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Abstract—Data Center Networks (DCNs) become more ex-
tensively applied on the cloud computing in recent years. One
important mission for DCNs is to satisfy the fluctuation of
on-demand resources for tenants. Existing works fail to fully
consider the scaling virtual clusters (VCs) placement techniques
and the elasticity of the physical resource in the DCN at the
same time. To address this mission, we use the concept of
elasticity to measures the scaling potential of VCs in terms of
both computation and communication resources. In this paper,
we consider the scaling placement for the existing VCs, to
maximize the elasticity with the constrain of communication cost
in the DCN. We first achieve this through a resource allocation
scheme VCS which comes with provable optimality guarantees
for single VC scaling. After that, we extend it into the multiple
VCs scaling, and prove that multiple VCs scaling for over-time
elasticity maximization problem is NP-hard. We propose heuristic
algorithms MVCS and OMVCS for both offline and online
conditions on the multiple VCs scaling. We only consider the
condition which scaling on both computing and communication
resources, which can also be adapted to each individual resource.
Extensive simulations demonstrate that, our elastic VCs scaling
placement schemes outperform various existing state-of-the-art
methods in terms of flexibility in the DCN.

Index Terms—Data center networks (DCNs), elastic scaling,
virtual cluster, optimization, virtual machine (VM) placement.

I. INTRODUCTION

Data Center Networks (DCNs) become more extensively ap-
plied on the cloud computing in recent years. The applications
which are based on the cloud generate a significant amount of
network traffic and a considerable fraction of their runtime is
due to network activity [1]. As reported in [2], the available
resource to the tenants vary a good deal over time in EC2.
One major problem for tenants to the cloud computing is the
lack of performance guarantee, which includes both resource
limitation and unpredictable application demands.

To address these problems, we propose an flexible place-
ment strategy to dealing with the resource scaling for the
existing Virtual Clusters (VCs) in the DCN. A set of Virtual
Machines (VMs) which connect on one virtual switch is
defined as a VC. Each VC not only has computing require-
ments, it also requires communications among themselves to
complete the specified tasks for the applications. We use the
concept of elasticity [3] to measures the growth potential of
a VC placement in both computation and communication,
which denotes the physical machine (PM) elasticity and the
physical link (PL) elasticity. Our objective is to maximize
the elasticity during the VCs placement in the DCN under

the resource and communication cost constraints. This paper
is based on existing DCN architecture which is a Fat-tree,
and the capacities of PMs are slotted, and each slot can
only host one VM, as shown in Fig. 1. The communication
between VMs occurs through the PLs for each VC. The
corresponding communication demands are determined by
VM communication models. This paper uses hose model,
which is a communication model used to calculate bandwidth
demand for VMs.

To maximize the elasticity in DCN under the hose commu-
nication model, we face one important challenge is balancing
the trade-off between communication cost and the elasticity
during the VC placement, and guaranteeing both computing
and communication resource scaling for one VC under the
DCN. Take Fig. 1 as example, VC1 has 7 existing VMs
in the DCN. We assume the upper bound of subtree root
is in the aggregation switch level. The scaling request for
VC1 is from 5 VMs. One extreme assignment for the scaling
request is to concentrated place all the scaling VMs into
the PMs M00 and M01 under the switch S11, as shown in
the Fig. 1(a). This solution can save the communication cost
between existing VMs and the incoming ones. However, the
elasticity of VC1 will decrease to 0, which contains two
bottleneck PMs M00 and M01 with no scaling potential.
Another extreme assignment is to place the VMs dispersedly
as shown in Fig. 1(b). In this case, the elasticity of VC1 will be
min{ 25 ,

2
5 ,

3
5 ,

3
5 ,

4
5 ,

4
5} = 2

5 . However, the communication cost
under this assignment has already beyond the upper bound of
subtree root, which can not guarantee the QoS for the users.
In order to balance the trade-off between communication cost
and the elasticity, we try to find a solution between the two
extreme assignments. In this paper, we propose an optimal
solution that doing the placement based on the proportion of
the remaining available capacities for the scaling request under
the limitation of communication cost, as shown in Fig. 1(c).
Then we extent it into online multiple VCs scaling placement
problem, which solved by a heuristic method with prediction.
Our algorithm can improve the overtime elasticity through
using history knowledge and distribution to place the current
scaling request.

