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Abstract—In disruption-tolerant networks (DTNs), network
topology constantly changes and end-to-end paths can hardly
be sustained. However, social network properties are observed
in many DTNs and tend to be stable over time. To utilize
the social network properties to facilitate packet forwarding,
we present LocalCom, a community-based epidemic forwarding
scheme that efficiently detects the community structure using
limited local information and improves the forwarding efficiency
based on the community structure. We define similarity metrics
according to nodes’ encounter history to depict the neighboring
relationship between each pair of nodes. A distributed algo-
rithm, which only utilizes local information, is then applied to
detect communities and the formed communities have strong
intra-community connections. We also present two schemes to
first select and then prune gateways that connect communities
to control redundancy and facilitate efficient inter-community
packet forwarding. Extensive real-trace-driven simulation results
are presented to support the effectiveness of our scheme.

Index Terms—Community detection, disruption-tolerant net-
works (DTNs), forwarding process, gateways, localized algo-
rithms, social network analysis.

I. INTRODUCTION

In disruption-tolerant networks (DTNs), network topology
constantly changes and end-to-end paths can hardly be sus-
tained. Information dissemination in DTNs, such as routing,
depends on redundancy to reduce latency and increase the
delivery ratio. Nodes in DTN usually send multiple copies to
other nodes encountered in order to forward the packet. Un-
controlled duplication and forwarding will always be the best
way to achieve the shortest latency and highest delivery ratio.
However, constraints such as buffer size and bandwidth always
exist and applications usually operate best under a moderate
trade-off between latency, delivery ratio, and redundancy.

In order to duplicate and forward the packets in a controlled
manner, inherent properties of DTNs are needed to guide the
forwarding process. Since mobility is often unpredictable and
topology changes can be rapid, traditional topology metrics,
such as distance or hop count, are unreliable for the forwarding
process. The transient topology can constantly change over
time. An example is shown in Fig.1, where the link between
4 and 8 may no longer exist in a subsequent time slot. In this
paper, we are interested in utilizing the grouping structure of
DTNs to facilitate the forwarding process. After investigating
multiple sets of real traces for DTNs [1], [2], we observed
that nodes in DTNs tend to meet a certain group of nodes
with higher probability compared to with other nodes outside
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Fig. 1. An example of a DTN. The figure on the left shows the instantaneous
topology at time 50. In this transient topology, 4 and 8 are mutually connected
while 4 and 9 are not connected. The table on the right shows the encounter
history recorded by nodes 1 to 4, 6, and 8 in time period [0,100], where ¢
represents start time and A represents contact period.

the group, and that the grouping structure remains stable over
time. Several recent research works [3], [4], [5] confirm our
observation. Using the community structure detected based
on global information, a recent forwarding scheme [5] can
achieve an acceptable delivery ratio at the cost of one fifth
of the total number of forwards to the oblivious flooding
under certain conditions. In this paper, we present LocalCom,
a community-based epidemic forwarding scheme for routing,
which efficiently detects the grouping structure using limited
local information and utilizes the grouping structure to im-
prove the forwarding efficiency.

To utilize the inherent grouping structure of DTNSs, defining
a metric to depict the neighboring relationship is the first step.
In DTNSs, nodes usually have the knowledge of their contacts,
also called encounter history, which contains both temporal
and spacial information. An example encounter history is
illustrated in the table in Fig.1. In LocalCom, we select the
statistics of the separation period to condense nodes’ knowl-
edge into the single metric that we need. A node calculates
the average separation period towards its neighbors based on
both the frequency and length of their contacts, and applies
the Gaussian similarity function [6] to depict the closeness in
the relationship. Clearly, a shorter average separation period



reflects a closer relationship. Meanwhile, the variance of the
separation period is also recorded to reflect the irregularity
in the relationship. A single metric called similarity can then
be deduced from the closeness and irregularity metrics. This
metric depicts the relationship between each pair of nodes
in the DTN and captures the core of temporal and spacial
encounter information. With the similarity metric considering
both frequency and duration of contacts, the neighboring
graph becomes a novel way to capture spatial and temporal
information using the traditional graph structure.

Several community detection schemes [4], [5] have been
proposed to design good strategies for information dissemi-
nation in DTNs. However, most of them are centralized and
focus on analysis of offline mobile traces. In this paper,
we develop a distributed scheme in LocalCom that only
requires local information to form communities. This scheme
uses an extended clique, based on virtual links to represent
the underlying community structure. These communities have
several desirable properties, such as controllable diameter and
strong intra-community connection, which can facilitate intra-
community communication based on the single-copy source
routing.

