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Abstract—Recent results have made a promising case for offering oversubscribed wired data center networks (DCN) with extreme

costs. Inter-rack wireless networks are drawing intensive attention to augment such wired DCNs with a few wireless links. Inspired by

the promise of easy deployment and plug-and-play, we present VLCcube, a novel inter-rack wireless solution that extends the design of

wireless DCN into three further dimensions: (1) all inter-rack links are wireless; (2) there is no imposition of any infrastructure-level

alteration on wired production data centers; and (3) it should be plug-and-play, without any need of additional mechanical or electronic

control operations. This vision, if realized, will lead to increased flexibility, reduced reconstructing cost, simplified configuration and

usage, and outstanding compatibility with existing wired DCNs. Previous proposals, however, are opposed to the last two design

rationales. To achieve this vision, the proposed VLCcube augments Fat-Tree, a representative DCN in production data centers, by

organizing all racks into a wireless Torus structure via the emerging visible light links. We further present the topology design, hybrid

routing, and flow scheduling schemes for VLCcube. Extensive evaluations indicate that VLCcube outperforms Fat-Tree significantly

under the existing ECMP flow scheduling scheme, irrespective of the undergoing traffic pattern. Moreover, the performance of

VLCcube can be significantly promoted by our congestion-aware flow scheduling scheme. More precisely, compared to ECMP, our flow

scheduling scheme makes VLCcube achieve �1:50 throughput under batched flows, �2:21 and �2:59 throughput under two different

kinds of online flows.

Index Terms—Data center networks, inter-rack network, visible light communication, throughput, packet loss rate

Ç

1 INTRODUCTION

DATA centers have emerged as infrastructures for online
applications and infrastructural services [1]. Thou-

sands of servers and switches are interconnected via a spe-
cific data center network (DCN). DCNs can be roughly
divided into two categories. The first category is wired
DCNs, each of which connects all switches and servers with
wired links via cables, fibers or twisted-pair links [2], [3],
[4]. The second one is wireless DCNs, which employ wire-
less links to argument a wired DCN or organize servers and
switches as a fully wireless network structure [5], [6], [7].

Wired DCNs suffer from inherent challenges. First, they
are either overprovisioned with good performance but high
cost, or oversubscribed with low cost but poor performance.
Second, it is extremely costly and complicated when
expanding a wired data center. Third, they cause vast

cabling and maintenance cost [8]. Fourth, large-scale wired
DCNs usually adopt multiple-level structures. As a result,
two servers, which across racks, must employ the upper-
level links to communicate with each other, even if they are
very close physically.

To eliminate the non-trivial cost and increase the flexibility
during the expanding process of any wired production DCN,
several wireless DCNs are proposed at the inter-rack level. As
depicted in Fig. 1, the racks are connectedwith the introduced
wireless links. Typically, the radio frequency (60 GHz) [6] and
free-space-optical (FSO) communication techniques [5] are
employed to establish an inter-rack wireless network. These
proposals can considerably improve the performance of any
existing wired DCNs in terms of bandwidth and packet
latency [9]. Moreover, the wireless links can be dynamically
reconfigured tomeet the demand of the undergoing flows.

Inspired by the promise of easy-deployable and plug-
and-play, we envision a radically different design of inter-
rack wireless network, which should simultaneously con-
cern the following three design rationales: (1) all inter-rack
links are wireless; (2) without imposing any infrastructure-
level alteration on the existing wired production data cen-
ters; and (3) the inter-rack wireless network is plug-and-
play and has no need of additional mechanical or electronic
control operations.

This vision, if realized, will lead to unprecedented bene-
fits for wireless DCNs. First, it ensures high flexibility and
low cabling cost of the network by introducing wireless links
on demand. Second, it simplifies the configuration and usage
process of the inter-rack wireless network, due to bringing
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no additional mechanical or electronic control operations.
Such simplification makes the inter-rack wireless network
extremely compatible with existing wired DCNs. Third, it
alleviates the burden of managing and maintaining a data
center. Once those wireless links are established, they will
work permanently without additional control operations.

Existing proposals on the inter-rack wireless network
focus on the flexible reconfiguration of links. Such pro-
posals, however, do not consider other two essential design
rationales. First of all, they have to update or even recon-
struct the deployment environment of existing production
data centers. For example, prior proposals using 60 GHz, as
well as FSO communication, have to decorate the ceiling to
be a huge mirror to achieve over-the-horizon communica-
tion [5], [6]. Besides, to realize flexible reconfiguration, dedi-
cated optical devices are required, e.g., ceiling mirrors,
plano/bi convex lens [5]. Moreover, they impose frequent
and complicated control on wireless devices and peripheral
equipment when configuring a wireless link.

In this paper, we propose VLCcube to achieve the above
three design rationales simultaneously. VLCcube augments
Fat-Tree, a representative productionwiredDCN, by organiz-
ing all racks into a wireless Torus structure via the emerging
visible light communication (VLC) techniques. Hence, it is a
hybrid network structure of data center by seamlessly inte-
grating the wired Fat-Tree and wireless Torus together.
Although the 60 GHz and FSO communication techniques are
also suitable for VLCcube in theory, we prefer the VLC since it
is becoming a promising choice for the next-generation wire-
less technology by offering low cost, unregulated bandwidth
and ubiquitous infrastructures support. Inherently, VLC links
eliminate the peripheral devices except VLC transceivers and
need no additional mechanical or electronic control. The con-
tributions of this paper are summarized as follows:

� We design VLCcube, a hybrid DCN structure, which
employs VLC wireless links to interconnect all racks
in a Fat-Tree data center as a wireless Torus. The
topology construction strategy is well designed to
ensure high connectivity and low average path
length. As an easy-deployable and plug-and-play
hybrid DCN, VLCcube realizes the three design
rationales at the same time.

� To fully exploiting the topological properties, we
present a hybrid routing scheme for VLCcube to
jointly utilize both wired and wireless links. To fur-
ther improve the network performance, we design a

light-weight method to address the optimized flow
scheduling problem. The method can efficiently
derive an outstanding solution for batched as well as
online flows.

� Comprehensive experiments are conducted to
measure the performance of VLCcube. The results
indicate that VLCcube outperforms Fat-Tree signifi-
cantly under the existing ECMP flow scheduling
scheme, irrespective of the used traffic pattern.
Compared to ECMP, our congestion-aware flow
scheduling scheme make VLCcube achieve better
performance, i.e., �1:50 throughput under batched
flows, �2:21 and �2:59 throughput under two kinds
of online flow patterns.

The remainder of this paper is organized as follows.
Section 2 summarizes prior designs of data centers. Section 3
proposes the VLC enabled hybrid network structure,
VLCcube, for data centers. Section 4 puts forward the
hybrid routing method for VLCcube, and designs the
congestion-aware flow scheduling method. We evaluate the
performance of VLCcube in Section 5 and discuss the poten-
tial limitations and solutions in Section 6. Finally, we
conclude this paper in Section 7.

2 RELATED WORK

Due to the essential status of DCNs, a huge body of work
has been conducted to improve network performance. The
representative DCNs can be classified into two categories,
i.e., the wired DCNs and the wireless DCNs.

2.1 Wired DCNs

Typically, the wired DCNs take advantage of the merit of
excellent topologies, e.g., Torus, Hypercube, Kauzt, Small-
world, etc. We further assort the existing wired topologies
into four fine-grained classes, i.e., switch-centric data cen-
ters, server-centric data centers, modular data centers, and
random data centers.

In switch-centric data centers, routing and interconnection
are realized by switches, which form dedicated structured
topology, such as generalized hypercube, Torus, compound
graph, tree and so on. Fat-Tree [2], F10 [10], VL2[3] belong to
this category. With the development of optical communica-
tion, optical packaging technology is introduced into switch-
centric DCNs [11]. These optical links improve bandwidth
greatly, but the associated control strategy becomes complex.