In this paper, we jointly consider the placement and elas-
ticity adjustment problems for the scaling VCs, to maximize
the elasticity with the constrain of communication cost in the
DCN. Our contributions can be summarized as follows:
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Fig. 1. An example of different placements for single virtual cluster scaling.

• We show that there is a trade-off between the elasticity
and the communication cost for one VC scaling request.
Given one scaling request of VC, the decreasing place-
ment of the elasticity may lead the increasing of the
communication cost. We prove the bound for the extra
cost, and discuss the existence of optimal solution during
the elasticity adjustment.

• We propose an algorithm VCS for the scaling request
of existing VC under the constrains of resource and
communication cost, and prove that it is an optimal
solution.

• We extend single VC scaling placement problem into
multiple ones. We also prove that it is NP-hard, and
propose a heuristic algorithm MVCS for the scaling
resource during one stable time period to maximize the
over time elasticity of VCs.

• We conduct various simulations to compare our joint
optimization method with several state-of-art ones. The
results are shown from different perspectives to provide
conclusions.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
then formulates the problem. Section IV investigates scaling
placement problem under the single VC condition, and pro-
poses an optimal solution. Section V extend the problem into
multiple VCs scaling, and proposes two heuristic algorithms
for both offline and online conditions. Section VI includes the
experiments. Finally, Section VII concludes the paper.

II. RELATED WORK

There have been tremendous existing works on resource al-
location for VC scaling. It is a technique of crucial importance,
which means that researchers must find appropriate embedding
for virtual clusters in DCNs. This section provides a brief
overview of the relevant methodologies proposed to address
this problem. Since most researches focus on dynamically
adjusting of the cluster size without considering any bandwidth
guarantee targeted by current network abstractions, several
methods have been proposed. [4] propose scaling up a virtual
network abstraction with bandwidth guarantee. Efficient algo-
rithms are proposed to find the valid allocation for the scaled

cluster abstraction with optimization on the VM locality of the
cluster. [5] propose a virtual cluster abstraction called Stochas-
tic Virtual Cluster (SVC) to realize the bandwidth guarantee
during the resource allocation. The framework and algorithms
can ensure that the bandwidth demands of tenants on any
link are satisfied with a high probability, while minimizing
the bandwidth occupancy cost on links.

Elastic resource scaling has attracted a considerable amount
of attention in cloud computing, recently [3? ]. [6] proposes
a lightweight approach to enable cost-effective elasticity for
cloud applications, which realized by designing an automatic
system. There are also a number of works have been proposed
to scale the resources through using prediction-driven method.
[7–9] employ resource demand prediction to achieve the elastic
resource allocation without assuming any prior knowledge
about the applications in the cloud. There is a little difference
on [9], which uses VM replication to reduce application start
up times.

Quite a few works consider coordinated VC scaling on both
optimization of the VCs’ localities and the elastic resource
allocation. [10] proposes a system that allows tenants to
dynamically request and update minimum guarantees for both
network bandwidth and compute resources at runtime, which
realized by using resource reservation method. [11] studies
survivable and bandwidth-guaranteed embedding of virtual
clusters, and proposes novel algorithm to jointly optimize
primary and backup embeddings of the virtual clusters. These
existing works on VC resource allocation fail to fully consider
both localities and elasticities for the scaling requests in one
determined time period. In this paper, we jointly consider
the VC placement on localities and elasticities with scaling
fluctuation, to maximize the over time elasticity during one
time period with minimal extra cost in DCNs.

III. MODEL AND PROBLEM FORMULATION

A. Platform Model

This paper focuses on the elastic VC scaling placement
problem for hose communication model on Fat-tree. We jointly
consider the localities and elasticities during the resource al-
location for the VCs scaling, and use elasticity to measure the
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growth potential for VCs, which is also an important factor for
weighting the flexibility during the placement. Our objective
is to maximize the elasticity for VCs with communication cost
constrain in the DCN.