For inter-community packet forwarding using controlled
flooding, we determine the importance of gateways, and use
a pruned subset of gateways to forward packets. A gateway
is a node that has at least one edge in the neighboring
graph to nodes in other communities. LocalCom first selects
gateways and then prunes them. A static pruning scheme is
used together with a dynamic scheme, which keeps gateways
of high importance on duty, to effectively trim dispensable
gateways (i.e. reducing redundancy) while maintaining the
delivery ratio. Both schemes utilize only local information
and can be performed in a distributed manner. The trade-
off between latency, delivery ratio, and redundancy can be
achieved by setting appropriate pruning criteria.

The contributions of this paper are summarized as follows:

1) We present a similarity metric to depict the relationship
between each pair of nodes in DTNG. It captures the core
of temporal and spacial information in the encounter
history and facilities comparison.

2) We design a distributed scheme of community detection.
The formed communities show desirable properties for
intra-community communication.

3) We propose two pruning schemes which determine the
importance of the gateways based on local information
and facilitate inter-community communication.

4) We verify the effectiveness of our schemes based on real
mobile traces and simulations.

II. RELATED WORK

A. Social network analysis in DTNs

DTNs attempt to route packets via intermittently connected
nodes. Vahdat et al. proposed epidemic routing [7] which is
similar to the oblivious flooding scheme we evaluate in this
paper. Spray and wait [8] is another oblivious flooding scheme,
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but with a self-limited number of copies. MaxProp [9] and
PRoPHET [10] both select forwarding nodes based on the
nodes’ encounter history, and both are examples of how to
use system and mobility information to improve the efficiency
of forwarding from oblivious flooding.

While early work in DTNs used a variety of simplistic
random i.i.d. models, such as random waypoint, recent find-
ings [3], [11] show that these models may not be realistic.
Moreover, many recent studies [4], [11], [12] based on real
mobile traces reveal that DTNs process certain social network
properties. Therefore, the social network analysis mechanism
is a good tool for determining the properties to improve the
forwarding efficiency. Several social network metrics, which
are measured based on nodes’ direct or indirect observed
encounters, are used to guide the packet forwarding in [4].
In [5], [13], Hui et al analyze the community structure
from mobility traces and use them for forwarding algorithms,
showing a significant improvement in forwarding efficiency.
However, with a limited number of hops of local information,
neither the community detection nor the weighted network
analysis presented in [5], [13] can be used, which restricts
the practicality of the methods. In this paper, the LocalCom
scheme only needs limited local information to form commu-
nities, and achieves comparable forwarding efficiency.

B. Spectral community detection.

In traditional social network analysis, one important step is
to identify clusters. Spectral clustering [6] is a well studied
and widely used centralized clustering mechanism. It usually
involves taking the top eigen vectors of some matrix based on
the distance between vertices (or other properties) and then
using them to cluster the vertexes.

The main tools for spectral clustering are graph Laplacian
matrices [14]. The eigenvectors of the graph Laplacian en-
hance the cluster properties in the data. The core steps of the
clustering scheme are: 1) use eigen gap heuristics to determine
the number of clusters, 2) change the representation of the
graph Laplacian to a matrix that consists of its eigenvectors,
and 3) apply the simple k-means clustering algorithm [14]
to detect clusters from the eigenvector matrix. We implement
a spectral clustering mechanism, which is centralized, as a
benchmark method and use it to evaluate the performance and
accuracy of LocalCom, a localized scheme.

III. LocALCOM SCHEME

The LocalCom scheme, which detects and utilizes the
inherent social communities to facilitate packet forwarding in
DTNs, has three main steps: neighboring graph construction,
community detection, and forwarding plan determination.

A. Neighboring graph construction

The key challenge is how to represent a link between
two nodes in the DTN with on-off connections. The contact
information of a DTN node, which includes both temporal
and spacial information, is too complex to be directly used.
Therefore, we condense the encounter history associated with
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Fig. 2. Metrics comparison. A shaded box represents the period that two

nodes 4, j are within each others’ communication range in time interval [0, T'].

each edge between two nodes ¢ and j in the DTN into a
single similarity weight w; ; € [0,1]. The similarity metric
depicts the neighboring relationship and gives hints about the
forwarding opportunities between nodes. Larger similarity w;_;
indicates a better future contact opportunity between nodes
1 and j. Possible candidates include encounter frequency,
total contact period, average contact period, shortest separation
period, and average separation period.