Note that switches and routers are expensive, while com-
modity server and mini-switch are cheap; hence, it is cost-
saving to build a DCN just with servers and mini-switches.
In server-centric data centers, routing and interconnection
are realized by servers since servers are competent to cache
and forward flows. Usually, server-centric DCNs are recur-
sively defined and extended level by level. BCube [12],
DCell [13] are all server-centric DCNs, but their network
order are limited by the count of NIC ports at each server.

To ease the development of data centers, module has
replaced racks as the basic building block of large-scale data
centers. These modules integrate the power system, cool sys-
tem and thousand servers inside a container. By further inter-
connecting a given number of such modules via a dedicated
topology, an efficient, controllable, and elastic data center

Fig. 1. An example of wireless DCN, in which the racks are intercon-
nected with wireless links.
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can be built.MDCube[14], uFix[15] andDCube [16] are repre-
sentative proposals. They utilize the remaining NICs at serv-
ers to interconnect thosemodules systematically.

For random DCNs, random links interconnect remote
nodes together, hence, they shorten the network diameter
[17]. Typically, Jellyfish[18] and Scafida [19] are proposed
based on the random regular graph and scale-free network,
respectively. The advantage of random DCN is the charac-
teristic of incremental expansion, which means that we can
add servers one by one other than level by level. Routing in
such random topologies, however, is difficult and time-
consuming.

2.2 Wireless DCNs

Recently, based on the developing wireless communication
techniques, such as 60 GHz communication, laser communi-
cation, free-space-communication, etc, wireless technologies
are investigated for DCNs. Therefore, the cabling cost will
be considerably eliminated and the network bandwidth will
be increased.

In literature [6], a remote wireless channel between any
pair of racks can be established by reflecting wireless signals
via a mirror from source to destination. FireFly [5] goes fur-
ther, it forecasts the traffic demand and adjusts the topology
dynamically in a short time period. Wireless DCNs supports
unicast transmissionwell, but fails to accomplish other trans-
mission models such as broadcast, multicast and shuffle. But
it is true that, as a complementary interconnection method,
the wireless links speed up the network significantly.

Besides, the feasibility of building fully wireless DCNs is
verified [9]. Deployed with two transceivers, each server
can communicate with others independently. Then, the
modified servers are stacked and interconnected as cylindri-
cal racks. By networking the racks as a specific topology, a
wireless DCN is established. This proposal also calls for
accurate direction control of the transceivers. Besides, since
only two transceivers are deployed at each server, the
expansion of network order will lead to drastically increase
of network diameter.

Undoubtedly, the totally wireless DCNs are costly to
deploy and loses the merit of wired topologies, e.g., regular-
ity, easy-routing and stability. Thus, aiming to integrate the
superiority of both wireless network and wired network,
we employ the VLC links to connect the existing wired
DCN to be a hybrid one.

3 THE DESIGN OF VLCCUBE

We first discuss the feasibility and interference issue of
interconnecting racks using VLC links, and accordingly
design a novel VLCcube topology. It seamlessly augments
the wired data center Fat-Tree, using a wireless inter-rack
Torus network.

3.1 Feasibility of Introducing VLC Links into DCNs

For VLC, transmitting data is achieved by intensity modula-
tion of visible spectrum lighting emitting diodes (LEDs) or
laser diodes (LDs). On-Off keying modulation scheme,
where “ones” and “zeros” are represented by the presence
or absence of light, is the simplest form of digital communi-
cation [20], [21]. To employ the VLC links, three vital issues

have to be concerned, including the data rate, transmission
distance, and the accessibility of devices.

Data Rate. By employing those high switching frequency
LEDs, a single color VLC link can realize considerably high
data rate up to 3 Gbps [22]. Such devices could potentially
deliver data rates in the order of 10 Gbps by using RGB trip-
let. Besides, a single laser beam can even achieve 9 Gbps
data rate by employing the 450-nm GaN LDs [23]. Hence,
we believe that the data rate of VLC links is capable of trans-
mission in data centers.

Transmission Distance. The LED based VLC links can
achieve about 10 Gbps data rate within 10 meters, which is
sufficient to interconnect two close racks inside a data cen-
ter. We notice that a project named Rojia prolong the dis-
tance of VLC to 1.4 kilometers, but with limited data rate
[24]. Besides, the LD based VLC links can realize fast long-
distance communication (in the order of kilometers) with
high data rate [25], due to its outstanding directionality.
Hence, the LED based VLC links can be employed as the
short links, while the LD based VLC links are competent to
the long-distance transmission in DCNs.

Accessibility. The off-the-shelf full-duplex VLC devices,
i.e., transceivers, are developed and released [24], [26]. A
development platform called MOMO [27] has delivered
API and SDK for users to customize their VLC-based appli-
cations. For example, the VLC techniques have seamlessly
integrated into a platform of internet of things. Moreover,
pureLiFi [26] provides the opportunity for customers to rap-
idly develop and test VLC applications for cost-effective,
high-speed data communication solutions by using com-
mercial LED infrastructures.

Accordingly, it is reasonable to employ the VLC links to
augment wired DCNs, without incurring additional cabling
cost or modifying the hosting environment of data centers.

3.2 The Interference Among Transceivers

The benefits of VLC links motivate us to employ them to
augment the wired inter-rack networking in data centers.
However, the interference is an essential obstacle when uti-
lizing VLC links.

Typically, on the top of each rack, a few VLC transceivers
should be setup such that the ToR switches can be orga-
nized as a dedicated wireless topology. Given a rack R,
when multiple neighboring racks send data to it simulta-
neously, interference occurs if multiple transceivers on R
can perceive the light from different source racks but fail to
distinguish them.

To evaluate the VLC interference, we conduct simula-
tions using a professional optical software, i.e., TracePro70
[28]. As depicted in Fig. 3, we place four receivers with
orthogonal orientations on the top of a rack, which are
denoted as T1, T2, T3 and T4, respectively. Then, a batch of
visible light is emitted towards T1. The irradiance map of
each receiver can identify how much light has been detected
by other receivers. If T2, T3 and T4 detect intensive light, it
demonstrates that the interferences to them are prominent.

Fig. 2a depicts the result observed by T1. It is obvious that
the receiver detects the majority of the emitted light, and the
central part of the receiver captures the most of them. Due
to the scattering, some light deviates from the central line;
hence, the non-central areas can also detect the light. By
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contrast, as shown in Figs. 2b, 2c, and 2d, the other three
receivers can hardly capture the light since the normalized
irradiance is only 0.001 in several points in such figures. We
also note that, Fig. 2c records the least irradiance at T3. Con-
sider that T3 is right behind T1 and it is difficult for the light
to pass by T1 to reach T3. Consequently, the light towards T1

results in limited interference to other three receivers. This
observation shows that deploying four transceivers on the
top of a rack is feasible and will bring negligible interfer-
ence. Accordingly, we will design the wireless topology of
VLCcube, where each rack owns just four VLC transceivers.

3.3 Topology Design of VLCcube

Inside a data center, each server connects to the ToR switch
inside a rack. All racks usually form a hierarchical network
structure by using additional upper level wired links and
network devices, rather than connect with each other
directly using wired links. For this reason, we aim to inter-
connect all ToR switches according to a dedicated wireless
network structure. In this paper, we adopt the widely used
Fat-Tree as an example of wired DCN and augment it with
wireless Torus network structure. In this way, we achieve a
hybrid VLCcube, which can seamlessly integrate both wired
and wireless DCNs.

As depicted in Fig. 3, all racks in wired Fat-Tree DCN are
further interconnected via VLC links to form a two-
Dimensional wireless Torus, with m racks in each row and
n racks in each column. On the top of each rack, four VLC
transceivers are deployed towards four orthogonal direc-
tions, such that the interference can be restricted at the low-
est level. Note that, the wired part of VLCcube is a Fat-Tree
topology, and we just connect the ToR switches via VLC
links. Let k denote the number of ports of each switch,
which is usually even. Thus, VLCcube accommodates k
pods, each of which has k=2 ToR switches and k=2 aggrega-
tion switches. Thus, k2=2 ToR switches are involved in the
wireless part of VLCcube.