B. Data Center Model

In this paper, we consider the Fat-tree as our data center
network topology model. Fat-tree is an extended tree topology
which has been applied to DCNs by several researchers [12].
In Fat-tree, each θ-port switch in the edge layer is connected
to θ

2 PMs [12]. Each PM in the Fat-tree is denoted as Mi,
and divided into multiple slots where can be placed VMs. The
capacity of each PM is denoted by Ci, and the PMs in the DCN
is homogeneous. The PLs are denoted by L = {Lij}, and the
capacity of PL is denoted by Bij . TSij

denotes the subtree
under the root (physical switch) Sij which contains a set of
PMs and PLs. This paper, we set call the root (physical switch)
Sij as the locality, which uses to denote the position of the
virtual cluster Vi. There are two properties of the locality,
private and public. When the property is private, the resource
of the subtree TS′

ij
only can be used by Vi. Otherwise, the

resource under the subtree TS′
ij

can be used by any other VCs
when the property is public.

C. Virtual Cluster (VC)

For each tenant, the VC is an abstraction which allows each
tenant to specify both the virtual machines (VMs) and per-
VM bandwidth demand of its service [13]. Let Vi denote the
ith existing VC in the DCN, and each VC is consisted by a
set of VMs and one virtual switch, where Vi =< Ni, Bi >.
Ni is the number of VMs in the ith VC, and Bi is the
bandwidth demand between VMs and virtual switch. This
paper, we consider the hose model based the VC abstraction.
In hose model, each customer specifies a set of endpoints to
be connected with common endpoint-to-endpoint performance
guarantee [14].

1) Communication Cost: Since a good locality is desired
for the allocation of a virtual cluster is to reduce the com-
munication latency among VMs, we define a new function
to measure the communication cost. The standard metric to
evaluate the communication cost is to measure the embedding
footprint [1], [15], [16]. During the VM placement, we try to
minimize the communication cost. For each virtual request Vi,
we define

m(Vi) :=

3∑
j=1

∣∣TSij

∣∣ ·Hj · γ (1)

∣∣TSij

∣∣ denotes the total amount of VMs under the subtree Lij
of virtual cluster Vi. Hj is the hops between PMs that VMs
are located. Since the architecture of DCN is Fat-tree in this
paper, the value of Hj will be H1 = 2, H2 = 4, H3 =
6. γ is a constant value which denotes the communication
cost between each pair of VMs in Vi. The communication
cost of a virtual request can be calculated via the following
case distinction: (1) If all VMs of Vi place into one PM, the
communication cost m(Vi) = 0. (2) If Vi place under ToR

TABLE I
NOTATIONS

Mi PM in the DCN
Ci Capacity of the ith PM in the DCN
Lij PL in the DCN
Bij Capacity of PL in the DCN
Vi The ith existing VC in the DCN
Ni Existing VMs of Vi
N ′

i Scaling VMs of Vi
Bi Existing bandwidth demand of Vi
δB Scaling bandwidth demand of Vi
TSij

Subtree of Vi under the locality Sij

RM
Sij

Available computing resource in the subtree TSij
for Vi

RL
Sij

Available communication resource in the subtree TSij
for Vi

m(·) Communication cost of Vi
Φ Upper bound for communication cost
ρi Scaling ratio for Vi
ζi Adjust factor of the elasticity for Vi

switches or aggregation switches of a pod, the communication
cost m(Vi) = 2∗

∣∣∣SL0
i1

∣∣∣+4∗
∣∣∣SL1

i1

∣∣∣. (3) If Vi place under core
switches of different pods, the communication cost m(Vi) =
6 ∗ |SLi3 |.

2) Elasticity: Let Ei denotes the elasticity of the Vi, which
measures the growth potential of the Vi under the communica-
tion cost constrain. We use this factor to weight the flexibility
of the placement of the VCs. The combinational elasticity is
defined as Ei = min{EMi , ELi }, where EMi is defined as the
minimum percentage of available VM slots among PMs under
the subtree TSij

of Vi.

EMi = min
Ci∈TSij

{1−max
i

C∗i + C ′i
Ci

} (2)

Similarly, ELi is defined as the minimum percentage of avail-
able bandwidth resource among PLs under the subtree TSij of
Vi.

ELi = 1−max
ij

f(
∑
Ci∈TSij

(C∗i + C ′i))

Bij
(3)

C∗i and C ′i denote the number of existing and incoming
VMs of Vi which belong to the PMs under the subtree TSij .
Similarly, f(

∑
Ci∈TSij

(C∗i +C ′i)) denotes the communication
demand between of the Vi under the subtree TSij

, where f(·)
denotes the bandwidth demand function of VM communica-
tions.