Fig. 2 illustrates the encounter history of nodes 7 and
7. In both cases in Fig. 2(a), there are two shaded boxes,
which means that ¢ and j encounter twice in time interval 7.
The widths of the shaded boxes in the first case are larger
than those in the second case, which indicates longer contact
periods. Although the encounter frequency is the same, nodes @
and j in the first case have better communication opportunities
than in the second case. In Fig. 2(b), the average contact
periods are the same. However, the first case is preferable
since the encounter frequency is higher. In Fig. 2(c), although
the total contact periods are the same in both cases, periodic
separations enable each node to obtain information from other
parts of the network through node movement, and periodic
unions enable them to exchange this information. Therefore,
the first case still outperforms the second case. In Fig. 2(d),
if using shortest separation period metric, the second case
should outperforms the first case. However, the first case is
still preferable.

Considering Fig. 2, the values of the average separation
period comply with the conclusions in all four cases. The
average separation period, which is defined as follows, is more
comprehensive, since it reflects both the frequency and length
of the encounters.

T
AVG(D; ;) = 0—"—, (1)

where D; ; denotes the separation period between nodes 7 and
J, T is the time elapsed, n; ; represents the number of times
that 7 and j are away from each other, and 51‘,3‘ = 0 when 7
and j are within the mutual communication range; otherwise
d;; = 1. Smaller AV G(D; ;) indicates shorter communication

latency between 7 and j.

We apply the Gaussian similarity function [6] to normalize
AVG(D; ;) as follows and denote the resulting metric as
closeness C in this paper:

(AVG(D; )2

Ciﬁj =e 202 . 2)

Here, o is a scaling parameter [6] for the separation period.
The fluctuation in the separation period should not be ne-
glected. If two cases have the same average separation period,
the one with larger fluctuations would be less preferable since
the node would be more uncertain regarding the estimated
future separation period. Thus, we also need to measure the
variance of the separation period distribution to reflect the
fluctuation using irregularity metric I; ; as follows:
2
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where X; is the length of separation period .

We model the neighboring graph of a DTN as G = (V, E),
where each vertex ¢ in V corresponds to a node in the
DTN; each edge < 4,7 > in E represents that two nodes
have encountered before, and it is associated with a single-
weight metric w; ; which is converted from (C;;,I; ;) to
facilitate the subsequent community detection and gateway
pruning process. There are two possible ways of conversion:
one is to view the irregularity metric as a penalty on the
closeness metric. Therefore, w; ; = C; j —a-1; ;, where ais a
penalty parameter. « decides the importance of the irregularity
metric and it should be sufficiently small. Another way is
to filter the neighboring relationship with a certain threshold
I7 on the irregularity metric. If I; ; > I, the neighboring
relationship will be considered to be too shaky and thusly
discarded. Otherwise, w; ; = C; ;. As G is undirected, we
have w; ; = w;;. We use d; to denote the degree of node 7,
which is the sum of the weight of all edges connecting i:
di = Zjev,j;éi Wi, j-

As an example, the neighboring graph in Fig. 4 is con-
structed based on the encounter history shown in Fig. 1. Since
nodes 5 and 6 never met each other before, ws s = 0. wy 5 =1
indicates that nodes 1 and 5 are always connected.

B. Community detection

Based on the neighboring graph, we propose a distributed
scheme to identify the underlying communities, and represent
the communities with an extended clique.

We adopt normalized cuts, Ncut [6], as the benchmark
metric in community detection:

LicAniga Wi

Z Z’LGAI

Here A; (1 <1 < m) denotes the formed communities. The
numerator is the sum of the weights on all edges connecting a
node in A; to a node outside A;. The denominator is the sum
of the degree for all nodes in A;. With a small Ncut value,
the DTN will be partitioned into communities such that the

Ncut(Aq,..., A 4
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Fig. 3. Max hops to nodes in the same community.

edges between different communities have low weights, the
edges within a community have high weights, and the size of
the communities is balanced.

In Section II, we mentioned that centralized schemes such as
the spectral clustering mechanism require global information.
However, the encounter record on nodes constantly changes
and the global information is hard to collect. Therefore,
we propose a distributed algorithm for community detection.
Nodes rely on limited local information to form the communi-
ties. Each formed community will be labeled with the smallest
node ID among its members’ IDs.

Local community definition. In general, the local community
is a reflection of locality. A community can be defined based
on the notion of clique in graph theory [15]. A clique is a
subgraph in which every vertex is connected to every other
vertex in the graph. If a reasonable threshold wy is used to
filter the neighboring graph, and identify cliques on the filtered
graph, each pair of nodes in the clique will have a strong
direct neighboring relationship (similarity larger than wr).
However, the original definition for clique is too restrictive
for communities in DTNs. Some nodes may have never
encountered each other before; therefore, they do not have
a direct neighboring relationship. However, they may have a
common neighbor that has a close relationship with both. A
packet can easily be delivered via the common neighbor.