Note that, in Fig. 3, all of racks in each dimension should
be interconnected as a loop. Thus, two racks at the ends of
each row (column) should be connected directly. To achieve
such long-distance connections, the LD-based VLC links are

employed. By contrast, the short-distance connection
between any pair of adjacent racks is enabled by the LED-
based VLC links. In Fig. 3, we only depict the short links,
while the long links are omitted for the easy of presentation.
Note that the LED-based VLC links are not competent to
support long-distance connections, since the signal strength
degrades sharply during the diffusion process.

Another important issue is how to avoid shadowing in
VLCcube. Consider that there exists no barrier between any
pair of adjacent racks. Those LED transceivers used to offer
short wireless links will not suffer from the shadowing
problem. On the contrary, multiple racks lie between the
end racks, which are connected by long links. As shown in
Fig. 3, one or two LD transceivers are deployed on the top
of those involved racks. We classify the LD transceivers into
two categories, i.e., the horizontal LD transceivers connect-
ing the racks to form a loop in each row, and the vertical LD
transceivers connecting the racks to form a loop in each col-
umn. Without loss of generality, we spatially isolate the
LED transceivers, the horizontal LD transceivers, and the
vertical LD transceivers, e.g., 0.1, 0.3, and 0.5 m, respec-
tively, such that they are deployed in diverse planes.
Through such carefully considerations, the interference and
shadowing problems of VLC links can be well tackled.

In fact, we can design the hybrid VLCcube topologies in
two ways. A straightforward way is to augment the wired
network structures with a wireless 2D Torus directly. By
contrast, a more advisable method can further promote the
topology by jointly consider the wireless 2D Torus and the
wired Fat-Tree.

3.3.1 Independent Topology Design of Wireless Torus

We notice that, the wireless 2D Torus can be attached to the
existing wired Fat-Tree directly. Without loss of generality,
we assume that, in a k-pod Fat-Tree, there are k rows and
k=2 columns, i.e., m¼k, n¼k=2. In each dimension, every
rack enables wireless links with its neighboring racks. As a
result, the diameter of the 2D Torus is 0:75k, which is pro-
portional to the number of k.

Moreover, in the resulted wireless 2D Torus, given a rack
in the ith pod, as shown in Fig. 5, each rack has four

Fig. 3. The inter-rack wireless network of VLCcube. All racks in Fat-Tree
are interconnected as a wireless Torus via VLC links.Fig. 2. The irradiance of each receiver in the simulation.
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neighbors. However, these neighbors come from at most
three different pods. Thus, at the pod level, the ith pod is
connected to three other pods, but fails to communicate
with other pods directly. Fig. 5 depicts a toy example when
k¼6. The wireless 2D Torus is constructed independently
without concern of the placement of racks. As a result, a
6�3 2D Torus is generated. Note that, the diameter of the
resulted Torus is 4. However, the pod level logic graph is
not a completed graph; hence the path from a rack in pod 0
to pod 4 must employ a relay rack in pod 1 or pod 3.

The resultant topology of VLCcube with this design
methodology is shown in Fig. 4. On one hand, the ToRs and
switches are interconnected as a Fat-Tree by the wired links.
On the other hand, the racks are also interconnected as a
wireless Torus by the introduced VLC links. To realize these
VLC links, four transceivers are established on the top of
each rack. Note that, the short-distance communication is
achieved by the LED-based VLC links, and the long-
distance communication is realized by the LD-based VLC
links. It is true that the k2=2 wireless Torus improves the
connectivity of racks and increases the variety of paths.
However, the improvement of performance can be further
enhanced if the arrangement of racks can be optimized.

3.3.2 Joint Topology Design of Wireless Torus and

Wired Fat-Tree

To fully utilize the benefits of VLC wireless links, we opti-
mize the topology of VLCcube by integrating the 2D Torus

with Fat-Tree seamlessly. To reach this goal, two important
issues must be well tackled, including the settings of m and
n, and the placement of racks in VLCcube.

Parameter Setting. Note that all nodes in each dimension
of a 2D Torus form a loop structure; hence, the network
diameter is ðmþnÞ=2. For this reason, VLCcube aims to min-
imize the network diameter of the used Torus structure by
inferring reasonable configurations of m and n. Addition-
ally, the total number of remote VLC links in VLCcube is
mþn, and such a few long links are more difficult to estab-
lish, compared to those short VLC links. This issue further
motivates VLCcube to minimize mþn for eliminating
unnecessary remote VLC links. If a 2D Torus is designed to
accommodate k2=2 racks, the parameters m and n should be
bounded by the inequationm�ðn�1Þ < k2=2 � m�n.

Theorem 1. In VLCcube, the optimal setting of m is calculated
as d ffiffiffiffiffiffiffiffiffiffi

k2=2
p e. The value of n depends on k2=2. If

ðm�1Þ2 <k2=2�m� ðm�1Þ, n is m�1; in contrast, when
m� ðm�1Þ<k2=2�m2, n is set the same asm, i.e., d ffiffiffiffiffiffiffiffiffiffi

k2=2
p e.

Proof. The best settings of m and n should minimize the
value of mþn. Note that we have mþn � 2� ffiffiffiffiffiffiffiffiffiffiffi

m�n
p �

2� ffiffiffiffiffiffiffiffiffiffi
k2=2

p
. Thus, mþn reaches its minimum value only

when m¼n. Considering the inequation m� ðn�1Þ<k2=
2 � m�n, we derive the relationship between m, n
and k. tu
Placement of Racks.As for the placement problem, we note

that, during the design stage, the placement of racks and
cables can be jointly optimized with the respect of wireless
Torus network structure. Indeed, the path length between
any pair of ToRs is either two or four hops in Fat-Tree.
Hence, VLCcube aims to shorten those four hops wired
communication as just one hop wireless communication by
reconsidering the location of racks. Given m and n, we fur-
ther concern the best placement of racks for supporting the
inter-rack wireless Torus network. Note that, in Fat-Tree, if
two racks fall into the same pod, the path length between
them is 2; otherwise, four hops are required. VLCcube

Fig. 5. The logic graph of VLCcube without considering placement of
racks.

Fig. 4. An expressive example of VLCcube when k¼6. The two dimensional coordinate xy denotes the yth rack in the xth pod, x2½0; k�1� and
y2½0; k=2�1�. Note that, the short and long links are launched by LED and LD transceivers, respectively.
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targets at shortening the four hops of wired path as one hop
wireless path. That is, all VLC links are utilized to connect
those racks across pods, rather than those racks inside a
same pod.

To ease the presentation of the placement strategy, we
first introduce the identifier for each rack, which consists of
two parts. The prefix, ranking from 0 to k, denotes which
pod this rack belongs to. The suffix, ranking from 0 to k=2,
identifies the rack in each pod. For example, the identifier
51 refers to the second rack in the sixth pod.

We further define the pod level logic graph, which
regards a pod in VLCcube as a node. If there exist one ormul-
tiple VLC links between a pair of pods, an edge is added
between them in the logic graph. Fig. 6 depicts an example of
the wireless part of VLCcube, with k¼6, m¼5 and n¼4.
Accordingly, the pod level logic graph is derived. Typically,
we measure the connectivity of the pod level logic graph by
counting the number of links in the graph. In Fig. 6, 15 links
interconnect 6 pods, thus the connectivity of the pod level
graph is 15. Given the value of k for VLCcube, the connectiv-
ity of its pod level logic graph is nomore than k�ðk�1Þ=2.

With the above definitions and given k, m and n, we
design three steps to construct the 2D wireless Torus, which
may be an incomplete one, as shown in Fig. 6.

