charger in HiHiHi and break.
4: if HiHiHi is empty then
5: Add the charger that can charge most energy to s.
6: for every charger in C do
7: if adding will charge more energy to the WSN then
8: Add this charger in HiHiHi.
9: return HiHiHi

10: return Se as the FCS schedule plan.

compared with OPT in each slot, Nd is the influenced direction
in slot (Nd={1,2}), and 1 represents the original slot, while ε
is the error related to the actual charging condition. In uniform
distribution, the upper bound is (2− ε) ∗ (2 + 1)− ε = 6− 4ε.

3) The RoundPick Algorithm: In lines 1-7, the Algorithm
2 partitions the whole WSN. After partitioning, algorithm
circularly pick chargers during each iteration to decide each
charging schedule (lines 8-12). The iteration terminates when
all the sensors are fully charged, which means that harvest
energy is at least E (S=∅ line 8). In each iteration, algorithm
first computes each two chargers strong areas in each slot,
called St (line 10), then algorithm chooses a sensor with the
least energy and uses Algorithm 2 to select chargers (line 11).
Then, the chargers opening in this charging period are selected.
After charging, we need to move slot so that the sensors lied



Fig. 5. An example of the partition of a WSN. Blue lines represent the
partition that each slot has at most one charger; Red lines represent the
partition that each slot has at most two chargers; Black lines represent the
partition that all chargers lie in the same slot.

in overlaps no longer lies in the overlap (lines 13-15). In this
iteration, we still need to remove sensors with full energy,
which means they already got E energy (lines 16-18).

The complexity of Algorithm 2 is O(M3N). The total
number of charging period is O(N ), we can make this by
increasing each charging period. The complexity to partition
is O(M ), because once we confirm a slot, others can be
expanded, and the maximum number of chargers in a slot is
M . During every charging period, the complexity of picking
chargers is O(M3); it is composed by two parts; the number
of slot and chargers in slot. The most combination is M3

mathematically. So, the total complexity is O(M3N ).
4) Example in 2D: In this section, we give an example to

show our algorithm. A simple example is shown in Fig. 5 and
Table II shows the actual charging energy.

Suppose the energy capacity of each node E = 10.
According to algorithm, we first partition the WSN and find
the charger that can cover the most sensors. Then, we choose
c1, and use it as the division criterion to partition the whole
WSN. Next, we get 4 slots, as shown in Fig. 5, with green
lines. Afterwards, we check whether this partition follows our
three conditions. Obviously, s2 belongs to slot 1, but since it
is not covered by c1, this partition is incorrect. Then, we add
one charger to c2, without loss of generality, we add c2, and
we use a new length of slot to partition the WSN, which is
shown in Fig. 5 with red lines. After partition, we get 2 slots,
and we check it again. s6 lies in slot 1 but is not covered by
c1 and c2, which means this partition is wrong, so we add
c3, and make the whole WSN as a slot, which is shown in
Fig. 5 with black lines. This is the worst case, because we do
not partition the WSN actually. After partition, Algorithm 2
selects a sensor with the least energy; in the first iteration, all
sensors have energy 0. Without loss of generality, we choose
s0 and add c1 in H1H1H1. According to Algorithm 2, we add c3
into H1H1H1. That is the first charging period schedule. After this
charging period, the sensors energy are {2, 2, 0, 0, 4, 5, 3,
3}. In the second iteration, we select s2 and choose c2 into
H2H2H2; then, we add c3 into H2H2H2. After this charging period, the
sensors energy are {2, 2, 2, 2, 8, 8, 6, 6}. In the third period,
we choose c1, c3. Because s4 and s5 have an energy of 8 now,
the energy harvested by them is at most 2 due to our harvest

TABLE II
THE RECEIVING ENERGY OF SENSORS DURING ONE TIME DURATION IN

2D PLANE.