As case studies, we apply a centralized spectral clustering
analysis on the MIT Reality mining [2] and Haggle project
dataset [1]. Fig. 3 reflects the diameter of the formed commu-
nities. When the hop count for a node  is 2, it indicates that at
least one node j exists, which belongs to the same community
as 7, and that ¢ and j do not have a direct connection but are
connected by a 2-hop path in the neighboring graph. As we
can see in Fig. 3, many nodes in the same community do
not have a direct link. The community should not exclude
such multi-hop neighboring relationships, therefore we define
a virtual link as follows:

Definition 1: (Virtual link) If at least one path with up to
k hops between nodes ¢ and j exists, a virtual link can be used
to represent ¢ and j’s neighboring relationship. The virtual link
will be associated with
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Fig. 4. Local community detection, based on Fig. 1. o = 25, wp = 0.25.
Dashed boxes represents community, and numbers in small squares are the
community IDs.

is a product of all edge weights along the path. We use the
maximum value to represent the virtual link weight as opposed
to the sum of the similarity of all paths, because the calculation
of the sum of the similarity of all paths does not fit well with
single-copy source routing where only one path is selected at
a time. An example 2-hop virtual link between nodes 2 and 5
is shown in Fig. 4(b), and the weight is wg 5 = Maz{0.3 x
0.8,1.0 x 0.5} = 0.5. Direct links are virtual links with k& =
1. Based on the concept of the virtual link, we extend the
definition of clique and define the local community as the
extended clique with virtual links:

Definition 2: (Local community) For any pair of nodes in
the community, a virtual link exists and the similarity w of
the link is larger than the threshold value wr.

Here, the virtual links are bounded by k. According to the
result in Fig. 3, we can use an extended clique with 2-hop
virtual links to approximate most of the communities with
the size close to the communities detected by the centralized
mechanism. Therefore, we consider only £ = 2 in the
following discussion.

Local community detection. Since the communities in real
mobility traces tend to have a small diameter, our distributed
algorithm aims to divide the nodes into local communities
based on limited local information and minimize the normal-
ized cuts. The process consists of three steps: neighborhood
information collection, initiator selection, and local commu-
nity formation.

To form the local community, a node needs to know the
virtual links to its neighbors, as well as whether its neighbors
are connected by virtual links.

Each node i constructs its neighborhood N (7). Each node
in N (4) has a virtual link that connects to node . Node 7 also
knows N (N (%)) (or N2(7)), which includes all the nodes and
virtual links in its visible neighborhood.

In LocalCom, a node should select itself as the initiator if
its degree d; is the highest within its visible neighborhood.
If two nodes with the same degree are visible to each other,
node ID will be used to break the tie.

Each initiator ¢nit performs the following steps to form a
local community with the nodes in N (init):



1) Find a node i, ¢ € N(init) and ¢ ¢ any clique formed
by init;

2) Start a new clique A with A = {init,i}.

3) For Vj € N(init), add j to A if j has an virtual link
with a weight larger than wr to all the existing nodes
in A. Repeat this step until no more nodes can be added

to A. After that, calculate Ncut(A, A) = %

4) Repeat steps 1) to 3), until no node  satisfying condition
in 1) can be found.

5) Choose the clique with the smallest Ncut(A, A) value,
set the label of this clique as the smallest ID of its

members, and inform nodes in Ny (init).

The above heuristic method aims to minimize the normal-
ized cuts in the neighborhood division. Note that the local
normalized cut value Ncut(A, A) is computed based on the
weights on the direct links based on the initiator’s visible
neighborhood. Here A denotes nodes in the N(init) but
outside the community.

Take Fig. 4(b) as an example, where k = 2 and wp =
0.25. Node 8 selects itself as the initiator because its degree
is the highest in N2(8). 8 starts a clique with node 4, and
adds 6 because 6 has qualified virtual links to both 8 and
4. 9 will be added similarly. Since no node can be further
added into {8,4,6,9}, 8 will go back to step 1) again. This
time 8 will start with {8, 7} in step 2), and add 6. {8,7,6} is
the new tentative clique. 8 continues this process with 1, and
forms {8, 1,5}. Finally, 8 will choose A = {8,4, 6,9} from all
formed cliques {8,4,6,9}, {8,7,6} and {8,1,5} in step 5),
because it has the smallest Ncut(A, A). 8 will also propagate
the formed community {8,4,6,9} with ID 4 to N»(8).