D. Basic Problem Formulation

1) Definition of VC Scaling Placement: In this paper, we
consider the VC placement based on hose model and Fat-tree.
Let Vi =< Ni, Bi > denote the ith VC, which are several
types of problem instances for scaling up. The basic ones are
either to increase the cluster size on computing resource from
Ni to Ni + N i, or to increase the communication resource
from Bi to δBi. The difficult one is to increase both computing
and communication resource, which ranges from Ni to Ni +
N i and Bi to δBi, i.e., Vi =< Ni, Bi > to Vi =< Ni +
N ′i , δBi >. We mainly focus on the both scaling case, and the
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algorithms proposed for it can also efficiently solve other two
types of scaling problems.

2) Objective Function: Our objective is to maximize the
elasticity for Vi with the constrain of the communication
cost. We use a constant Φ to denote the upper bound of the
communication cost, which initialized by the uses based on
the demands of the applications [15]. Our problem can be
formally formulated as follows:

maximize Ei (4)
subject to 0 ≤ m(Vi) ≤ Φi (5)

C∗i + C ′i ≤ Ci (6)

f(
∑

Ci∈TSij

(C∗i + C ′i)) ≤ Bij (7)

Variables are C ′i and B′ij , and Ei is derived. Others are
given, i.e., C∗i , B∗ij and Φi. Equation (5) shows the constraints
on the communication cost m(Vi), where its value should
greater than or equal to 0 with the upper bound Φi. Equation
(6) shows the constraints on capacities of PMs, which the
total number of existing and incoming VMs C∗ and C ′i on
the ith PM cannot exceed its capacity Ci. Equation (5) is the
link capacity constraint, which shows the bandwidth usage of
existing and incoming VMs on Lij under the subtree TSij

can
not exceed the link capacity Bij . The major notations used in
this paper are listed in Table I.

IV. SINGLE VIRTUAL CLUSTER SCALING

This section proposes one optimal solution, VCS, which can
be applied to deal with the scaling of single virtual cluster.

A. Algorithm and Description

1) Initialization: We take the incoming scaling request for
Vi with 〈N ′, δB〉 at time slot ti as the input, and the output
is the occupation state for Vi in DCN. The initialization in
line 1 is to find the locality Sij of Vi, and calculate the
available physical resource under the subtree TSij , which
contains computing resource RMSij

=
∑
Mi∈TSij

C ′i and com-
munication resource RLSij

=
∑
Lij∈TSij

B′ij , respectively. We
also initialize the upper bound of the communication cost Φi
for Vi, which usually sets by users for the QoS guarantee.

2) Virtual Cluster Scaling (VCS): For each scaling request,
we try to find the appropriate subtree to obtain enough physical
resources. In line 2 and 3, we first compare the incoming
scaling request 〈N ′, δB〉 with the total available physical
resource RMSij

and RLSij
under TSij

. If the total amount of
available physical resources cannot satisfy the scaling request,
the current subtree root will be positively adjusted by the step
TSij =TSLi,j+1

in line 5. This process will be ended until the
locality move to the upper bound S′ij . We start to place scaling
request in line 6 by using the function VMP (N ′, δB), which
describes in Algorithm 2.

Algorithm 1 Virtual Cluster Scaling (VCS)
Input: Scaling request Vi with 〈N ′, δB〉;
Output: DCN occupation state for Vi;

1: Initialize the initial locality Sij and communication cost
Φi for Vi, and calculate the available physical resources
under the subtree TSij

;
2: Calculate the highest locality S′ij based on the communi-

cation cost Φi;
3: for Sij to S′ij do
4: while RMSij

< N ′ ∨RLSij
< N∗ ∗ δB do

5: TSij
=TSLi,j+1

;
6: TSij ← VMP (N ′, δB);

3) VM Placement (VMP): In this section, we propose an
efficient algorithm to find the valid allocation for the scaled
virtual cluster with optimization on the VMs’ localities. The
initialization in line 1 is to calculate the partial elasticity
under the subtree TSij , which is denoted as ETSij

. In order to
adjust the partial elasticity under TSij

, we define a factor ζ.
Before allocating the computing resource, we check the scaling
condition of communication resource in line 2, which can
ensure the bandwidth B for each VM through appropriately
reserving communication resource on physical links. If δ is
not equal to 1, which means the communication resource has
scaling or releasing, we will update the bandwidth capacities
for existing VMs of Vi under the communication vary δB
in line 3. After that, we compute the available computing
and communication capacities under the subtree TSij with
the limitation of ETSij

in line 4. In line 5 to line 9, we
start to allocate the computing resource under the subtree
TSij

, and place N ′ VMs into PMs based on the remaining
available capacities proportionally. If the total number of
available physical resources cannot satisfy the scaling request,
the current partial elasticity will be negatively adjusted by the
step factor ζ, as shown in lines 8 and 9. This process will
be ended until the partial elasticity ETSij

is 0. In line 10,
communication demands of placed VMs are evenly split into
paths connecting them under the subtree TSij

.

