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Abstract—Content caching at intermediate nodes is a
very effective way to optimize the operations of Computer
networks, so that future requests can be served without
going back to the origin of the content. Several caching
techniques have been proposed since the emergence of the
concept, including techniques that require major changes to
the Internet architecture such as Content Centric Network-
ing. Few of these techniques consider providing caching
incentives for the nodes or quality of service guarantees
for content owners. In this work, we present a low
complexity, distributed, and online algorithm for making
caching decisions based on content popularity, while taking
into account the aforementioned issues. Our algorithm
performs en-route caching. Therefore, it can be integrated
with the current TCP/IP model. In order to measure the
performance of any online caching algorithm, we define
the competitive ratio as the ratio of the performance of
the online algorithm in terms of traffic savings to the
performance of the optimal offline algorithm that has a
complete knowledge of the future. We show that under
our settings, no online algorithm can achieve a better
competitive ratio than Q(logn), where n is the number
of nodes in the network. Furthermore, we show that under
realistic scenarios, our algorithm has an asymptotically
optimal competitive ratio in terms of the number of nodes
in the network.

Keywords-En-route caching, caching incentive, competi-
tive ratio, asymptotic optimality, quality of service.

I. INTRODUCTION

Recently, content retrieval has dominated the Internet
traffic. Services like Video on Demand accounts for 53%
of the total Internet traffic, and it is expected to grow to
69% by the end of 2018 [1]. Content Delivery Network
(CDN) uses content replication schemes at dedicated
servers to bring the contents closer to the requesting
customers. This has the effect of offloading the traffic
from the origin servers, reducing content delivery time,
and achieving better performance, scalability, and energy
efficiency [2], [3]. Akamai, for example, is one of the
largest CDNs deployed, delivering around 30% of web
traffic through globally-distributed platforms [4]. The
problem with CDN is the necessity of dedicated servers
and that content replication is done offline.

Several techniques have emerged to overcome the
limitation of caching at dedicated servers. For example,
Content Centric Networking (CCN) [5] uses the content

name instead of the IP address of the source to locate the
content. This allows more flexible caching at intermedi-
ate nodes. In order to implement CCN, major changes
in the TCP/IP protocol needs to be performed. When a
client requests certain content, the client sends an Interest
Packet to all its neighbors, which in turn send the packet
to all of their neighbors except the one where the packet
came from. The process continues until a node caching
the desired content is found, which in turn replies with
a Data Packet containing the desired content.

Clearly, caching a content will reduce the traffic on the
upstream path, if the same content is being requested
another time by a different client. Given the limited
cache capacity, the questions to answer become ‘What
are the factors that affect achieving the maximum traffic
savings?’and ‘Which contents are to be cached in order
to achieve the same objective?’

Several studies try to answer the above questions. The
work in [6] investigates the dependence of the caching
benefit on content popularity, nodes’ caching capacities,
and the distance between nodes and the origin server.
The performance of CCN has been evaluated in [7]
under different topologies, by varying routing strategies,
caching decisions, and cache replacement policies. The
results also show the dependence of CCN performance
on content popularity.

Several techniques for content caching have been pro-
posed in the literature. The work in [5] presents Always
Cache, where a node caches every new piece of content
under the constraint of cache capacity. The authors in
[8] provide a push-pull model to optimize the joint
latency-traffic problem by deciding which contents to
push (cache) on intermediate nodes, and which contents
to pull (retrieve) from the origin server. Most Popular
Caching caches a content at neighboring nodes when
the number of requests exceeds some threshold [9].
ProbCache aims to reduce the cache redundancy by
caching contents at nodes that are close to the destination
[10]. A cooperative approach in [11] leads to a node’s
caching decision that depends on its estimate of what
neighboring nodes have in their cache. A collaborative
caching mechanism in [12] maximizes cache cooperation
through dynamic request routing. In [13], nodes try to



grasp an idea of other nodes’ caching policies through
requests coming from those nodes.