� Step 1, allocating the prefixes. For each prefix
x2½0; k�, we randomly allocate it to k=2 ToR switches
in the ToR level logic graph since each pod contains
at most k=2 ToR switches. The only constraint is that
any rack cannot hold the same prefix as its four
neighbors. If conflicts occur, repeat this step until all
prefixes have been mapped into the graph.

� Step 2, calculating the suffixes. In the ToR level logic
graph, a suffix is introduced to differentiate those
racks in a same pod. Note that the suffix of each rack
ranges from 0 to ðk�1Þ=2.

� Step 3, improving the connectivity of the pod level
logic graph. We repeat the above two steps multiple
rounds, and then pick the solution that leads to the
highest connectivity of the pod level logic graph.

However, as stated before, the Fat-Tree is actually
installed as a, w.l.o.g, k2=2 array. Obviously, we need to
transform the existing k2=2 array to be a m�n one. Typi-
cally, two steps are needed. First of all, ðk�mÞ�k=2 racks
must be moved such that the racks are placed as a m�n
Torus physically. Then we deploy the placement strategy
of racks logically by rewiring the cables between the
aggregation switches and the racks. Undoubtedly, these
adjustments suffer from dedicated time-consumption and

labour cost. But we believe these once-and-for-all augments
are worthwhile to improve the network performance.

Validity of the Generation Steps. We further prove that
our generation method can result in a correct VLCcube
structure.

Theorem 2. When k�4, the above generation method can suc-
cessfully generate a VLCcube such that each pod appears k=2
times in the ToR level logic graph.

Proof. In step 1, we allocate k pods randomly under the
constraint that each link connects different pods. If each
pod is associated with one color, the proof of Theorem 2
is equivalent to prove that k colors can color the graph
successfully. In fact, the ToR level graph of VLCcube is a
four-regular graph, whose chromatic number is 4, which
means four kinds of colors are enough to color the graph.
That is, when k�4, we can always find out a legal place-
ment strategy. Thus, Theorem 2 is proved. tu
Note that, aforementioned generation steps must ensure

that the pod level logic graph is connected. Otherwise,
VLCcube does not work well since those VLC links cannot
reach every pod.

Theorem 3. The pod level logic graph resulting from the above
steps are connected.

Proof. Note that the ToR level logic graph is an incom-
plete 2D Torus, which is a connected graph. That is, a
rack identified as xy can find a path to its destination
rack uv. If we map this path to the pod level logic
graph, it is just the path from pod x to pod u. Thus,
Theorem 3 is proved. tu
Theorems 2 and 3 ensure the rationality of the generation

steps. Step 3 further ensures the connectivity of the pod
level logic graph by selecting the best one after executing
the first two steps multiple rounds. The behind insight is
that by conducting the processes more rounds, we are more
possible to achieve the better solution [29]. We will evaluate
the performance of such a generation method in Section 5.3.

From the view of topology design, VLCcube integrates
the topological characteristics of both Fat-Tree and 2D
Torus, e.g., scalability, constant degree, multi-path, and
fault-tolerance. Moreover, VLCcube is easy-deployable and
plug-and-play, since only four transceivers are needed to
deploy for each rack, and no further control operations are
required during the usage process after the deployment.
More importantly, VLCcube achieves the inter-rack wireless
network, without any modification to the hosting environ-
ment of a Fat-Tree data center.

4 ROUTING AND CONGESTION AWARE FLOW

SCHEDULING IN VLCCUBE

For any pair of ToR switches, wired paths, wireless paths
and hybrid paths coexist in VLCcube. The routing algo-
rithms for wired paths and wireless paths can be found in
literatures [2] and [17]. We focus on designing the hybrid
routing between racks. To minimize the network conges-
tion, we define a congestion-aware flow scheduling model
and design scheduling algorithms for the batched and
online traffic patterns, respectively.

Fig. 6. The logic graph of VLCcube in the rack level and pod level.
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4.1 Hybrid Routing Scheme in VLCcube

In VLCcube, the wireless Torus and the wired Fat-Tree are
tightly integrated. Thus given a pair of racks, we can search
out a path with both wireless and wired links. Specifically,
given the source rack xy and destination rack uv, we first
deduce the path in the pod level logic graph from pod x to
pod u. We then embody each link on the pod level path by
choosing a reasonable wireless link from the ToR level logic
graph. At last, the involved wired links will be added to the
path. This straightforward method, however, incurs high
time-complexity and is impractical. The reason is that, since
the pod level logical graph is not structured, the Dijkstra
algorithm will be employed to calculate the shortest path at
the cost of Oðk2Þ computation-complexity.

As the increase of k, the resultant time-consumption will
not be acceptable for DCNs. Note that the introducing of
the hybrid path in VLCcube is to shorten the length of wired
path, such that the transmission will be accelerated. From
this point of view, some hybrid paths resulting from the
above routing algorithm may not realize such a design goal.
Hence, we prefer to only searching out the hybrid path,
which can shorten the wired path between a pair of racks.
In this way, unnecessary computation will be avoided. The
maximum length of wired paths in VLCcube is 4, and the
VLC links connect all pods directly to shorten these paths of
four hops. Given a flow, only if its source or destination
rack is one end of a VLC link between the source pod and
the destination pod, the deduced hybrid path for this flow
will be three hops.

Bearing this insight in mind, given a pair of racks xy and
uv, our hybrid routing scheme consists of the following two
steps. First, we judge whether xy (uv) launches a VLC link
towards the pod u (x). If not, the routing scheme will be
stopped; otherwise, move to next step. Second, without loss
of generality, we assume that a VLC link connects xywith uw
directly, and then derive the aggregation switch, which must
be added into the hybrid path to relay uw to uv. Note that the
racks and the aggregation switches in a pod form a complete
bipartite graph.Hence, the aggregation switch can be selected
randomly, and a reasonable hybrid pathwill be achieved.

For example, the hybrid path from rack 00 to rack 11 con-
sists of only three hops in Fig. 4, since pod 1 and pod 0 are
connected by a VLC link from rack 11 to rack 01. Therefore,
the four-hop wired path between 00 and 11 will be short-
ened as a three-hop hybrid path, including one aggregation
switch but no core switch. Then, the routing scheme selects
an aggregation switch from pod 0 to relay the flow from
rack 00 to rack 01. The generated hybrid path includes two
wired links in pod 0 and a VLC link from rack 01 to rack 11.

Note that, there are k=2 racks in each pod, and the rout-
ing scheme needs to check whether rack xy (uv) directly
connects with one rack in pod u (x) via a VLC link. Thus the
time complexity of the first step is OðkÞ. Additionally, the
second step consumes constant time. Therefore, the time
complexity of this hybrid routing scheme is OðkÞ.

4.2 Problem Formulation of Flow Scheduling

We introduce the VLC links to augment the existing DCNs
in VLCcube. The insight is to organize ToR switches as a
wireless incomplete Torus via VLC links. To utilize both
wired and wireless links efficiently and minimize the delay

in the network, we present a flow scheduling model to opti-
mize the link congestion rate, under both batched and
online traffic patterns. Consider that there are four available
transceivers on each rack, any rack can communicate with
its four neighboring racks simultaneously. We first intro-
duce related definitions and symbols as follows.

Let G¼ðV;EÞ denote a data center network, where V and
E are the node set and link set, respectively. Additionally,
F¼ff1; f2; . . . ; fdg denotes d flows injected into G. For each
flow fi¼ðsi; di; biÞ, si, di, and bi denote the source node, des-
tination node and traffic demand, respectively. Typically, f
records a scheduling strategy, which is responsible to derive
the routing path for each flow in F .

Definition 1. Given F and f, we define the congestion rate of an
arbitrary link e as

Cf
F ðeÞ ¼ tðeÞ=cðeÞ; (1)

where tðeÞ denotes the volume of traffics passing through link
e, and cðeÞ records the capacity of link e. Note that any Cf

F ðeÞ
falls into a constant interval ½0; 1�. Specifically, if none of flows
passes through link e, its congestion rate is 0. The congestion
rate is 1 when link e is fully used.