The initiator should then propagate the formed community
to its visible neighbors. Nodes that have not been included
in the communities will exclude nodes in the formed com-
munities and continue with the initiator selection and local
community formation. We have the following property:

Property 1: (Effectiveness) The LocalCom scheme guar-
antees that nodes in the formed communities have strong
intra-community connections, and inter-community connec-
tions with low weights.

According to the steps above, each pair of nodes in a formed
clique will have a virtual link to connect them, and the weight
of the virtual link is larger than wp. LocalCom also adopts
Necut(A, A) as the criterion to determine which community
should be preserved. Assuming that the source s and destina-
tion ¢ of a packet are uniformly chosen from all nodes, and
a node randomly chooses one node it encounters as the next
forwarder for a packet, we also observe that the probability
P(A|A), which represents the probability that a packet needs
to jump into or out of community A, will be reduced since it
directly relates to the local Ncut value, Ncut(A, A). Based
on the theory of random walk on graphs [16], we have:

di  wi,

ey di di

i€A,JEA

PlicAjeA)=

Using this we obtain:

100

Héggle ‘ ‘ ‘ * Réality '
1-hop clique —+— / go | 1-hopclique —+— ¥
30 r 2-hop clique £ 2-hop clique A
- 3-hop clique % Vi = go | 3-hopclique —x Ji
3 : 3
5% 1 2,
. ,
10 [ 7 R 20 R e e e
L e | a2
KooK - ¥ Ko
0 R S B 0 \ :
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Threshold wy Threshold wy
Fig. 5. Ncut value comparison.
) .z PlieAjje A 1
PicAljeA) = Plic A = 7 Wy
(i€ A) Deadt —

Therefore, P(A|A) = Ncut(A, A). Communities will be
determined so that each P(A|A) is minimized based on the
initiator’s local view. The result may not be optimal since
initiators are selected heuristically and they have a limited
local view.

ANcut, which is the difference of Ncut value between
the centralized and our localized community detection scheme
(k =1,2,3), are shown in Fig. 5. Based on both Haggle [1]
and Reality [2] datasets, we observe that for the localized
community detection scheme with 2-hop extended clique, the
Ncut value is as low as the centralized spectral clustering
scheme when wr is around 0.5. This also validates Property 1
according to the definition of Ncut [6]. Fig. 5 also illustrates
that a 2-hop extended clique is better than a original clique in
both datasets since the ANcuts are significantly lower. The
2-hop extended clique also outperforms the 3-hop extended
clique, since it achieves similar Ncut values and requires
fewer rounds of information exchange.

C. Forwarding plan determination

Different forwarding plans are adopted for inter- and intra-
community packet forwarding in the LocalCom scheme. Since
nodes have high similarity and short hop-count distances
within the community, nodes should use the single hop source
routing for intra-community packet forwarding. The packet
will be directly forwarded along a virtual link.

Inter-community communication, which is done through
controlled flooding, mainly depends on gateways. Gateways
are nodes that have direct neighboring relationships with nodes
in other communities. Not all gateways are needed in the
inter-community forwarding since this may create unnecessary
redundancy. In LocalCom, the actual forwarding nodes, called
bridges, are selected from gateways using two marking and
pruning schemes: static pre-pruning and dynamic pruning.

Therefore, if the source and destination nodes of a packet
reside in different communities, the source first uses the intra-
community forwarding mechanism to forward the packet to
the bridges of the current community. The bridges will further
forward the packet to other communities they connect to.

Each gateway first conducts pre-pruning based on the static
local information. For a node marked to be a bridge in the



static pre-pruning, it will further determine its role dynamically
based on the information included in a received packet.

Static pre-pruning. Multiple links in the neighboring graph
between a pair of communities A and B may exist. Some
of them can be pruned according to a designed criterion to
achieve a controlled trade-off between latency, delivery ratio,
and redundancy. A gateway should mark itself as the bridge if
and only if at least one of the inter-community links it connects
to is not pruned.

Each gateway calculates its centrality for the community
pair A and B it connects. The centrality is a measurement of
the structural importance of a node. There are several ways to
measure centrality [17]. We choose betweenness, which mea-
sures how well a node can facilitate communication between
two communities in our case. The betweenness centrality of
a gateway [ in community A connecting the community B is
calculated as follows:

=2 2.
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where P; ; represents the set of all paths between i and j
in the neighboring graph, and P; ;({) denotes the subset of
P; ; containing all the paths from 4 to j that traverse through
gateway [. In Equation (6), the numerator is the sum of all
path weights in P; ;(1), and the denominator is the sum of all
path weights in P; ;. A gateway should calculate one distinct
centrality value towards each community that it connects to,
and send the centrality value to all other nodes in its local
community using the virtual links among them.