Few works targeted the caching decision problem from
the point of view of optimality, or providing incentives
for nodes to cache. The work in [14] presents an of-
fline solution through dynamic programming for content
placement for en-route caching. Authors in [15] char-
acterize the optimal content placement strategy under
offline settings, in which all future requests are known
to all nodes in the network. The work of [16] presents
an online solution but with no efficiency or optimality
proofs. Other works such as [17] and [18] consider
incentives for nodes to cache. However, they provide
high level solutions that do not scale well with large
systems. The authors in [18] consider a special case with
only 3 ISPs.

This paper provides a provably-optimal online solution
for the first time under a setting that brings incentives
for the nodes to cache. In order to provide incentives
for the nodes to cache, nodes have to charge content
providers for caching their contents. Adopting such
charging policies forces the caching node to provide
quality of service guarantees for content providers by not
replacing their contents in the future, if the node decides
to cache their contents. Since the number of contents far
exceeds the nodes’ cache capacities, and assuming that
the charging price for every piece of content is the same,
then the node has no preference in caching one content
over the other, forcing the node to cooperate and apply
our policy that achieves asymptotic optimality.

Specifically, we make the following contributions:

(1) We design an online, low complexity, and dis-
tributed caching decision algorithm that provides in-
centives for the nodes to cache, and quality of service
guarantees for content providers. (2) Our algorithm per-
forms en-route caching and thus can be implemented
without radical changes to the TCP/IP protocol stack.
(3) Under some realistic network settings, We show
that our algorithm is asymptotically (in terms of the
number of nodes in the network) optimal (in terms of
traffic savings). (4) Through extensive simulations, we
show that our algorithm outperforms existing caching
schemes.

The rest of the paper is organized as follows: Section
IT states the definitions and settings of our algorithm.
Section III describes the algorithm and practical issues.
Optimality analysis of the algorithm is presented in
Section IV. Section V provides simulation results. We
conclude the paper in Section VI.

II. SETTINGS AND DEFINITIONS

In this Section, we provide the settings under which
our algorithm takes place, followed by some definitions.

A. Settings

A network is represented by a graph G(V, E), where
each node ¢ € V has a caching capacity of D;. If
the node does not have caching capability, its caching
capacity is set to 0. Weights can be assigned to each
link e € FE, but we consider all links to have the
same weight. The input consists of a sequence of con-
tents 31, Bo, ..., Bm., the j-th of which is represented by
B = (Sj,7,T;(7)), where S; is the source for content
Bj, r; is the size of B;, and T;(7) is the effective
caching duration in which more requests are expected
for 3; when the first request appears at time slot 7. For
simplicity, we assume a slotted time system and that
T;(7) is an integer multiple of slots.

For each content, we define the following values:

(1) b;(4): Number of hops on the path from node i to
Sj for ﬁj.

(2) W;(7, j): The expected number of requests for §;
to be served from the cache at node 7 at time slot 7, if
all of the caching nodes cache ;.

(3) to(é,7): The time when a request for j3; appears
at node .

@) &;(1, 7): The total expected number of requests for
B; to be served from the cache at node 7 per time slot
7. We assume that (7, 7) is fixed V7 € {tg,...,t0 +
Ty (to)}.

(5) 70(4, 7): The time when 3, is cached at node 4. For
simplicity, we denote this value hereafter by 7y since the
values of (i, ) can be inferred from the context.

(6) d;(7,7): Number of hops from node ¢ to the
first node caching 3; along the path to S; at time 7.
We assume that if node ¢ caches 3; at time 79, then
di(Taj) = di(TOaj)ﬂVT € {7—07 <o, T+ Tj(TO)}'

Figure 1 shows a simple network to illustrate the
aforementioned definitions. In this example, we have
two contents 3; and (2, originally stored on v; and
vg, respectively. The triangles in the figure represent
the subnetworks containing the set of non-caching nodes
connected to the caching node. The values of W; (7, j)
represent the expected number of requests for 3; coming
from the subnetwork connected to node <.

Before any requests for 3, appears at any node, each
node 4 will send its W;(7,j) to all nodes on the path
from node i to the source of §;, S;. This process will
lead to the calculation of the initial values of &;(, 7).