Definition 2. We define the congestion rate of a path P as

Cf
F ðP Þ ¼ maxCf

F ðeÞ; where e 2 P: (2)

Accordingly, based on Cf
F ðP Þ, we can locate the bottleneck

in a given path and decide whether a path is capable to serve
a given flow.

Based on the above fundamental definitions, we consider
the scheduling of both batched flows and online flows, and
then propose the corresponding scheduling algorithms in
the following subsections, respectively.

4.3 Scheduling the Batched Flows

To handle the scheduling of batched flows properly, in this
section, we first formulate the problem and define the con-
gestion coefficient that will be employed later. Then, a
greedy algorithm is introduced and the correctness of the
algorithm is given.

4.3.1 Formulation and Definitions

Definition 3. (Scheduling batched flows (SBF)) Given GðV;EÞ
and a set of flow transmissions F , the goal of batched flow
scheduling is to find a reasonable flow scheduling strategy f�

such that Z¼maxe2EC
f�
F ðeÞ is minimized.

We accordingly formulate the SBF problem as follows:

Minimize ZX
f :f2outðsiÞ

bf ¼ bi þ
X

f :f2inðsiÞ
bf 8i (3)

X
f :f2inðdiÞ

bf ¼ bi þ
X

f:f2outðdiÞ
bf 8i (4)

X
f :f2inðxÞ

bf ¼
X

f:f2outðxÞ
bf 8i; 8x =2 fsi; dig: (5)

In the above formulation, i is an integer in the range ½0; d�.
Let outðvÞ and inðvÞ denote the set of the outgoing and

2094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 7, JULY 2017



incoming flows at node v in VLCcube, respectively. Eqs. (3),
(4), and (5) ensure that each flow just transmits along one
path. The SBF problem is an Integer Linear Programming
(ILP) problem, which is a well-known NP-hard problem. It
cannot be solved in polynomial time. A naive method is to
search all the potential solutions, and then select the solu-
tion with the minimum Z. However, this naive method is
time-consuming as well as inefficient. Thus, we design a
lightweight algorithm to derive a reasonable solution. For
any fi2F , we find out the three kinds of routing paths in
VLCcube and denote them as PðfiÞ. Actually, PðfiÞ contains
k2=4 wired paths, one hybrid path and one wireless path.
To derive the flow scheduling strategy for F , we design a
greedy heuristic algorithm based on the concept of conges-
tion coefficient.

Definition 4. Given a set of flows F , each flow fi2F has a set of
candidate routing paths PðfiÞ. The congestion coefficient of a
link e2E, denoted as le, is the total amount of candidate paths
passing through it under all flows in F .

Definition 5. For any routing path P2PðfiÞ of any flow fi in F .
The congestion coefficient of P , denoted as lP , can be calculated
as lP ¼ max le, where e 2 P .

Fig. 7 presents the calculation insight of congestion coef-
ficients. Note that, four switches (labeled as 0, 1, 2, 3, respec-
tively), three links (including e0, e1, and e2), and six flows
(denoted as fi, i2½0; 5�) are involved in the figure. Link e0 is
employed by a candidate path of three flows (f0, f1 and f2);
hence, the congestion coefficient of link e0 is 3. Note that
link e1 is involved in the candidate path of four flows (f1, f2,
f3 and f4). Accordingly, the congestion coefficient of link e1
is derived as 4. Similarly, a candidate path of f2, f3 and f5
contains link e2; hence the congestion coefficient of link e2 is
3. Note that the candidate path of f2 is ended at switch 3,
and the flow will not be forwarded to other switches in the
figure. Additionally, the maximum congestion coefficient of
links in the path from switch 0 to switch 3 is 4, thus the con-
gestion coefficient of this path is 4.

Indeed, the congestion coefficient of link e or path P indi-
cates the probability that multiple flows employ it, respec-
tively. Hence, lP is an index for our greedy algorithm to
decide whether flow fi should select path P . To be specific,
we should select the path with the least congestion coeffi-
cient among all paths in PðfiÞ.

4.3.2 Algorithm and Proof

Based on the congestion coefficient, Algorithm 1 shows the
insight of the greedy strategy. For each flow, we first calcu-
late its k2=4þ2 candidate routing paths (Line 2). Then, the
congestion coefficient of each link in VLCcube is derived
(Line 3). For each flow fi, we calculate the congestion coeffi-
cient for each of its candidate routing paths and choose the
path with the least congestion coefficient to serve that flow

(Line 4-8). The algorithm takes Oðd�ðk2þkþ4ÞÞ time-con-
sumption to derive the candidate routing paths for all flows
in F , and additional Oðd�ðk2=4þ2ÞÞ time-consumption to
decide which routing path should be utilized by each flow.
Hence, the total computation complexity can be calculated
as Oðd�k2Þ.

Algorithm 1. SBF-Solution (Sbatch)

Require: Input the model of SBF problem.
1: Initialize Sbatch as empty;
2: For each fi 2 F , derive P ðfiÞ;
3: Calculate the congestion coefficient of each link in VLCcube;
4: for i < d do
5: Calculate the congestion coefficient of each path in PðfiÞ;
6: Select the path with the least congestion coefficient;
7: Add the chosen path into Sbatch;
8: Label the links on the chosen path as used;
9: return The solution of SBF problem Sbatch;

The congestion coefficient of a link e means there are up
to le flows may employ the link. The congestion coefficient
of a path P demonstrates that at most lP flows may pass
through at least one link along the path. If no scheduling
strategy is utilized, any path P2PðfiÞ has the equal proba-
bility to be chosen to transmit fi. Note that our algorithm
selects the path with the least congestion coefficient to trans-
mit a dedicated flow. If the probability of congestion for a
selected path is proportional to its congestion coefficient,
the correctness of employing the congestion coefficient as
an index in our algorithm can be proved. Unfortunately, cal-
culating the exact probability of congestion for a path is
rather complicated. Hence, as an alternative, we calculate
the probability that a path or a link transmits more than two
flows, since congestion may occur only if more than 2 flows
share a common link or path.

Theorem 4. In VLCcube, given a flow fi2F , e is an arbitrary
link in the network, the probability that e is utilized by fi is

pfie ¼ ¼ 0; fi =2 Fe

¼ lfie =ðk2=4þ 2Þ; fi 2 Fe;

�
(6)

where Fe records the set of flows that may employ the link e, lfie
denotes the congestion coefficient of the link e caused by fi ,
since more than one candidate routing paths of fi may cover
that link e.

Proof. Note that, if no scheduling strategy is utilized, any
path P2PðfiÞ has the equal probability to be chosen to
transmit fi. For flow fi, if number of lfie paths in PðfiÞ
pass through link e, we have pfie ¼lfie =ðk2=4þ 2Þ. Other-
wise, flow fi never utilizes that link, and the probability
is 0. Thus, Theorem 4 is proved. tu

Theorem 5. In VLCcube, for any flow fi2F , h counts the num-
ber of flows that pass through a link e, then we have

pFe ðh¼0Þ ¼
Y
fi2F

ð1�pfie Þ (7)

pFe ðh¼1Þ ¼
X
fi2F

½pfie �
Y

fj2F�fi

ð1�p
fj
e Þ� (8)

pFe ðh � 2Þ ¼ 1�pðh¼0Þ�pðh¼1Þ: (9)

Fig. 7. An example of congestion efficient of link and path.