A gateway | € A now knows all other gateways in commu-
nity A connecting to B, and also knows their centrality values.
A gateway [ calculates a measurement w; to evaluate those
gateways, which belong to the same community, have higher
centrality than [/, and connect the same pair of communities
A and B. w; is calculated based on weights and represents
the combined forwarding capability of the gateways with
higher centrality than . If the combined forwarding capability
satisfies the delivery requirement, [ will be able to prune itself
to reduce the redundancy without violating the desirable trade-
off. More specifically, if both of the following two conditions
are satisfied, gateway [ prunes itself from being the bridge of
the community pair A and B:

1) I’s centrality b; is not the highest among the gateways;

2) For other gateways with higher centrality, the combined

similarity w; is equal to or larger than a threshold wr.

The combined measurement w; is calculated as follows:

(6)

I+m i—1
w; = Z (w; - H (1 —wy)), @)
=111 j=l+1

where {I + 1,1 4+ 2,...,1 + m} is the set of gateways in A
sorted by w;, and w; = 3 cpWiw - [lyepw, ,sw (1 —
w; ). A gateway ¢ may have multiple edges conr’lectin’g with
community B, and w; is the combined measurement of all the
edges. The following two properties show the effectiveness of
this pre-pruning scheme.

6

Property 2: (Connectivity) If the original neighboring
graph is connected, after the static pre-pruning, the reduced
graph G’ is a connected graph.

The two conditions clearly guarantee connectivity. If a node
is the only possible gateway for a connection between two
communities, it will be preserved because condition 1) cannot
be satisfied. Due to the existence of the centrality order,
gateways for the same community level connection will not all
be pruned although they make decisions independently. After
the pre-pruning process, all the connections between the com-
munities will be preserved. Since nodes in the communities
are connected, the connectivity of G’ is preserved.

Property 3: (Controllability) By adjusting the threshold
wr, different trade-offs between redundancy and delivery ratio
can be achieved.

The pre-pruning scheme provides wr as the parameter to
control the trade-off between redundancy and delivery ratio.
Only when a gateway [’s centrality is low enough and the
set of gateways with higher centrality is large enough will [
satisfy condition 2). So a higher wy will cause fewer gateways
to qualify for condition 2), which leads to a higher delivery
ratio and a larger redundancy.

We examine gateway 3 in Fig. 4(a) with the assumption that
wr = 0.5. Node 3’s centrality is 0.38, which is lower than
node 2’s. Also, w3 = 0.5 > wy. Therefore, node 3 will be
pruned and node 2 will mark itself as the bridge.

Dynamic pruning. In packet forwarding, each packet can eas-
ily record the ID of the last two communities it has traversed.
With this piggy backed information, some connections can be
dynamically pruned. The bridges for these connections, which
are marked in the static pre-pruning, can be pruned.
If two communities A and B have links between them on
the neighboring graph, we can denote these links together as
an edge on the community level. We use N(A) to represent
all the communities that are adjacent to A. For example, for
community 4 in Fig. 4(b), N(4) = {1,7}.
According to the two conditions in static pre-pruning, each
community-level connection always consists of at least one
bridge after the pre-pruning. If an alternative path on the
community level exists that satisfies some properties, one
community-level connection would become unnecessary and
all gateways for that connection can be pruned.
For a bridge in A which connects B, its collected local
information includes N(A), the edges on the community
level that connect A and N(A), and those edges between
communities in N(A). When receiving a packet for further
forwarding, a bridge in A then applies the following pruning
process:
1) Mark the edge on the community level e as necessary.
2) If e connects community B € N(A) and B’s community
ID is recorded in the packet, mark e as unnecessary.

3) If e connects community B € N(A), mark e as the
unnecessary edge when an edge on the community level
e’ exists; e’ connects B and C € N(A), C’s community
ID is recorded in the packet, and w, < w.
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Fig. 6. The synthetic mobility traces are generated from map of FAU.
TABLE I
Characteristics of three datasets

Dataset Haggle Reality Synthetic
Device iMotes Phone N/A
Network type Bluetooth | Bluetooth N/A
Duration (days) 3 246 10
Number of nodes 41 97 100
Number of contacts 22,459 54,667 Vary

If a bridge is not an end point of a necessary edge, it
should prune itself. The following two properties show the
effectiveness of the dynamic pruning scheme.

Property 4: (Correctness) If the original neighboring
graph is connected, all communities remain reachable for
packets after the dynamic pruning.