B. Optimality Analysis

Theorem 1: VCS is an optimal solution for the Vi place-
ment under the communication cost constrain Φ.
Proof: Since the maximum number of servers in a Fat-tree
is θ3

4 , we start to proof that from θ = 2, which contains 2
PMs. For the virtual cluster Vi, we first suppose that VCS is
not an optimal solution, which mean there will exist another
solution O be the optimal one. Since the bandwidth resource is
not oversubscribed, which the bottleneck of the elasticity will
existing on the computing resource. Let Ĉa and Ĉb denote the
remaining available slots of PMs a and b under the subtree
TSij

of Vi. In order to place the scaling N ′ VMs, we assume
the optimal solution O is {x, y} (x+ y = N ′), where x VMs
place on a and y VMs place on b. Similarly, we suppose the
solution calculated by VCS is {u, v} (u + v = N ′), where u
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Algorithm 2 VM Placement (VMP)
Input: Scaling request Vi with 〈N ′, δB〉;
Output: DCN occupation state for Vi;

1: Initialize Ei and adjust factor ζi for Vi;
2: if δ 6= 1 then
3: Update the capacities of PLs for existing VMs of Vi

according to the scaling B → δB;
4: Compute R′MLij

and R′LLij
according to Ei under TSij

;
5: while Ei > 0 do
6: if N ′ ≤ R′MLij

then
7: Place N ′ VMs into PMs in TSij

(proportion based
on the remaining available capacities of PMs);

8: else if N ′ > R′MLij
then

9: Update Ei = Ei − ζ;
10: Communication demands of placed VMs are evenly split

into paths connecting them;

VMs place on a and v VMs place on b. We suppose the x > u,
then we will have y < v. The elasticity of Vi under the optimal
solution O is min{ Ĉa−x

C , Ĉb−y
C }, if x > y, then the value of

elasticity will be Ĉa−x
C . If the elasticity under the VCS solution

is Ĉa−u
C , there will be Ĉa−x

C > Ĉa−u
C . However we will have

x < u, which obeys our assumption x > u. Therefore, we can
prove that VCS is an optimal solution when θ = 2. Then we
assume that VCS is optimal when θ = k, we proof that it is
also optimal when θ = k+2. Each k+2 ports switches in the
edge layer is connected to k+2

2 PMs. We assume that vector X
is the optimal solution which X = {x1, x2, ..., x k

2
, x k

2+1}. The
placement for the items are different from VCS. Since X is the
optimal solution, each part in this set will be optimal, which is
contrary to the assumption that VCS is optimal when θ = k.
Therefore, we can prove that VCS is an optimal solution for
the Vi placement under the communication cost constrain Φ.

�

V. MULTIPLE VIRTUAL CLUSTER SCALING

This section, we extend our work into multiple VCs scaling
problem. We assume there are already existing a set of VCs
V in the DCN, and each VC uses the notation Vi to denote,
where V = {V1, V2, ..., V$}. Multiple VCs may request to
scale at the same time, however, each time slot can only deal
with one VC scaling request. We consider the performance of
VCs in the time period [0, T ] by using over-time elasticity.
For the offline multiple virtual cluster scaling, the value of T
is the amount of the VCs $. The over-time elasticity is the
summation of combinational elasticities of Vi under the time
slots during the whole time period [0, T ], i.e.,

∑T
i=0Ei. Since

the initial distribution of the VCs are different, the processing
order for the multiple VCs may lead to different result. Take
Fig. 2 for example, there are existing three VCs in the DCN,
which the existing amount of VMs for these users are 5, 2
and 7, respectively. The communication cost for there three
VCs have already changed into the position of subtree root,
which mark by cycles with different corresponding colors in

 (b). VC2->VC3->VC1(a). VC1->VC2->VC3
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Fig. 2. An example of the elasticity adjustment without lookahead.