LUO ETAL.: VLCCUBE: AVLC ENABLED HYBRID NETWORK STRUCTURE FOR DATA CENTERS 2095



Proof. Given a flow set F , such flows are independent for
whether employ a link e or not. Hence, pðh¼0Þ and
pðh¼1Þ can be calculated easily. Thus, Theorem 5 is
proved. tu

Theorem 6. Consider a flow fi2F , let h counts the number of
flows that pass through a path P2PðfiÞ, and EðP Þ denotes the
set of links along the path P . For any P , we have

pFP ðh¼0Þ ¼
Y

ei2EðP Þ
pFeiðh¼0Þ (10)

pFP ðh¼1Þ ¼ 4

k2þ8

Y
ei2EðP Þ

pF�fi
e ðh¼0Þ

þ
X

es2EðP Þ
½pF�fi

es
ðh¼1Þ�

Y
ej2EðP Þ�es

pF�fi
ej

ðh¼0Þ�
(11)

pFP ðh � 2Þ¼1�pFP ðh¼0Þ�pFP ðh¼1Þ: (12)

Proof. For a path P2PðfiÞ, h¼0 means none of flows passes
any link in path P . While, h¼1 is resulted from two situa-
tions, i.e., only fi occupies the path P , or one link in path
P has been utilized by another flow fj2F�fi. Thus,
pFP ðh¼0Þ and pFP ðh¼1Þ can be calculated. tu
According to Theorem 4, Theorems 5 and 6 calculate the

probability that none or one flow passes link e and path P .
Note that, if h�2, link e or path P may result in congestion.
This will happen when the completion time of the former
flow blocks the transmission of the latter flow. Theorems 5
and 6 demonstrate that larger le leads to more opportunities
that more than 2 flows go through link e or path P , and may
cause congestion. Thus the probability that a path P is
blocked is proportional to its congestion coefficient lP . In
this way, the correctness of employing the congestion coeffi-
cient of a path as an index for Algorithm 1 is certified. Since
our greedy algorithm selects the paths with the least conges-
tion coefficient, the congestion rate in VLCcube will be
decreased significantly.

4.4 Scheduling Online Flows

As discussed in [30], flows are not always batched in data
centers. In fact, flows are usually uncertain and dynamic.
Typically, f0 depicts an existing flow scheduling strategy,
FN denotes the new arriving flows, and FO contains the
flows that call for retransmission. Accordingly, we update
the set of flows as F1¼FNþFO. With F1 as input, we define
the online flow scheduling problem as follows:

Definition 6. (Scheduling online flows (SOF)) The SOF prob-
lem is to deduce a new scheduling strategy f1 such that the
increased link congestion rate is minimized. Let DZ¼Z1�Z0,
where Z1¼maxe2EC

f1
F1
ðeÞ and Z0¼maxe2EC

f0

F�FO
ðeÞ, the goal

of SOF is to minimize DZ.

The SOF problem will be triggered when new flows
appear or some existing flows are required to be retransmit-
ted. Note that the SOF problem still subjects to an ILPmodel,
which is similar to the SBF problem. We omit the detailed
presentation of the SOFmodel due to the page limitation.

The SOF problem targets at minimizing Z1. Thus, it
seems that the same strategy, depicted in Algorithm 1, can
be utilized to solve the SOF problem. Algorithm 1, however,

will be employed frequently due to the dynamic flows, and
hence causes unnecessary computation cost. Instead, we
only take flows in F1 into consideration, and propose a
greedy flow scheduling strategy for the SOF problem. For
each flow in F1, the insight of our greedy strategy is to
employ the path that causes the least link congestion rate.

As depicted in Algorithm 2, the greedy strategy discov-
ers those flows that call for path assignment (Line 2). Typi-
cally, it distinguishes the finished flows, the new flows and
the failed flows. The algorithm has to know which available
links and devices the updated flows can employ. We update
the state of the whole network by eliminating finished flows
(in Line 3). For each flow, we search all of its wireless path,
hybrid path and wired paths according to those algorithms
in Section 4.

Algorithm 2. SOF-Solution (Sonline)

Require Input the model of SOF problem.
1: Initialize Sonline as empty;
2: Calculate the updated routing requests F1;
3: Update the state of network links and devices;
4: for i < d1 do
5: Search the three kinds of paths from si to di;
6: Calculate the congestion rate of each path;
7: Select the path with the least congestion rate, i.e., pathi;
8: Add pathi into Sonline;
9: return The solution of SOF problem Sonline;

After deriving the possible candidate routing paths for a
flow fi, we calculate the congestion rate of each path accord-
ing to the values of bi and ci. We then pick the path with the
least congestion rate as the final routing path for fi and add
it into Sonline (Line 4-8). When each flow in F1 has been
assigned a reasonable path, Algorithm 2 returns the result.
Algorithm 2 just considers those flows that need to be allo-
cated a routing path. Thus, the algorithm will be executed
d1 rounds, while the time consumption is Oðkþk2Þ in each
round, due to deriving the candidate paths. Thus, the com-
putation complexity of Algorithm 2 is Oðd1�k2Þ.
Theorem 7. Algorithm 2 outperforms the traditional ECMP

flow scheduling strategy for the online traffic pattern.

Proof. For any flow fi2F1, if ECMP is employed, the expec-
tation of congestion rate for fi is

4

k2 þ 8

X
Pj2PðfiÞ

Cf�
F1
ðPjÞ: (13)

By contrast, the congestion rate of Algorithm 2 for fi is

minfCf�
F1
ðPjÞg s:t: Pj 2 PðfiÞ (14)

Undoubtedly, for an arbitrary flow fi, the congestion rate
under Algorithm 2 is no more than that under ECMP.
Thus, Theorem 7 is proved. tu

5 PERFORMANCE EVALUATION

We start with the qualitative comparison between VLCcube
with other proposals. As for the qualitative evaluations, we
first introduce the settings and methodologies. Then, we

2096 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 7, JULY 2017



compare VLCcube with Fat-Tree, in terms of the topological
properties and network performance. Finally, the proposed
congestion aware scheduling methods are evaluated against
the widely used ECMP. The reported result is the average
value over 100 rounds of evaluations for each metric.

5.1 Qualitative Comparison

Before discussing the quantitative evaluations, we first com-
pare VLCcube with several wireless data center topologies
qualitatively.

Table 1 depicts the results. First, FireFly, 3D Beamforming
(3D BF) and VLCcube employ the Laser, 60 GHz and VLC
wireless links to establish another wireless topology over
existing racks, respectively. Second, the wireless topologies of
both FireFly and 3DBF are flexible since thewireless links can
be adjusted on demand, according to the traffic pattern. The
wireless topology of VLCcube is always fixed, so as to main-
tain a stable wireless and hybrid topologies over racks. This
would avoid the non-trivial cost due to adjusting wireless
links and ease the designing of routing schemes. Third, both
FireFly and 3D BFwill introduce complex infrastructure-level
alterations, e.g., redecoration of the ceilings, establishment of
various communication components.

Fourth, to realize the designed wireless topology, compli-
cated mechanical or electronic control operations are
required to establish a wireless link in FireFly and 3D BF.
On the contrary, VLCcube is plug-and-play and does not
suffer from such extra control operations, when establishing
each VLC link. Moreover, Firefly and 3D BF must accurately
predict the traffic pattern before designing a suitable wire-
less topology. VLCcube, however, does not need such kind
of traffic prediction. It is time-consuming and costly to accu-
rately predict the traffic pattern, especially for those burst
and hot-spot traffics.

Therefore, VLCcube offers stable wireless topology, easy
routing mechanism at the cost of slightly releasing the
requirement of topology flexibility. Additionally, VLCcube
meets the three design rationales proposed in this paper
and needs not to accurately predict the traffic pattern.

5.2 Setting and Methodology of Evaluations

We realize the proposed VLCcube and Fat-Tree with Net-
work Simulator (NS3). Given the number of k, we generate
Fat-Tree according to the rules introduced in [2]. As for
VLCcube, we generate it with the steps in Section 3.3. To
reveal the essential impact of introducing VLC links to
DCNs, we assume that the adjustment of racks is permitted.
The bandwidth of each wired link and VLC link is set as 10
Gbps. For both networks, according to the setting in [31],
[32], the link delay is set as 1 ms. With the above basic set-
ting, we first compare their topological characteristics, and
then evaluate the complexity of routing algorithms for

wired paths, wireless paths and hybrid paths. Moreover,
we compare their network performance.