For example, in Figure 1, before any request for f3;
appears at any node, &(7, 1) = Ws(7,1)+Wa(r,1),t0 a
total value of 6. This is because, starting from the initial
configuration while investigating the caching of content
(1 on node vs, all the requests for 31 coming from the
subnetworks connected to v3 and v4 will be served from
the cache of vs, if we decide to cache 51 on vs. Similarly,
E>(m,1) = 9. Later on, if vy decides to cache /31, then
Wy(7, 1) will be subtracted from all nodes along the path
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to S, until the first node caching 3; is reached. This is
because none of these nodes will serve the requests for
(1 coming from the subnetwork connected to vy after
this point. In Sections III and III-B3, we provide details
for the dynamic calculation and initialization of &;(7, j),
respectively.

We define the total traffic savings of caching in the
time interval [0,¢] as:

t n o m
ZZZgi(TOaj)di(7—07j)‘[(ai(7—7j))v (1)
T=0i=1 j=1
where I(.) is the indicator function and a;(7,j) is the
event that §; exists at node ¢ at time 7. For example,
referring to Figure 1, caching 3; on vz alone for a single
time slot will yield a saving of &3(7,1) x d3(7,1) =
(4+42)x2=12.
We define the relative load on a caching node ¢ at time
T when [3; arrives as
>

>\i (Ta j) =
k:k<j

keCache; (1)

Tk
D;’

where k < j refers to the indices of all 3 that are in
the cache of node ¢ at the time when considering 3; to
be cached at node i. We use k € Clache;(7) to represent
the existence of [ in the cache of node i at time 7.

As we mentioned in Section I, charging content
providers for caching their contents will provide the
nodes with the necessary incentives to cache. In return,
the nodes have to guarantee quality of service for con-
tent providers by keeping their content cached for the
required time period. We assume that content providers
are charged the same to prevent the node from preferring
contents with a higher prices. To this end, we consider
non-preemptive caching to represent our system model,
i.e., once f3; is cached at node 3, it will stay cached
vr € {r,...,70 + T;(10)} time units. We elaborate
more on T;(7) in Section III-B4.

B. Definitions

Offline vs. Online Algorithms: The main difference
between the offline and the online algorithms is that the

offline algorithm has a complete knowledge of the future.
In our work, offline means that the algorithm knows
when, where, and how many times a content will be
requested. This knowledge leads to the optimal content
distribution strategy that maximizes the performance in
terms of traffic savings. On the other hand, online algo-
rithms do not possess such knowledge, and have to make
a caching decision for a content based on the available
information at the time of the content arrival. Due to this
difference, the offline algorithm’s performance is better
than that of the online algorithm.

Under our settings, we assume that the node does not
know when a request for a content will come. However,
once a request for a content arrives at a caching node, the
node will know the content’s size, the effective caching
duration time, and the expected number of requests to be
served from the cache of the caching node. Furthermore,
all other caching nodes are informed about the arrival
time of the request. We elaborate more on this issue in
Section III-B4. For example, referring back to Figure
1, node v3 does not know when a request for 81 will
come. Only when a request for /31 arrives at vs at time
to, does vs know 11,71 (to), E3(7, 1), in addition to its
own relative load, A3(7,1),V7 € {to,...,to + T1(t0)}-
However, node vs does not know when the next request
for the same content will come.

To measure the performance in terms of traffic sav-
ings, as defined in (1), of the online algorithm against
the offline algorithm, we use the concept of Competitive
Ratio. Here, traffic savings refer to, but not limited, to
the total number of hops saved using en-route caching,
compared to the traditional no-caching case in which the
request for a content is served by the content’s source.
The traffic savings can be based on other metrics like
the actual distance or the energy consumption. Other
works have used the concept of competitive ratio, but
for different problems such as energy efficiency [19]
or online routing [20]. Competitive ratio is defined as
the performance achieved by the offline algorithm to the
performance achieved by the online algorithm, i.e., if we
denote the offline performance as P,y and the online
performance as P,,,, the competitive ratio is:

Posy

sup —.

su
P P(m

t all input
sequences in [0,t]

As the ratio gets closer to 1, the online performance
gets closer to the offline performance. In other words,
the smaller the competitive ratio, the better the online
algorithm’s performance.