Fig. 2. When all these three VCs send their scaling request, we
schedule them as the order VC1→VC2→VC3 as shown in Fig.
2(a). Then we will have the elasticities for VC1= 1

5 , VC2= 1
5

and VC3=1
5 , respectively. The over-time elasticity for all three

VCs 1
5 + 1

5 + 1
5 = 3

5 . When we change the schedule order
into VC2→VC3→VC1 as shown in Fig. 2(b), the elasticities
for VC1= 1

5 , VC2= 1
5 and VC3= 2

5 , respectively. The over-time
elasticity for all three VCs under this schedule strategy will
be 1

5 + 1
5 + 2

5 = 4
5 .

Theorem 2: The MVCS placement for over-time elasticity
maximization problem is NP-hard.
Proof: Given a set of scaling VCs V = {V1, V2, ..., V$} Let
the amount of existing VCs is $, and they request to scale
at the same time t. We assume the rest available resource
of the DCN at t is R. The communication cost of each
VC is related to the locality of its placement, which has
a limitation Φ defined by the uses. The goal is to place
all $ VCs with fewest physical resource with determined
capacities under the communication cost Φ. So we reduce the
original problem to the so-called variable sized bin-packing
problem [17], an NP-hard problem that find an assignment
that using the fewest bins. So, the MVCS placement for over-
time elasticity maximization problem is NP-hard. �

A. Algorithm and Description

Since MVCS placement is an NP-complete problem, we
propose a heuristic algorithm to find a consistent scaling
scheduling order that improve the over-time elasticity as
higher as possible. We take the incoming scaling request set
V = {V1, V2, ..., V$} as the input, and the output is the
occupation state for V in DCN.

The initialization in line 1 is to find the localities Sij for
VCs, and calculate the available physical resource under the
subtree TSij

. Base on that, we initialize the scaling ratio ρi,
which is the ratio between the scaling amount of Vi and the
available physical resource under the subtree TSij , i.e. 0 <
ρi < 1. After that, we initialize the upper bound of the root
position S′ij based on the communication cost Φi for VCs in
the set V . In line 2, we first sort VCs in the set V to V ′ by
localities i = arg mini S

′
ij based on the communication cost

Φi. Let V ′ is the sorting result of the scaling VCs. If the level
of S′ij are the same for the VCs, let the lower scaling ratio
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Algorithm 3 Multiple Virtual Cluster Scaling (MVCS)
Input: Scaling set V = {V1, V2, ..., V$};
Output: DCN occupation state for V ;

1: Initialize the localities Sij and S′ij , ρi and Φi for VCs;
2: Sort VCs in the set V to V ′ by localities i = arg mini S

′
ij ;

3: For VCs with the same localities, prioritize by scaling
ratio i = arg mini ρi;

4: for i = 1 to i = $ in V ′ do
5: Place Vi into the DCN;
6: Same as Algorithm 1 form line 2 to line 5;

ρi one has the higher priority in line 3. From line 4 to 6, we
start to place the VCs into DCN through prioritizing VCs in
the set V ′ with the lower locality and scaling ratio ρi. The
placement process for each VC is the same with Algorithm 1
in line 6.

VI. ONLINE MVSC (OMVSC)

This section, we online condition for multiple VCs scaling
problem. We assume the fluctuating of each VC is obey the
same distribution, standard gaussian distribution. which means
the incoming rate of the VCs are the same with the releasing
rate. It is allowed that multiple VCs make scaling requests
together, however, each time slot can only deal with one VC
scaling request. We also consider the performance of VCs in
one time period [0, T ] by using over-time elasticity.

A. Algorithm and Description

1) Initialization: We take the scaling requests V arriving at
time slot ti as the input, and the output is the occupation state
for V in DCN. Since the incoming amount of scaling requests
VCs at each time slot is uncertain, we will do preprocess for
current arrival requests, include priority ranking and future
prediction. The priority ranking for multiple scaling requests
is same with offline part, which depends on the upper bound
of the root position S′ij and the scaling ratio ρi. The future
prediction part is based on the bayesian parameter estimation
as discussed below. Users need to set a flexible limitation c,
where 0 < c < 1, for the scaling ratio ρ∗i . It means that the
flexibility of resources under the subtree S′ij should not below
c.