This property can be proved by contradiction. Suppose after
we prune one community level connection e, it is the first time
that some community becomes unreachable. Also assume e
connects A and B and the packet is currently in A. Obviously,
B must be a community that becomes unreachable since e
has been pruned. However, e can only be pruned when two
situations occur: if condition 2) applies, then the packet has
reached B, which leads to a contradiction; if condition 3)
applies, then the packet has reached C, C' and B are connected
by edge €', and ¢’ should not be pruned because of e since
we < we . Hence, B is reachable for the packet from C'
through ¢/, which also leads to a contradiction.

Property 5: (Progressiveness) Dynamic pruning reduces
unnecessary redundancy in inter-community forwarding.

The pruning process actually avoids sending packets back
to the community that they originates or when a better alter-
native edge exists. By applying dynamic pruning, unnecessary
forwarding will be avoided and the number of actual bridges
will be further reduced.

Take gateway 7 in Fig. 4(a) as an example. Assume it
receives a packet containing the community /D = {6,4}.
Edge < 1,7 > will be marked as the unnecessary edge because
the packet comes from community 4 and < 5,8 > which
also connects to community 1 which has a higher weight.
Therefore, gateway 7 will not select itself as a bridge.

IV. SIMULATION AND ANALYSIS

We have conducted simulations to evaluate the effectiveness
of the LocalCom scheme in DTNSs.

A. Simulation setup

We ran trace-driven simulations with two different datasets:
Haggle project [1] and MIT Reality Mining [2]. In Haggle
project, 41 iMotes were distributed to students attending
Infocom 2005. In Reality, 97 smart phones were deployed to
students and staff in MIT. In both datasets, bluetooth contacts
were logged and provided. Each contact record includes the
start time, end time, and ID of the nodes in contact. For each
round of simulation, a portion (default 40%) of the dataset
was used as the contact history. The remaining portion is used
to evaluate the performance of packet forwarding after the
community detection and gateway pruning.

We also adopted a community mobility model proposed
in [11], which is considered to be more realistic than i.i.d.
models. We generated synthetic traces from maps of the
Florida Atlantic University (FAU) buildings as shown in Fig. 6
(a). The class schedules and enrollment information of 100
graduate and undergraduate students from three departments
were collected. The trace of a node, which represents a
network device carried by a student, was generated according
to a Markov chain as illustrated in Fig. 6 (b). The states and
probabilities were determined by the students’ class schedules
and enrollment information. If two nodes were in the same
building at the same time, they had a probability (default 0.6)
to contact each other.

For each simulation, nodes were uniformly selected to be
the source or destination of a packet, and 1,000 packets
were generated. All packets had an expiration TTL, which
represents the delay requirement. Each node knew only the
contact history of itself before the community detection. Each
simulation was repeated 30 times with different random seeds
for statistical confidence. At each round, default £ = 2, and
a = 0.1. We adopted the average separation period of all
nodes as o and the threshold I7 = (TTL/2)?.

In our simulations, we primarily focused on two parameters:
1) Delivery ratio: the proportion of packets that arrived at the
destination within the delay requirement; and 2) Total number
of forwards: the value reflects the overhead in terms of the
number of times a packet forward occurred in the DTN.

We now compare the effectiveness of our scheme with three
other techniques: simple flooding, PRoPHET [10], and Bubble
Rap [5]. In simple flooding, a node copies a packet to every
new node it encounters that has not received a copy. PROPHET
is a standard non-oblivious forwarding scheme for DTNs. A
node forwards a packet to a node encountered if that node
has a higher delivery predictability. Bubble Rap utilizes the
community structure based on global encounter history. The
centralized scheme can achieve a good delivery ratio at a small
cost. To illustrate the effectiveness of our scheme uniformly,
we set wr = 0.5 and wyr = 0.8 in all simulations. These
two parameters are actually adjustable and a better result can
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be achieved if these parameters are tuned according to the
scenarios in the specific application.

B. Simulation results

As shown in Figs. 7 and 8, the delivery ratio and the
total number of packet forwards both increase as the delay
requirement on the packet lessens. The delivery ratio and cost
of the simple flooding scheme represent the upper bound in all
three cases. Since the simple flooding scheme utilizes all the
possible paths over time to forward the packet, if a path that
can satisfy the delay requirement exists, it will be included. At
the same time, the delivery ratio of our scheme outperforms
PRoPHET and Bubble Rap in all three scenarios.

The three datasets represent three different scenarios. The
Reality datasets are scenarios that contain many communities
and the frequency of contacts are also lower than the other
two cases. All four schemes can only achieve a delivery
ratio of 30% to 40% when the expiration TTL is three days.
The LocalCom scheme achieves a delivery ratio close to the
upper bound indicated by the curve for simple flooding, and
clearly outperforms PRoOPHET and Bubble Rap in this case.
The reason for this is that a packet will be broadcast at the
community level in LocalCom if the source and destination are
in different communities. Therefore, if the packet forwarding is
within a community, the source should know the path with the
shortest predicted delay; if not, the community level broadcast
has a good chance to include the path with the shortest delay.
The replication strategy in Bubble Rap is too conservative
in this case, therefore it produces a lower delivery ratio as
illustrated in Fig. 7(a).