We motivate the design of our online algorithm by the
following reasoning; knowing the contents’ popularities
alone does not guarantee an optimal solution. The order
in which the contents arrive makes a big difference.



In fact, we show that there is an upper bound on the
savings achieved by the online algorithm when compared
to the offline algorithm, and we develop an online
algorithm that achieves that bound. We refer the reader
to our technical report [21] for an example to show the
difference between the offline and online algorithms.

III. ALGORITHM

In this Section, we present the Cost-Reward Caching
(CRC) algorithm that achieves the optimal competitive
ratio, along with some practical issues. We introduce the
proof of optimality in the next Section.

A. CRC Algorithm

CRC takes advantage of en-route caching, ie., a
request for a content is forwarded along the path to the
content’s source, up to the first node that has the content
in its cache. The content then will follow the same path
back to the requester.

In CCN, when an interest packet for a new content
arrives at a node on a certain interface, the node will
send the interest packet using all other interfaces. For
example, Figure 2 shows a single node in CCN, where
the numbers represent the interfaces of the node. When
a request for §; arrives at the node through interface
number 2, and a match is not found in neither the cache
nor the Pending Interest Table (PIT), the node will send
the request on all interfaces except interface number 2.
Our algorithm uses en-route caching, so the new interest
packet is only forwarded on the single interface along
the path to the content’s source.

When a request for a content 3; appears at a node %
at time tg, node ¢ sends a small control message up to
the first node caching 3; along the path to the source
of the content. Let w be that first node, then node w
replies with a message containing 7; and the ID of node
w. Every node w in the path from node w to node ¢
stores a copy of the message, computes d,(to,j), and
forwards the message to the next node along the path
to node i. When Node i receives the message, it makes
a caching decision according to Algorithm 2. If node
decides to cache [3;, it initializes a header field in the
request packet to the value of &;(7, 7). If node 4 decides
not to cache, it initializes the header field to 0.

The request packet is then forwarded to the parent
node z. The parent first subtracts the value stored in the
header field from its own value of &£,(, 7). Based on
the new value of &,(7,7), if node z decides to cache
Bj, it adds its E,(7, j) to the value in the header field.
Otherwise, node z adds 0. The request packet is then
forwarded to node z’s parent, and the whole process is
repeated until the request reaches the first node that has
the content in its cache. The content then will follow the
same path back to the requester, and every node in the

path that decided to cache the content will store a copy
in its cache. We describe the operation of our algorithm
in Algorithm 1, and we refer the reader to Figure 3 in our
technical report for an example describing the algorithm
[21].

Algorithm 1 En-Route Caching

A request for [3; appears at node ¢ at time .
header =0
if 5; € Cache;(to) then
Reply back with f;
else
Send a control message to retrieve r;, d;(to, j)
w < first node on the path to S;, where 3; €
Cachey(to)
Node w replies with r; and ID
Yu € Path(w,1), store r;,dy(to, J)
for uy, € Path(i,w),k =1: Length(Path(i,w))
do
Eu, (to,7) = Eu, (to, J) — header
Run Cost-Reward Caching algorithm
if Caching Decision = TRUE then
header = header + &, (to,J)

The core idea of the Cost-Reward Caching algorithm
is to assign an exponential cost function for each node in
terms of the node’s relative load. If the cost of caching
a content is less than the traffic savings achieved by
caching the content, the algorithm decides to cache. The
choice of an exponential cost function guarantees that
the node’s capacity constraints are not violated. We show
that in the next Section.

We define the cost of caching at a node i at time 7
as:

Ci(r,j) = Dy(p™ ™7 = 1),

where p is a constant defined in Section IV. The al-
gorithm for Cost-Reward Caching is presented in Algo-
rithm 2.