s0 s1 s2 s3 s4 s5 s6 s7

c1 2 2 0 0 2 2 0 0
c2 0 0 2 2 3 0 0 0
c3 0 0 0 0 0 3 3 3

c1, c2 2 2 2 2 0 2 0 0
c1, c3 2 2 0 0 2 5 2 2
c2, c3 0 0 2 2 3 3 3 3

c1, c2, c3 2 2 2 2 0 5 2 2

model in Section III. So, we can add c2 into H3H3H3 too. After
this charging period, the sensors energy are {4, 4, 4, 4, 8, 10,
9, 9}. In the forth iteration, we choose c1, c2.c3, and sensors
energy after charging are {6, 6, 6, 6 ,8, 10, 10, 10}. In the
fifth period, we choose c1, c2, and sensors energy are {8, 8,
8, 8, 8, 10, 10, 10}. In the sixth period, we choose c1, c2, and
sensors energy after charging are {10, 10, 10, 10, 8, 10, 10,
10}. In the seventh period, we choose c1 only. Therefore, the
total charging periods of our algorithm is 7.

Our algorithm would obtain the optimal solution in two
extreme cases. The first is when all chargers strengthen each
other. Obviously, the optimal method is to turn on all the
chargers, which is the same answer that our algorithm gives.
The other case is when all chargers do not affect others. In
this case, The partition are the chargers themselves, and the
optimal way to charge is opening all chargers together, which
is the way our algorithm gives.

D. Summary

When initial phases of all chargers are the same, we
propose 2 algorithms to solve FCS in 1D line and 2D plane
respectively. In 1D line, we propose the FP algorithm to solve
FCS and obtain a bound of 2− ε under conditions mentioned
in section III-B. When it comes to 2D plane, we propose the
RP algorithm to solve FCS and also obtain a bound of 6− 4ε
under conditions mentioned in section III-C.

Our algorithms still have some limitations. In this paper,
we set the duration of each charging period to be the same.
But in reality, different charging periods can have different
charging durations. And with adjustable charging duration of
each charging period, a new problem can be presented: given
multiple chargers and sensors, how can we make decide the
opening duration and time of each charger, so that the total
charging time is minimized and each sensor node has at least
energy E? we also leave this problem in our future works.

We know from section III-C that interaction areas in 2D
plane are interspaces between some hyperbolas, which are
irregular. So we cannot make all chargers strengthen or weaken
each other in the same strong or weak areas respectively. Given
a number of chargers, we have to adjust the initial phases
of each charger to achieve a better schedule. But there are
too many combinations of chargers, and adding or removing
any charger may produce a great influence to the charging



schedule. We have to try all combinations of these chargers
and the number of combinations grows exponentially with
the number of chargers. FCS is more complex in 2D plane
and carelessly initial phases changing may not get a better
charging plan. Changing initial phases in 2D plane makes
interaction areas still irregular and we have to exhaust almost
all combinations of chargers to get a relatively better schedule.
We will leave this problem in our future works.

IV. EXPERIMENTS

In this section, we conduct a series of simulations with
Matlab tool to evaluate the performance of the proposed
algorithm.

A. Experimental Settings

We assume wireless devices and chargers are randomly
distributed over a 50m × 50m area. In the simulations, we
employed the energy harvesting model present in Section III.
For the deployments and the harvesting model, the time is
calculated and the procedures for the proposed algorithm are
executed in Matlab. Fig. 2 shows our experiment equipments.
We use the powercast TX91501-915 MHz to transmit energy.
Moreover, we set the charger’ power to be 915 MHz, which
makes the wave length to be λ = 0.33m. We set the threshold
of harvesting power as ε = 15µW , transition efficiency as
α = 0.25 and each charging period as ∆ = 20s.