In Fig. 8(a), the total number of forwards in the LocalCom

scheme is higher than PRoPHET and Bubble Rap, which is
also due to the community level broadcast. The number of se-
lected bridges is high since the number of communities is high
in this scenario. Using the local community detection method,
eight communities can be detected in the reality dataset.
However, the number of forwards is only 1/3 compared to
the simple flooding scheme. Simple flooding is impractical in
many applications because the large number of forwards will
drain the bandwidth and storage of the DTN.

When compared to Bubble Rap, the number of forwards
for LocalCom is around 20% more in Fig. 8(a), which is
considered acceptable since we only utilize local information,
and the delivery ratio is higher in this scenario. The excessive
redundant inter-community forwards are effectively reduced
since we adopt two gateway pruning methods in our scheme.

The Haggle dataset contains fewer nodes and also fewer
communities. Nodes meet more frequently in this dataset.
Therefore, the delivery ratio of all four schemes is also
higher in Fig. 7(b) than in the other two datasets. When the
delay requirement is within three to six hours, our scheme
outperforms PRoPHET and Bubble Rap by approximately
15%. The delivery ratios of all schemes are close to each other
when the expiration TTL is three days. This indicates that
LocalCom can achieve a shorter delay when nodes encounter
each other frequently.

In Fig. 8(b), the total number of packet forwards in Local-
Com is lower than that of PROPHET and is close to that of
Bubble Rap. The reason for this is because having a small
number of communities makes a community level broadcast
less costly. Considering this fact together with the delivery
ratio, LocalCom shows a clear superiority over other schemes.
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For the synthetic dataset in Figs. 7(c) and 8(c), we use
a moderate number of underlying communities (six detected
by the spectral clustering mechanism), and observe contact
frequency between that of the Haggle and Reality datasets.
Our scheme still shows a clear improvement in delivery ratio
towards other schemes except simple flooding, at the cost of
a slightly larger total number of forwards.

Figs. 9(a) and 9(b) illustrate the effectiveness of the gateway
marking and pruning process. We vary the way that the group
of 100 students is constructed in the synthetic dataset to adjust
the number of underlying communities, and the expiration
TTL is one day. Fig. 9(a) illustrates that both static pre-
pruning and dynamic pruning only slightly reduce the delivery
ratio. Both methods effectively reduce the number of excessive
redundant inter-community forwards as shown in Fig. 9(b).

Figs. 10(a) and 10(b) are based on a synthetic dataset with
six communities. The expiration TTL is six hours so that
the differences in delivery ratio are sharpened. The results
confirm Property 3, a desirable tradeoff between redundancy
and delivery ratio that can be achieved by adjusting wr. Larger
wr causes fewer gateways to be selected in static pre-pruning.

In summation, LocalCom outperforms the centralized
social-based scheme Bubble Rap and contact history based
scheme PRoPHET in terms of delivery ratio, especially with
a moderate delay requirement. Although the total number of
forwards of LocalCom is slightly larger than Bubble Rap and
PRoPHET, it is significantly lower than that of simple flooding
and should be considered acceptable in most applications.
Improvement is consistently shown in scenarios with different
contact patterns and underlying communities. Considering that
nodes only need local information of limited hops to form
communities and prune gateways, LocalCom is certainly an
efficient distributed forwarding scheme to achieve the desirable
tradeoff among latency, delivery ratio, and redundancy.

V. CONCLUSION

Social network properties are observed in many DTNs and
tend to be stable over time. In this paper, we seek to utilize
the community structure, which is based on social network
properties, to improve routing performance. We define the
similarity metrics based on nodes’ encounter history to depict
the neighboring relationship between nodes. The communities
based on real mobility traces tend to show limited diameter
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Fig. 10. Controllability by adjusting w.

by applying a spectral clustering mechanism. We develop a
distributed algorithm which only utilizes local information to
detect communities. We also present two schemes to mark and
prune gateways between communities to achieve configurable
trade-offs among latency, delivery ratio, and redundancy. Ex-
tensive real-trace-driven simulation results are presented to
support the effectiveness of LocalCom. In the future, we
plan to study the self-limiting, epidemic routing based on the
detected community structure. Nodes will adaptively control
the scoping and traffic rates based on their importance and type
of communication (intra- or inter-community communication).
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