Algorithm 2 Cost-Reward Caching (CRC)

New request for 8; arriving at node ¢ at time g

vt € {to,...,to+Tj(to)}, Compute X;(, j), Ci(T, j)

i ST gy (r, §)di(to, ) >
t L (t T .

SR T 0) 2 Ci(7, 5) then

Cache 3; on node %
TO(Z.aj) = tO(ivj)
VTT S {to, - ,lfo—f'Tj(tQ)},)\q;(T,j—Fl) = /\z(T,j)—f—
Ds
else
Do not cache




In the algorithm, when new content that is not cur-
rently cached by node i arrives at time ty, node ¢ com-
putes the relative load (A;(7, j)) and the cost (C;(T, j))
for every 7 € {to,...,to+T;(7)}. This is because a cur-
rently cached content may be flushed before o+ T (o),
thus the relative load and the cost should be adjusted for
each time slot thereafter. We refer the reader to Figure
4 in our technical report [21] for an example on how to
calculate the caching cost.

B. Practical Issues

So far, we developed a fully distributed algorithm that
achieves asymptotic optimality in terms of traffic savings
under some realistic assumptions. Before providing the
optimality proof, we discuss in this section the practi-
cal issues that make the algorithm easy to implement.
The major issues in our algorithm include providing
incentives for the caching nodes and QoS guarantees for
the content providers, the adoption of en-route caching,
calculating the popularity expectation of each content,
and updating the effective caching duration.

1) Providing Incentives and QoS Guarantees: In this
work, the QoS measure is to guarantee the existence
of the content in the cache for a certain period of
time, so the content will be delivered quickly. In other
words, once a caching node decides to cache a certain
content, the content will not be replaced during the
effective caching time of the content. Providing such a
guarantee along with adopting an equal pay charging
policy for all contents will provide the caching nodes
with the necessary incentive to cache. Figure 3 shows
the interaction between the ISP and the content provider.

2) Providing guaranteed
caching time

Content € <§)lﬂ?l 3) ISP has no incentive
Providers mm Q to prefer one content
—> 3
1) Paying Charges. & overthe other

All providers pay
the same charges. Benefits
for CP are more than the charges

Fig. 3: Interaction between ISP and Content Provider.

We assume that the caching nodes should adopt charg-
ing policies, where every content provider is charged the
same. This will prevent the caching node from preferring
one content over the other. Moreover, such charging
policies will enforce the caching nodes to cooperate and
apply our CRC algorithm

2) En-Route Caching: In en-route caching, a request
for 3; will be sent to the parent along the traditional path
to the content’s source, until the request reaches the first
node caching the content or the content’s source. The
adoption of this en-route caching reduces the amount of

broadcasted Interest packets as opposed to the currently
deployed schemes in CCN, where the interest packets
are broadcasted to all neighbors. Moreover, using en-
route caching prevents the reception of multiple copies of
the requested content as opposed to CCN. Furthermore,
our algorithm can be easily implemented in the current
Internet architecture.

3) Calculating the Initial Content Expectation Values:
For each content, we start by building a caching tree
rooted at the source of the content. The caching tree
is the union of the traditional paths from the source of
the content to all other nodes. We calculate the initial
expectation value at a caching node for a certain content,
when only node S; holds the j-th content, based on
the content’s popularity and the number of end nodes
in the subnetwork connected to that node. For example,
in Figure 1, W3(7,j) at node vs for content [3; is
proportional to the content’s popularity and the number
of end nodes in the subnetwork connected to node wvs.
Our technical report [21] includes the algorithm for
calculating &;(, ) for each content at each caching node
before the appearance of any request at any node.

4) Effective Caching Duration: The effective caching
duration of a content depends on its arrival time. For
example, most people read the newspaper in a period of
two hours, so the caching duration should be two hours
beginning at the arrival of the first request. However,
if a new request for the newspaper arrives at a node
in the middle of the range and was cached by the
algorithm, then the caching duration should be one hour.
This requires the broadcast of the first arrival time to
all other nodes in the network. The additional overhead
incurred by such broadcasting is negligible compared
to the reduction of the Interest packet broadcasting we
achieve through the adoption of en-route caching.