Based on these parameters, we calculate the distance thresh-
old, 0.25 ∗ 4/(4π*d)2 = 0.015mW (watt). Then we calculate
that d ≈ 6.78m, which means that when the distance between
a sensor and a charger is over 6.78m; the sensor will harvest
no energy from that charger. In this simulation, the default
number of chargers is N = 12. The default number of sensors
is M = 50, and the default energy capacity is E = 4mJ .
Fig. 6(a) gives an example of the default placement. 6(b)
illustrates the partition that the algorithm finds in the first
iteration.

B. Baseline Setup

Currently there is only one algorithm available for FCS
with an actual charging model. The algorithms proposed in
[14] calculate all the charger groups’ charging abilities in
advance, and the performance of the Genetic Algorithm (GA)
they proposed is almost as good as the brute force algorithm.
We consider the GA as the optimal algorithm (OPT).

We also introduce a Random Algorithm (RA) for compari-
son. In addition, we compare our simulation with the random
algorithm that consists of two phases. The first phase is remov-
ing k chargers( which cannot charge any sensor, because some
sensors may be fully charged after some periods from C. The
second phase is to randomly selecting β(N − k)(0 < β < 1)
chargers in each period. In this simulation, we set β to be 0.8.

C. Evaluation Results

In general, RP achieves a near optimal solution and outper-
forms the random algorithm.

In Fig. 7(a), the total charging periods decreases as the
number of chargers grows. This is obvious, because with more

(a) The placement with 12
chargers and 50 sensors.

(b) A partition of a WSN with
12 chargers and 50 sensors.

Fig. 6. An example of the partition.

chargers, more sufficient energy will be supplied in the same
duration, thereby reducing the charging time. According to the
algorithms, the performance of RP is close to OPT when the
number of chargers is small, and as the number of chargers
increases, the operation performance of RP is gradually with-
drawn by OPT. This is because when the number of chargers
is small, the electromagnetic interference will be limited and
will tend to select all the chargers.

In Fig. 7(b), the total charging time grows with the growth
of the number of sensors, there is a very good explanation,
because with more sensors, interference will become more
common, so the total charging length is increased. From each
of the algorithms, the performance of RP is close to OPT
when the number of sensors is small, and as the number
of sensors increases, the performance of RP is worse than
OPT. This is because when the number of sensors is small,
the electromagnetic interference caused by the sensor will be
small, and the overall charging power of the network will be
higher than that of a single sensor.

In Fig. 7(c), when the energy capacity goes up, the total
charging time grows with the growth of the capacitance,
it is obvious, because the total harvesting grows, thereby
increasing the charging time. This is due to the fact that the
electromagnetic interference is not large in the case of an
hour of electrical capacity, but as the capacitance increases,
the influence of electromagnetic interference on the charging
will be amplified.

In Fig. 7(a) and Fig. 7(b), when the number of sensors or
chargers decreases, the chance of charging interferences goes
down. As a result, the total charging periods our algorithm
calculates is close to the optimal one. However when the
number of sensors or chargers goes up, the performance of
our algorithm is bad because the interference becomes more
common and is hard to be controlled. The only way to make
the best choice is calculate each group of chargers when
interference occurs.

As for the time complexity, it can be seen from Fig. 7(d-f);
the running times of the RP and RA is much lower than the
optimal algorithm. As we said before, the complexity of OPT
algorithm grows exponentially with the number of chargers.
The running times of these three algorithms all increase with
the charger scale, sensor scale, and energy capacity, which is
as expected.

In summary, the proposed algorithm RP performs very
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Fig. 7. Simulation Results.

similarly to GA (which is considered as OPT) in sparse
network and outperforms the random algorithm.

V. RELATED WORK

In the past decade, wireless charging for WSNs has been
widely studied, and some works focused on fixed chargers.