2) Bayesian Parameter Estimation (BPS): Based on the
current incoming scaling Vi request, we use bayesian param-
eter estimation to predict the future fluctuating statement. We
use the historical fluctuating statement before ti as our sample,
which denotes as I = {N ′i |i∈[0,ti]}. Let n denote the number
of samples in I. Before doing the prediction, we first calculate
the mean for the sample I, where µ′ = 1

n

∑n
i=1N

′
i . Let the

fluctuating of VCs with standard gaussian distribution as the
Prior distribution which means µ0 = 0 and δ20 = 1. We assume
the variance is constant, the mean for each VC will change
with the time variable. Base on the bayesian parameter esti-
mation [18], the prediction for the future fluctuating statement
will be µ = n

n+δ2µ
′.

Algorithm 4 Online MVCS (OMVCS)
Input: Scaling set V = {V1, V2, ..., V$} at time slot ti;
Output: DCN occupation state for V ;

1: Initialize the localities Sij and S′ij , ρi and Φi for VCs in
V arriving at time slot ti;

2: Same as Algorithm 3 form line 2 to line 4;
3: for i = 1 to i = $ do
4: Estimate the fluctuating mean µi for Vi based on

bayesian parameter estimation;
5: Calculate the future scaling ratio ρ∗i for Vi based on µi;
6: Set the locality property according to ρ∗i ;
7: Place Vi into the DCN;
8: Same as Algorithm 1 form line 2 to line 5;

3) Online MVSC (OMVSC): In line 2, the priority sorting
for multiple scaling requests is the same with MVCS from line
2 to 4 in Algorithm 3. From line 3 to 7, we start to process
each VC in V based on the sorting order one by one. In line 4,
we estimate the fluctuating mean µ for Vi based on bayesian
parameter estimation. Base on the predicted information of Vi,
we calculate the future scaling ratio ρ∗ for Vi, and modify the
subtree properties based on it in line 5 and 6. If the ρ∗i > c, we
set the property of the locality S′ij as private, which means the
resource of the subtree TS′

ij
only can be used by Vi. Otherwise,

we set the property of the subtree S′ij as pubic, which means
the resource under the subtree TS′

ij
can be used by any other

VCs. In line 7, we start to place the Vi into DCN calculate
the future scaling ratio ρ∗ for Vi, and the placement process
for each Vi is also the same with Algorithm 1 in line 8.

VII. EXPERIMENTS

This section conducts extensive simulations to study the
elastic VC scaling placement under three aspects: single VC
scaling, multiple VCs scaling and online multiple VCs scaling.
These experiments are conducted to evaluate the performances
of the proposed algorithms. After presenting the datasets and
settings, the results are shown from different perspectives to
provide insightful conclusions.

A. Single Virtual Cluster Scaling

1) Experiment Setting: The DCN is modeled as Fat-tree,
which the number of switches’ ports are θ = 4, θ = 6,
and θ = 8. Let the amount of PMs in the Fat-tree are
full connected with maximum number, which are 16, 54 and
128, respectively. The supplied computing and communication
resources of the PMs and PLs were real numbers uniformly
distributed between 50 and 100 units. For each group with
different switch’s port, we calculate the elasticity after doing
the scaling placement process. The results are averaged 10
times for each algorithm. We compare the proposed VCS
algorithm and two benchmark algorithms in a number of trace-
driven settings.
• Equally Scaling (ES): the scaling request of Vi is evenly

divided into several pieces, depending on the amount of
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Fig. 3. The elasticity for single VC scaling under various Fat-trees.

PMs in the sub-tree. It can obtain the load-balance for
each virtual request [1].

• Greedy Scaling (GS): the scaling request of Vi for the
PMs are depending on the amount of rest available
resource in the sub-tree, which PMs with high margin
has a high priority.

2) Experiment Results: Fig. 3 present the elasticity for
the single VC scaling condition, which the number of the
switches’ ports are θ = 4, θ = 6 and θ = 8, respectively. For
each group experiment, we use the same three algorithms:
ES, GS, and VCS, and calculate averaged 10 times of the
elasticity for various request scaling. Additionally, we have
the following observations: (i). The elasticity of the scaling
VC depends on the architectures of the Fat-tree. Since the
construction of DCNs are based on the number of switches’
ports. We can see that, the elasticity of the VC which scaling
under the θ = 4 switch is much lower than that of the fat-trees
with θ = 6 and θ = 8. (ii). The elasticity for the scaling VC
depends on the various placement algorithms. As shown in Fig.
3(a), Fig. 3(b) and Fig. 3(c), the performance of GS decreases
significantly with the increasing amount of the scaling of VC.
For ES, its performance depends on the existing localities of
existing VMs. So, the fluctuation of FFRP is much larger than
other algorithms. Compared with ES and GS, VCS has the best
performance in the elasticity across the various VC scaling.