IV. PERFORMANCE ANALYSIS

In this Section, we show that any online algorithm has
a competitive ratio that is lower bounded by Q(log(n)),
then we show that our algorithm does not violate the
capacity constraints, and achieves a competitive ratio that
is upper bounded by O(log(n)) under realistic settings.

Proposition 1: Any online algorithm has a competi-
tive ratio which is lower bounded by Q(log(n)).

Due to space constraints, we include the proof in our
technical report [21].

Before we start the proof of satisfying the capacity
constraints and the upper bound, we need to state the
following two assumptions:

| < L EGG)

<F
no L)~

V4, Vi # 85,91, (2)

and .
min D;

log(p)

ry < vj, 3



where F' is any constant large enough to satisfy the
assumption in (2), u = 2(nTF 4 1), n is the number of
caching nodes, and T' = max(Tj), Vj. The assumption in
(2) states that the amount of traffic savings for a content
scales with the content’s size and caching duration. The
assumption in (3) requires that the caching capacity of
any node should be greater than the size of any content,
which is a practical condition to assume.

We start by proving that the CRC algorithm does
not violate the capacity constraints. After that, we show
that CRC achieves a O(log(n)) competitive ratio. In all
of the subsequent proofs, 7 € {to(7,7),...,t0(i,5) +
T;(to(i,7))}, where to(3, j) is the arrival time of 3; at
node 3.

Proposition 2: The CRC algorithm does not violate
the capacity constraints.

Proof: Let 3; be the first content that caused the
relative load at node ¢ to exceed 1. By the definition of
the relative load, we have

)\i(ij) > £

"D
using the assumption in (3) and the definition of the cost
function, we get

Multiplying both sides by r; and using the assumption
in (2), we get

%Cz(T7]) Z nTFTj Z gz(Taj)b’L(J) 2 gi(T7j)d’i(thj)

From the definition of our algorithm, 3; should not be
cached at node i. Therefore, the CRC algorithm does not
violate the capacity constraints. ]

The next lemma shows that the traffic saving gained
by our algorithm is lower bounded by the sum of the
caching costs.

Lemma 1: Let A be the set of indices of contents
cached by the CRC algorithm, and k& be the last index,
then

2log(p) Y [Ei(,5)ds(to, 5)

1,jEA,T

ZC T, k+1) (4)

Proof: By induction on k. When k& = 0, the cache
is empty and the right hand side of the inequality is 0.
When j3; is not cached by the online algorithm, neither

side of the inequality is changed. Then it is enough to
show, for a cached content f3;, that:

2log( >Z[5‘<T 7)di(to, 7)]
> Z

since summing both sides over all j € A will yield (4).
Consider a node i, the additional cost incurred by
caching f3; is given by:

Ci(Taj + 1) - Ci(ij)

(7,5 +1) = Ci(7,j)]

_ DA[uz\i(th) _ ILLAi(ij)]
= D;p (m)[ i —1]
— DmAi(r,J)[gloguDﬁ —1]

Since 2* — 1 < z for 0 < < 1 and using the
assumption in (3)

Ci(r,j+1) = Cy(1,5) < Diu’\"’(T’j)[% log 1]
< rjlogpu| E) J) +1]
< 1ogu[D i(1,5) + 5]

Summing over T, 4, and the fact that 3; is cached, we
get

2216
<10gMZZ

< log Z& 7.5)
[

(7,5 +1) = Ci(7,j)]

(T, 7) + 7]

di(to,§) +Y_ > il
[ T

< 210@;#2&(7'7]')@(750,]')
?
|
In the next lemma, d;(7, ) is defined for the online
algorithm.
Lemma 2: Let Q be the set of indices of contents
cached by the offline algorithm, but not the CRC al-

gorithm. Let [ = argmax; ¢ (Ci(7,)). Then

ZZZ[&-(T,]' (to, 7) <ZZC 7,1)

i jEQ T
Proof: Since (; was not cached by the online
algorithm, we have:
) < Z C (1,7)

Zgi(ij th
< Z—C' (1,1)

ZZ&(T,]’ i(to, J <ZZ C (1,0)



Summing over all j € Q

SN > & )it

i JEQ T

<ZZC’ (1,1) Z—

JjEQ

§ZZQ T,l

Since any offline algorithm cannot exceed a unit
relative load, >~ - < 1. ]

Combining Lemma 1 and Lemma 2, we have the
following lemma.