In our evaluations, we consider three traffic patterns: i)
Trace flows: the flows are generated by a real data-set from
Yahoo!’s data centers [33]; ii) Stride-i flows: a server with id x
sends flow to the destination with id ðxþiÞ mod N , where N
is the total number of servers; and iii) Random flows: the
source and destination of each flow are chosen randomly. The
network throughput and packet loss rate, are used tomeasure
the performance of DCNs under diverse traffic patterns.

To prove the effectiveness of our flow scheduling meth-
ods, we first evaluate the network performance of VLCcube
and Fat-Tree, which both utilize the prior ECMP flow sched-
uling method. We further measure the performance of
VLCcube under our flow scheduling algorithm and the
ECMP, respectively. Note that the arrival time of dynamic
flows follows a Poisson distribution in the case of online
flow scheduling.

5.3 Topological Properties of VLCcube

Two topological properties, the average path length (APL)
and the total network bandwidth, are measured for
VLCcube and Fat-Tree. As shown in Figs. 8a and 8b,
VLCcube has shorter APL and offers higher network band-
width than Fat-Tree, due to those VLC wireless links. Note
that, the impact of VLC wireless links on the APL exhibits
an obvious marginal effect. That is, the APL would be sig-
nificantly decreased by VLC wireless links for small-scale
networks. In fact, given k, there are k2 VLC links in
VLCcube, and the number of both wired and wireless links
is k3=2þ k2. As the increase of k, VLC links contribute less
portion to the total number of links. Hence, the impact of
wireless links becomes weak.

We conduct the generation progress multiple rounds to
deduce the placement strategy for VLCcube. Then the con-
nectivity of the pod level logic graph is normalized and
measured as the number of links in a complete graph. In
Fig. 8c, VLCcube1, VLCcube2 and VLCcube10 denote the
measured results, under the picked placement strategy with
the highest pod level connectivity after one round, two
rounds, and ten rounds generations. It is clear that the

TABLE 1
Qualitative Comparison

Structure Wireless Flexible Alteration P-a-p Predict

Firefly Yes Yes Yes No Yes
3D BF Yes Yes Yes No Yes
VLCcube Yes No No Yes No

Fig. 8. Topological properties of VLCcube.
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connectivity reduces along the increase of k, irrespective of
the rounds of generation. Additionally, VLCcube10 always
outperforms other two cases, since the generation algorithm
may derive a better solution from more candidates with
high probability.

We further measure the consumed time, due to calculat-
ing three kinds of routing paths in VLCcube. As depicted in
Fig. 8d the time-consumption of searching the wireless path
increases from 37 microseconds to 87 microseconds, when k
grows from 6 to 60. The time consumption of hybrid path
routing shows the similar increasing trend and varies from
8 microseconds to 67 microseconds since the time-complex-
ity is OðkÞ. It is clear that the wired path routing causes the
least time consumption, which remains in a low level, i.e.,
39 microseconds, irrespective of the setting of k. In sum-
mary, the time complexity of wired path routing is constant,
while that of other two routing algorithms is proportional
to the value of k. The time-consumption of the wireless and
hybrid paths is only tens of microseconds even k¼60, and
hence is acceptable in data centers.

5.4 Network Performance

In this section, we evaluate the network performance of
VLCcube and Fat-Tree in terms of network throughput and
packet loss rate in the case of ECMP flow scheduling
method. Under each of the three traffic patterns, we vary
the network scale by adjusting the value of k, and observe
the changing trends of the network throughput and packet
loss rate. To reveal the impact of flow size on the network
performance, the average size of each flow ranges from 5 to
12 Mb. Note that the size of each flow under the trace-based
traffic pattern is always set according to the trace. In each
test, the network throughput is depicted as the ratio of the
real throughput of between VLCcube and Fat-Tree in each
kind of parameter setting.

5.4.1 Network Performance Under Trace Flows

The Yahoo!’s trace records the basic information for each
flow in its 6 distributed data centers, including the IP
addresses of both source and destination servers, the flow
size, the utilized interfaces, etc. We separate those inner
data center flows from those flows across data centers by
identifying the utilized interfaces [33]. We inject k3 ran-
domly chosen flows into the VLCcube and Fat-Tree net-
works to evaluate their performance.

Figs. 9a and 9b plot the performance of VLCcube and Fat-
Tree in terms of both throughput and packet loss rate when
k varies from 6 to 60. It is clear that VLCcube dominates Fat-
Tree by offering more throughput (19.97 percent more) and

causing much less packet loss rate (39.00 percent less). The
reason is that, those VLC links provide more candidate
paths for each flow.

5.4.2 Network Performance Under Stride-k Flows

In this experiment, first, we set the maximum flow size as
5Mb.Wemeasure the throughput and packet loss rate under
diverse network orders by increasing k from 6 to 30. Figs. 10a
and 10b report the evaluation results, when 2�k2 random
flows are injected in the networks. With the increase of k,
both Fat-Tree and VLCcube are capable of accommodating
more flows, thus their throughputs increase rapidly. But
VLCcube achieves 8.54 percent more throughput than Fat-
Tree on average. Additionally, as shown in Fig. 10b, the
packet loss rate of VLCcube is much less than that of Fat-
Tree. We also note that, with the increase of k, both Fat-Tree
and VLCcube result in more packet loss rate. The reason is
that, the number of injected flows (2�k2 ) increases faster
than the number of candidate paths for each flow (k2=4þ 2).
As a result, more flowsmay be dropped.

To measure the impact of flow size, we vary the average
size of those 2�k2 flows from 4 to 12 Mb while k¼20. We
can infer from Figs. 10c and 10d that VLCcube still consider-
ably outperforms Fat-Tree. More precisely, VLCcube
increases the network throughput up to 14.31 percent than
Fat-tree even when the maximum flow size is 11 Mb. Rea-
sonably, when the flow size grows, the packet loss rate
increases dramatically.

5.4.3 Network Performance Under Random Flows

In the setting of random traffic pattern, the source and desti-
nation server of each flow are all selected randomly. We also
introduce 2�k2 flows into the two data center networks.

First of all, we fix the maximum flow size as 5 Mb, and
vary the network scale by ranging k from 6 to 30. As shown
in Fig. 11a, for both VLCcube and Fat-Tree, the network
throughput increases dramatically. VLCcube still outper-
forms Fat-Tree with 10.80 percent more network through-
put on average. As depicted in Fig. 11b, Fat-Tree always
experiences a high packet drop rate, while VLCcube incurs
much less packet drop rate. To be specific, VLCcube and

Fig. 9. Network performance under trace flows.

Fig. 10. Network performance under stride flows.
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Fat-Tree drop 1.01 and 2.92 percent packets on average,
respectively.

We further evaluate the impact of maximum flow size on
the network performance when k¼20. As shown in Figs. 11c
and 11d, VLCcube and Fat-Tree must transmit more packet
once the flows are scheduled; hence, the throughput
increase reasonably as larger flows are injected in the net-
works. At the same time, the packet loss rate also increases
along with the increase of average flow size. We derive
from such figures that our VLCcube works better than exist-
ing Fat-Tree significantly.

In summary, VLCcube achieves better network perfor-
mance than Fat-Tree under the three kinds of traffic patterns,
when both of them employ the ECMP to schedule flows.

5.5 Impact of Congestion Aware Flow Scheduling

Although the above evaluations demonstrate the benefits of
VLCcube than Fat-Tree, the topological benefits have not
been fully exploited by employing the existing ECMP flow
scheduling method. Thus, we compare our congestion
aware scheduling method with ECMP under different sizes
of VLCcube.