B. Multiple Virtual Cluster Scaling

1) Experiment Setting: This section evaluates the elasticity
for the multiple VCs scaling, which use the same data set as
the single VC scaling problem. Set the VMs of the VCs scale
at one time slot are evenly distributed between 0 and 50, the
bandwidth demands δ scale between 0 and 1. Let the switch’s
port is θ = 4, θ = 6, and θ = 8 for each group. In addition to
the proposed algorithms, three baseline algorithms are used:
• Randomly Schedule Scaling (RSS): the scheduling order

for the multiple VCs is random.
• Decreasing Schedule Scaling (DSS): the scheduling order

for the multiple VCs is decreasing.
• Increasing Schedule Scaling (ISS): the scheduling order

for the multiple VCs is increasing.
2) Experiment Results: Since the scaling VMs from 0 to 50,

we calculate the even value of the over-time elasticity under

different δ between 0 and 1. We use the over-time elasticity
to evaluate the performance of the proposed algorithm, and
compare it with three base-line algorithms: RSS, DSS and
ISS. Fig. 4 presents the over-time elasticity of the multiple
VCs scaling by using different schedule strategies. For each
time slot, we allow one VC to be processed. According to
the simulation results, we have the following observations: (i).
The volatility of the multiple scaling VCs is stable. As shown
in Fig. 4, the mean value of under are marked by red lines,
which are close with each other under different algorithms.
(ii). The over-time elasticity for the multiple VCs depends
on the scheduling order. Comparing these four algorithm, the
performance of RSS is the worst one. The interval range of
ISS is better than DSS, which depends on the distribution of
the existing VMs of VCs. Compared with RSS, DSS and ISS,
MVCS has the best performance in the over-time elasticity.

C. Online Multiple Virtual Cluster Scaling

1) Experiment Setting: This section evaluates the elasticity
for the online multiple VCs scaling, which the arriving times
of the VCs were discretionary, and the scaling amount of them
were determined randomly by the tenants. We set the scaling
frequency of the VCs to 1, which means that each time slot
will have to process the scaling or releasing requests. We
ran each of our simulations for 10 time slots intervals. The
parameters and symbols that we varied in our simulations were
over-time elasticity.

Since the incoming scaling VCs are online, the placement
for the VCs at current time slot will be important for the
incoming ones at future time slots. We compare our online
multiple scaling algorithm with the one without prediction.
Fig. 5 presents the comparison of the performances for these
two solutions by calculating the over-time elasticity under the
different distribution of existing VCs with various capacity
(θ = 4, θ = 6, θ = 8, θ = 10and θ = 12). For the online
scaling, the uncertainty of VCs (the size and number) leads to
the various interval sizes. The increasing of the switches’ ports
means the exponential scaling of the PMs in the Fat-tree, and
the over-time elasticities for the VCs will have a large growth.
As shown in Fig. 5(b), when the size of the Fat-tree is not very
large (θ = 4 and θ = 6), the advantage of online scheduling
with prediction is not obvious. When the size of the Fat-tree
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Fig. 5. The elasticity for online multiple VCs scaling.

is scaling, such as θ = 8, θ = 10and θ = 12, the gap between
these two solutions will increase with the scale of the Fat-tree.

VIII. CONCLUSION

This paper considers the elastic placement for the scaling
VCs which are existing in the DCN. We proposes a maximum
elasticity scheme VCS which comes with provable optimality
guarantees for single VC scaling. After that, we extend it
into the multiple VCs scaling, and prove that multiple VCs
scaling for over-time elasticity maximization problem is NP-
hard. We propose heuristic algorithms MVCS and OMVCS for
both offline and online conditions for the multiple VCs scaling
problem. This paper focuses on the condition that VCs scaling
on both computing and communication resources, which can
also be adapted to each individual resource. Extensive sim-
ulations demonstrate that, our elastic VCs scaling placement
schemes outperform various existing state-of-the-art methods
in terms of elasticity in the DCN.
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