Task Al
with

ocation for Stream Processing

Recovery Latency Guarantee

Hongliang Li, Jie Wu, Zhen Jiang, Xiang Li, and Xiaohui Wei

lihongliang@jlu.edu.cn

College of Computer Science and Technology, Jilin University, Changchun, China

Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

¢y

Stream Processing Application and Model

e Applications and Systems
* Continuous, online, realtime or near realtime

 High demand: data analyzing/monitoring for social network, production line, scientific
experiment, etc.

e Storm, Spark streaming, S4, Millwheel, Flink

e Stream Processing Model
* On-the-fly, unable to obtain complete data beforehand

e Stream topology

 Workflow: tasks and links
* Directed Acyclic Graph (DAG) of

e Strict latency constraint: end-to-end
* Task allocation problem (failure-free)

 Assign task/links to resource

* Balance latency on each path, avoid bottlenecks

* Optimization (bin packing, knapsack)

Fault-tolerant for Stream Processing

* Failure Effects

* Vulnerable to failures: one-pass processing, in-memory processing, hard to recover from failures
* Task failure: loss of internal state and data
* Processor failure: multiple tasks on the processor fail at the same time

* Fault-tolerant Mechanisms

* Active replication: high failure-free cost (Borealis)
e Upstream backup + Checkpointing: recovery latency (Storm, Spark streaming, S4, Millwheel)

* Recovery latency
* The time used to recovery from any failure, largest recovery latency of all tasks
* Task allocation plan & stream topology

5 \ e

o),

¥ 4 &

Gy

Contributions

* Failure Effect Model

* Recovery latency, Topology and Allocation

* Task allocation problem considering recovery latency as a constraint

 Algorithms and results

A \"\7.,4 v

o)

:;;Lf;

Gy

Failure Effect Model (1)

* Recovery latency hy =1y + Ty

1) Upstream latency (r): the time consumed on retrieving backup data
e Can be cascading (related to topology and allocation)
2) Reprocessing latency (t): the time spent on reprocessing data

* Related to checkpoint interval (assumed to be given as an input)

* Cascading effect in correlated failures

* Correlated failures: adjacent tasks failure together
* Downstream task must wait for its dependent upstream task(s) to finish recovery

0 Vu€eUy: fu=0
Ty *= max Aoy otherwise
uerafu=1

o)

&

Gy

Failure Effect Model (2)

Case I ha=1 hy,=4 h.=2

Recovery Latency 4’@ >@ C

—>» Data -....y Replay Backup Data
(f) Task @ Failed Task h, Recovery Latency

e

% &

¢y

Failure Effect Model (2)

Casel hﬂ:l hb= hc=
Recovery Latency 4)@ >@ >@—>
Case I1 ha =1 hc =
Unrelated Failures
max{1,2}=2 L 7‘ >b) , 7‘—’

—>» Data -....y Replay Backup Data
(f) Task @ Failed Task h, Recovery Latency

e

&

¢y

Failure Effect Model (2)

Casel ha =1 hb =
Recovery Latency —)@ >@

Case I1 ha =1
Unrelated Failures

max(12i=2 | .. @ >b).
Case 111 hb= hc =4+2=6
Correlated Failures > <: >
max{4,6}=6 . 1‘ .. .
—>» Data -....y Replay Backup Data

(f) Task @ Failed Task h, Recovery Latency

e

¥ 4 3

¢y

Task Allocation for Stream Topology (1)

* Correlated tasks: adjacent tasks on the same processor
* Tasks on the same processor fail together in a processor-level failure

* Task allocations cause correlated tasks that affects the recovery
latency in a processor-level failure.

 Assign tasks to processors (bin packing problem, NP-hard)

e Task = Item, Processor = Bin
* Height and Width

* Item ---- the reprocessing latency and resource requirement of a task
* Bin ----the recovery latency constraint and the resource capacity of a processor

&3 T4k Z

Recovery Latency

4 2 3 1 |:
ONOSONONE
2 1 |

4

Stream Topology

K={a,b,c,d}, H(p)=10 :

When K={a,b,c,d}, H(G)=10.

o),

Task Allocation for Stream Topology (2)

Task Allocation : P1| a | b |cld : Pl| a| b P2|c|d

..