We inject k3 batched random flows into VLCcube, where
k varies from 6 to 24. The network throughput is normalized
as the ratio of the network throughput under the ECMP
method to that under our SBF method. As depicted in
Figs. 12a and 12b, ECMP offers less network throughput
and causes the worse packet loss rate. By contrast, our SBF
method contributes �1:50 throughput and causes much less
loss rate (decreasing to 0 when k¼12) than ECMP. The root
cause of low loss rate is that our SBF method offers more
candidate paths, and disperses the flows as widely as the
VLCcube can.

Additionally, the VLCcube schedules online flows using
our SOF method. In this case, we vary k from 6 to 24 and
schedule k3 random flows under each configuration of
VLCcube. The arrival time of dynamic flows follows a Pois-
son distribution, whose parameter � can be adjusted.

Figs. 12c and 12d plot the evaluation results. Note that
ECMP-x and SOF-x refer the results under the ECMP and
our SOF methods, when �¼x. Our SOF method leads to
�2:21 and �2:59 throughput than ECMP, while causes only

�0:746 and �0:619 packet loss, when �¼ 2 and �¼4, respec-
tively. Note that, both ECMP and SOF methods in the case
of �¼4 outperform that in the case of �¼2. The reason is,
less flows will simultaneously arrive in a given time interval
as the increase of �; hence, such flows cause less packet loss.

Consequently, our SBF and SOF flow scheduling meth-
ods can improve the performance of VLCcube and realize
less congestion rate than the widely used ECMP method.

6 DISCUSSION

In this paper, we augment the existing wired Fat-Tree DCN
by introducing the inter-rack wireless network using VLC
links. To fully understand the designing methodology of
VLCcube, we discuss the following important issues.

Why VLC Links? Plenty of endeavors have been con-
ducted towards the designing of wireless data centers. In
this paper, we make the first step to study the feasibility of
introducing VLC into data centers. That is, we establish
another inter-rack wireless network for a data center with
any wired DCN. Such VLC links bring extra advantages.
First, compared with the overcrowded RF spectrum, the vis-
ible light spectrum occupies hundreds of terahertz of license
free bandwidth, which are remains untapped. Second, VLC
can well reuse the existing lighting infrastructures to realize
high-speed communication. That is, VLC is cost-effective as
well as energy-saving.

The Building Methods of VLCcube. In this paper, we point
out that VLCcube can be constructed in two different meth-
ods. Indeed, the racks in an existing Fat-Tree data center
have been placed as a fixed array, e.g., k2=2 array. Hence, a
simple method is to remain the arrangement of racks and
interconnect all racks as a wireless Torus. However, the
resultant hybrid DCN brings limited improvement of net-
work performance. To fully exploit the benefits of the intro-
duced VLC links, we prefer to upgrade all racks from the
k2=2 array to am�n array, which brings extra adjustment of
racks and links. Consequently, the resultant VLCcube can
replace more four-hop wired paths with one-hop wireless
paths. Additionally, the connectivity among pods is
enhanced by those VLC links. In summary, there is a trade-
off between the extra cost and the promotion of perfor-
mance for the second method.

Fig. 11. Network performance under random flows. Fig. 12. The performance of congestion aware scheduling.
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The Scalability of VLCcube. It is true that the Fat-Tree DCN
lacks high scalability. The network order of Fat-Tree is
decided by the value of k. If there are already k2=2 racks in
Fat-Tree, any added rack will result in the increase of k. As
a result, the scalability of our VLCcube is limited by the
employed Fat-Tree structure. However, it is not necessary
that the design of VLCcube depends only on the Fat-Tree
like structures. In the future, VLCcube would consider other
scalable wired DCNs, e.g., Jellyfish [18], FBFLY [34] and
HyperX [35]. The networking structure of Jellyfish is a ran-
dom regular graph at the level of rack, while that of FBFLY
and HyperX is the generalized hypercube at the level of
rack. There are no aggregation or core switches in these
DCNs. When VLC links are introduced into such wired
DCNs, the resultant hybrid topologies can be expanded eas-
ily. On the other hand, we envision the completely wireless
DCNs based on VLC links as our future work, which can be
expanded on demand. In summary, we make a first step
towards designing a hybrid topology by introducing VLC
links into wired DCNs, for example Fat-Tree. The methodol-
ogy proposed in this paper can be used to design other scal-
able hybrid DCNs if we utilize other scalable wired DCNs
instead of the Fat-Tree.

The Complexity of Routing Methods. As a hybrid topology,
VLCcube offers wired paths, wireless paths and hybrid
paths for any pair of racks. The wired path as well as the
wireless path can be simply calculated according to the
building rules of Fat-tree and Torus topologies. To speed up
the hybrid routing algorithm, we only derive the three-hop
hybrid paths in VLCcube. The time-complexity of the wired
routing scheme is constant for the Fat-tree DCN. However,
the time-complexity of the wireless and hybrid routing algo-
rithms is OðkÞ. As the evaluation results indicate, the time-
consumption for calculating the wireless path and the
hybrid path for any pair of racks is within tens of microsec-
onds, which is acceptable for current data center applica-
tions. Moreover, once all routing paths for any pair of racks
have been derived and kept in involved routing tables, such
routing algorithms will seldom be triggered. That is, this
kind of latency only happens during the initialization or
updating process of the network.

Rethinking of Flow Model and Scheduling Algorithms. In
VLCcube, due to the existence of multiple paths, it is impor-
tant to select a proper path for each flow since those paths
result in diverse completion time. From the global view, we
need to derive a suitable path for every flow, such that the
congestion rate is minimized. After allocating given path
for each flow, more accurate and fine-grained control mech-
anisms can be realized by several existing proposals, e.g.,
Hedera[36], pFabric[37], L2DCT[38], etc. Such transport
control mechanisms target at optimizing the flow comple-
tion time, using dedicated rules, such as the shortest
remaining processing time first, the deadline first, and the
smallest flow first, etc.

The Evaluation Methodology. Our evaluations concentrate
on measuring the impact of introducing VLC wireless links
into the wired Fat-Tree networking structure for data cen-
ters. For fairness, we compare VLCcube with Fat-Tree when
both of them employ the ECMP strategy. Then we evaluate
the impact of the proposed scheduling algorithms for
VLCcube. The comprehensive evaluations do verify the

improvement of our VLCcube over Fat-Tree, in terms of
both topological properties and the network performance.
Besides the evolutions via comprehensive simulations, we
also consider the possibility of small-scale deployment of
VLCcube system. However, existing VLC products are still
incapable of gigabit-level data rate since the high-speed
VLC techniques (at the scale of Gbps) are still at the stage of
test in the laboratory. As a result, it is inappropriate to com-
pare VLCcube enabled by existing VLC products with Fire-
fly or Fat-Tree currently. We will keep tracking the
products of the next generation high-speed VLC links and
deploy a prototype of VLCcube system to truly improve the
existing wired data centers.

Future Work. The future work is mainly of two folds. On
one hand,wewill consider the design and evaluation of other
hybrid DCNs using VLC links, in the settings of other wired
DCNs (e.g., BCube, MDcube, Jellyfish, etc). New challenges
will occur when integrating the VLCwireless links with other
existing wired topologies. On the other hand, we envision a
complete wireless data center based onVLC links only.

7 CONCLUSION

In this paper, we present VLCcube, an easy-deployable, and
high-performance hybrid DCN architecture. VLCcube intro-
duces the emerging VLC technique to interconnect all racks
together with a wireless Torus network, so as to augment
the wired Fat-Tree network. The introduced VLC links can
decrease the APL and enhance the network bandwidth. To
exploit the benefits of VLCcube, we further design dedi-
cated flow scheduling methods for both batched and online
flows. The evaluations indicate that VLCcube always out-
performs Fat-Tree, and our scheduling methods can signifi-
cantly promote its performance.
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