He et al. [15] proposed how to deploy readers in a network
to ensure that the WISP tags can harvest sufficient energy for
continuous operation. They investigated the energy provision
problem of finding the minimum number of RFID readers to
cover a given WSN, and they showed that their algorithm
can greatly reduce the number of readers compared with
those assuming traditional coverage models.Pang et al. [17]
investigated the minimum charging coverage problem, which
aims to recharge a set of sensors in a given area with the
minimum number of wireless chargers. They introduced a par-
tition algorithm to address this charging coverage challenge,
and through theoretical analysis, they proved that the proposed
algorithm can develop a solution close to the optimal one with
guarantees approximation ratio. Dai et al. [7] also focused on
charger location problem but took safety into account. They
proposed PESA, a wireless charger Placement scheme that
guarantees EMR safety for every location on the plane. Their
experimental results showed that in terms of charging utility,
their algorithm outperforms the prior art by up to 45.7%.
Zhang et al. [5] jointly considers charger placement and
power allocation to improve the charging quality. They proved
the problem is NP-complete then proposed an approximation
algorithm. Extensive simulations demonstrate that the gap
between their design and the optimal algorithm is within 4.5%,
validating their theoretical results.

There are also some works focused mobile chargers. Gao et
al. [10] proposed a new framework that can jointly schedule
sensor activity and recharging to save the traveling energy of
Recharging Vehicles (RVs). They proposed two schemes to
manage sensor activity: balanced clustering and distributed
sensor activation schemes. Based on schemes, they further
introduced a new metric so that the energy demand in each
cluster can be managed. Then they formulated the recharging
problem into a Traveling Salesman Problem with Profits
and proposed two algorithms to reduce travelling distance.
The experiments results show that their algorithms can save
travelling distances of RVs by 41% and 16% respectively. Shi
et al. [18] investigated the operation of a sensor network under
this new enabling energy transfer technology. They consid-
ered the scenario of a mobile charging vehicle periodically
traveling inside the sensor network and charging the battery
of each sensor node wirelessly. They introduced the concept
of renewable energy cycle and offer both necessary and
sufficient conditions. Zhang et al. [19] proposed a scheduling
algorithm called Pushwait to cover a one-dimensional WSN
of infinite length, and they proved that Pushwait is the optimal
algorithm in a 1D scenario. Li et al. [4] proposed J-RoC —
a practical and efficient Joint Routing and Charging scheme.
They used proactives to guide the routing activities in the
network and deliver energy to where it is needed. Evaluation
results demonstrated that J-RoC significantly elongates the
network lifetime compared to existing wireless charging based
schemes. Sangare et al. [20] developed a hardware platform
using off-the-shelf radio frequency energy transfer hardware
equipments to evaluate the practical performance of wireless
sensor networks powered by radio frequency energy transfer.



Based on the developed platform, they established an empirical
model and used the empirical model to jointly optimize path
planning and mobile charge scheduling for wireless-powered
sensor networks. Numerical results showed that their derived
policy significantly improves the performance of wireless
sensor networks in different practical scenarios.

However, all the works above are based on an assumption
that the power received by one device from multiple chargers
is linear additive, but this assumption may not be entirely
accurate.

Naderi et al. [13] point out that radio interference occurs
when multiple chargers are used to charge one device, even if
all the chargers transfer energy with high power. Interference
may result in higher or lower levels of energy cancellation.
Guo et al. [14] proposed three algorithms to solve concurrent
charging scheduling problem based on the nonlinear super-
position charging model. To the best of our knowledge, it is
the first time that the nonlinear superposition charging model
has been used. However, their algorithms had to calculate
all charger sets utilities in advance. The complexity would
grow exponentially with the number of chargers. Therefore,
we propose an algorithm to solve FCS without calculations
beforehand.

VI. CONCLUSION

In this paper, we study the fast charging schedule problem
(FCS), addressing the nonlinear superposition charging effect
caused by radio interference. We prove that this problem is
NP-complete by reduction from the set cover problem. To
solve this problem, we propose the RP algorithm, which has
a bound of 6 − 4ε in 2D plane, and ε is the error related to
the actual charging condition. The simulation results show that
the RP can achieve a good performance that is close to that
of OPT at sparse network.
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