Lemma 3: Let A* be the set of indices of the contents
cached by the offline algorithm, and let k£ be the last
index. Then:

Z 5 7—] tOv )
1,jEA*,T
<2log(2p) Y &l §)di(to, 5)
1L,jEA,T

Proof: The traffic savings of the offline algorithm
is given by:

Z g T] th )
1,jEA* T
Z 5 Tj to, )+
1,jE€EQ,T
Z 87,(7—7])d’t(t0)j)
1,JEA* /Q,T
S Z gi(T;j t07 Z g T] th )
1L,jEQ,T i,jEA,T
<ZC T,1) Z Ei(r,7)d;(to,J)
1,JEA,T
SZC’iT,k—i—l Z Ei(r,5)di(to, )
i,T 1,jEA,T
<2log(2u) > &(7,j)dilto, )
i,JEA,T
|

Note that d;(7, j) in the previous lemmas is defined by
the online algorithm. In order to achieve optimality using
this proof technique, d;(7,j) of the online algorithm
should be equal to d;(7,j) of the offline algorithm. In
the next two corollaries, we show cases where d; (7, 7)
of the online algorithm is equal to d; (7, j) of the offline
algorithm.

Corollary 1: When there is only one caching node in
every path, then d; (7, j) of the online algorithm is equal
to d;(7,7) of the offline algorithm, and our algorithm
achieves asymptotic optimality.

Corollary 2: When every node in the path shares
the same caching decision, then d;(7,j) of the online
algorithm is equal to d;(7,j) of the offline algorithm,
and our algorithm achieves asymptotic optimality.

V. SIMULATION RESULTS

In this Section, we compare our CRC algorithm to
some of the existing caching schemes.

A. Settings

We simulate the following caching schemes:

(1) CRC: This scheme represents our basic algorithm.

(2) CRC Version 2: This is similar to the CRC scheme,
Version 1, except that we retrieve the content from
the closest node that has the content in its cache, not
necessarily along the path to the content’s source.

(3) Cache All: This scheme caches every new content
arriving at a caching node, as long as there is enough
residual capacity to cache the new content.

(4) Random Caching Version 1: In this scheme, when
a request for a content arrives at node i, the caching prob-
ability of the content depends on the content’s popularity
in the set of non-caching nodes connected to node . If a
randomly chosen number x between 0 and 1 is less than
the content’s popularity (x < Content Popularity), and
there is enough residual capacity in the cache of node i,
then the content is cached.

(5) Random Caching Version 2: This is similar to
Random Caching Version 1, except that the caching
probability of the content depends on the content’s pop-
ularity at node ¢, scaled by the fraction of the available
residual capacity to the total capacity in the cache of
node ¢ denoted by f;, i.e., if we choose a random number
z, and x < f; x ContentPopularity, then the content
B; is cached if there is enough room for it in the cache.

For every caching node ¢ in the network, we assign a
cache capacity D; that is uniformly chosen in the range
of [750,1000] GB. The number of the non-caching nodes
connected to the caching node ¢ is chosen uniformly at
random in the range of 10 to 90 nodes.

For every content, we randomly chose one of the
nodes to act as the source. Each content has a size chosen
randomly in the range of [100,150] MB. The starting
effective time of the content is chosen randomly. The
end time is also chosen randomly within a fixed interval
from the starting time. If the end time exceeds the end
time of the simulation, it is adjusted to be equal to the
end time of the simulation. The simulation interval is
chosen to be 1000 time slots.

We simulate two different topologies, a random topol-
ogy and a small world topology. For space constraints,
we only provide the results for the random topology. Our
technical report [21] provides all of our results.