Recovery Latency : h,

10
8
: o| L ey
4|2 b 4 a: b = s 1(1
[- C
tv 4 2 3 1 ; t r t = . 3 d
@)@ L "k fe |ra
W, 3 4 2 1 | W, Wb WeWg . W, Wb W, Wy :
K={a,b,c,d}, Hp)=10 : Ki={a,b}, H(p1)=6 K2={c,d}, H(p2)=4
Stream Topology : H(G)=max{H(p1),H(p2)}=6
When K={a,b,c,d}, H(G)=10. When K1={a,b} and K2={c,d}, H(G)=6.
Case 1 Case 11

=
B
-
-’

¢y

Task Allocation for Stream Topology (2)

Task Allocation P1| a b c|d P1| a b P2 |c|d P1| a |c P2 b |d
Recovery Latency : h, h, h, h,
© 10
8
tl) 6 T._._.tl_)._.j.
4 a b 4 a : b = s {1
= R c b
tva 2 3 1 | t, r, t,* 1, |a 3 d 2 d
—{(a) (b)) ()| : o) te g : ot
W3 4 2 1 |i W, Wb WeWag | W, Wh W, Wy W, We W, Wy
K={a,b,c,d}, H(p)=10 : K1={a,b}, H(p1)=6 K2={c,d}, H(p2)=4 : K1={a,c}, H(p1)=4 K2={b,d}, H(p2)=2
Stream Topology § H(G)=max{H(p1),H(p2)}~6 § H(G)=max{H(p1),H(p2)}~4
When K={a,b,c,d}, H(G)=10. When K1={a,b} and K2={c,d}, H(G)=6. When K1={a,c} and K2={b,d}, H(G)=4.
Case 1 Case 11 Case 111

How to allocate resource for tasks considering recovery latencies caused by
correlated failures?

Task Allocation Problem with Recovery
Latency Guarantee

m L [d [
minimize Y=y * Minimize amount of processors used
j=1

n
subject to Zwixij <1, j€A{l,..,m} * Constraints

zjnl * Resource capacity

Zl% =1, i€ {l,.,n} « Allocation

;—(G) — max h, < H * Recovery latency upper bound
y; €0/1, Vi e{l,.,m}

z;; € 0/1,Vi € {1,..,n},Vj € {1,..,m}

o)

¥

Algorithms

e 2SP-based greedy algorithms: NFDH, FFDN, BFDH
* Sort items according to their heights (reprocessing latency)

* Pack current item in the head of the queue to a bin according to NF/FF/BF strategy
* Check bin height (recovery latency) constraint

* Observation: tasks with more adjacent tasks are more likely to cause correlated
failures

* Proposed RTAP algorithm

* Sort items in descending order according to packing “hardness”

* Partition items into groups, avoid putting tasks that may break the recovery latency
constraint in the same processor

* Apply 1BP methods (NF/FF/BF) to each group
* Computational complexity O(n - (log(n))?)

B
<8
B

&3 ' X A

Test Stream Topologies

Sentiment

p=20/30 p=20/30
® task
&) —>» connection
HI())L 'STO(;g:)cs L _’: auto-scale tasks
(a) Tree topology (b) Sequential-dominated topology (c) Parallel-dominated topology

Type | [V] | |A] a | B v
S-Tree 33 32 0.3 | 04 2
L-Tree 220 230 0.2 | 0.3 2

e The average width of items, denoted by a = Ave(w,).
e The average height of items, denoted by 8 = Ave(t,).
S-Guru 09 95 0.3] 0.5 3.1 e The average degree of tasks, denoted by v = Ave(|D,|+
L-Guru | 127 239 0.2 | 0.2 3.6 |Uy|)-

S-Senti 92 560 | 0.2 | 0.2 7

L-Senti 92 1050 | 0.2 | 0.2 | 22.5

Results

Algorithm S-Tree L-Tree S-Guru L-Guru S-Senti L-Senti
Y ms Y ms Y ms Y ms Y ms Y ms
FFDN 30 22 125 130 32 22 82 14 38 22 45 23
NFDN 36 98 149 93 38 12 89 12 47 13 54 13
BFDN 29 11 113 131 32 17 81 14 38 18 45 16

RATP-FF 23 37 135 329 27 68 72 37 32 33 40 48
RATP-NF 44 51 165 268 39 40 84 49 43 38 56 47
RATP-BF 21 37 101 305 25 33 71 42 30 35 41 48

Note: Y 1s the amount of bins used.

* ms-level execution times: applicable to task allocations and online adjustments

e 15-25% less processors used comparing with 2SP-based benchmarks.

* 4k

4y

Future Works

* Extended version with more details in the approach and experiments
* Considering resource sharing among failed tasks and failure-free tasks

* Implementation and integration with stream processing systems

Thank you very much!

* Hongliang Li
* [ihongliang@jlu.edu.cn

* College of Computer Science and Technology, Jilin University, Changchun, China
* Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

#% &

4y