B. Results on Random topologies

We start our evaluation on random backbone topolo-
gies, in which the caching nodes are generated as a
random topology.



We simulate the effect of the number of caching nodes
n in the network for three cases, n = 30, n = 50,
and n = 100 nodes. For each case we use 10 random
topologies, and report the average performance. We fix
the effective caching duration and the number of contents
to solely show the effect of the number of nodes on
the performance of the CRC algorithm. The results are
shown in Figure 4(a). As can be seen from the figure,
CRC algorithm outperforms the other schemes by a
range of 100% to about 300%. Another observation from
the figure is that the performance of the CRC schemes
increases as we increase the number of the nodes in the
network. This shows that our scheme greatly benefits
from adding more caching nodes to the network. It is also
aligned with the property of asymptotic optimality of our
scheme. On the other hand, not much improvement can
be seen from the other schemes when the number of
nodes is increased in the network.

We simulate the effect of changing the number of
contents between 2000 and 10000 in steps of 2000. The
results are averaged over 10 runs and are shown in Figure
4(b). The reason that the performance of the Cache All,
Random 1, and Random 2 schemes increases and then
decreases is that there is a saturation point after which
the caches of the network cannot handle the requests. On
the other hand, Our scheme reserves the cache capacity
for contents with higher traffic savings, and achieves an
improvement of 2 to 3-fold in terms of traffic savings.

Figure 4(c) shows the effect of the maximum effective
caching duration for three cases, 50, 100, and 150 time
slots. In this scenario, the difference between the start
and end times for each content is drawn randomly
from {1, ..., max .caching duration}. The reason that
the traffic savings decrease as the maximum effective
caching duration increases after a certain point is that
contents are cached for a longer period, so future con-
tents are less likely to find enough residual capacity at
the caching node.

In all of the results in Figure 4, the performance of
CRC Version 2 is always less than the performance of
CRC Version 1. This is because CRC Version 2 deviates
from the settings under which we achieve optimality.

So far our performance measure was the traffic saving.
In Figure 5, we measure the cost in terms of total
number of hops to satisfy all of the requests. The
results in Figure 5 are for a random topology with 100
caching nodes, the number of contents is 10000, and the
maximum effective caching duration is 150 slots. The
results in the figure shows that even when we measure
the performance in terms of the total cost, our scheme
reduces the cost by 30% to 50%.

In Figure 6 we measure the per topology improvement
for the schemes with respect to the Random Caching
Version 2 scheme. After that, the empirical CDF of the
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Fig. 6: The empirical CDF of the per topology improve-
ment for random topologies with respect to Random
Caching Version 2.

per topology improvement for 100 random topologies are
plotted. The results in the figure show that there is at least
one topology among the 100 different topologies where
the improvement of our scheme over Random Caching
Version 2 is more than 50 times. The results show that in
all of the topologies the improvement of our scheme is at
least 30%. In about 20% of the topologies, our scheme
experiences about 4 times the improvements as that by
Random Caching Version 2.

VI. CONCLUSION

Most of the previous works on caching policies as-
sume that the caching nodes will cooperate and follow
the caching policy. However, there is no incentive for
the caching nodes to cooperate and cache. This work
studies a new framework using en-route caching in
which the caching nodes charge the content providers for
storing their packets. In return, the caching nodes have
to provide quality of service for the content providers
by not replacing their contents within a given time, once
the caching node agrees to cache the content. Moreover,
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unlike CCN, the use of en-route caching does not require
major changes to the TCP/IP model.

Under this new framework, we characterize the fun-
damental limit for the ratio of the performance of the
optimal offline scheme to that of any online scheme.
The offline scheme has a complete knowledge of all of
the future requests, while the online scheme does not
possess such knowledge. We also design an efficient
online scheme and prove that the developed online
scheme achieves optimality as the number of nodes in
the network becomes large. Our simulation results affirm
the efficiency of our scheme. Our future work includes
the investigation of network coding [22], [23] under our
settings.
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