
Task	Allocation	for	Stream	Processing	
with	Recovery	Latency	Guarantee

Hongliang	Li,	Jie Wu,	Zhen	Jiang,	Xiang	Li,	and	Xiaohui Wei
lihongliang@jlu.edu.cn

College	of	Computer	Science	and	Technology,	Jilin	University,	Changchun,	China
Department	of	Computer	and	Information	Sciences,	Temple	University,	Philadelphia,	PA,	USA	



Stream	Processing	Application	and	Model
• Applications and Systems

• Continuous, online, realtime or near realtime
• High demand: data analyzing/monitoring for social network, production line, scientific
experiment, etc.

• Storm, Spark streaming, S4, Millwheel, Flink
• Stream Processing Model

• On-the-fly, unable to obtain complete data beforehand
• Stream topology

• Workflow: tasks and links
• Directed Acyclic Graph (DAG) of

• Strict latency constraint: end-to-end
• Task allocation problem (failure-free)

• Assign task/links to resource
• Balance latency on each path, avoid bottlenecks
• Optimization (bin packing, knapsack)



Fault-tolerant	for	Stream	Processing
• Failure Effects

• Vulnerable to failures: one-pass processing, in-memory processing, hard to recover from failures

• Task failure: loss of internal state and data

• Processor failure: multiple tasks on the processor fail at the same time

• Fault-tolerant Mechanisms
• Active replication: high failure-free cost (Borealis)
• Upstream backup + Checkpointing: recovery latency (Storm, Spark streaming, S4, Millwheel)

• Recovery latency
• The time used to recovery from any failure, largest recovery latency of all tasks
• Task allocation plan & stream topology



Contributions

• Failure Effect Model
• Recovery latency, Topology and Allocation

• Task allocation problem considering recovery latency as a constraint

• Algorithms and results



Failure	Effect	Model	(1)

• Recovery latency
1) Upstream latency (r): the time consumed on retrieving backup data

• Can be cascading (related to topology and allocation)
2) Reprocessing latency (t): the time spent on reprocessing data

• Related to checkpoint interval (assumed to be given as an input)

• Cascading effect in correlated failures
• Correlated failures: adjacent tasks failure together
• Downstream task must wait for its dependent upstream task(s) to finish recovery



Failure	Effect	Model	(2)



Failure	Effect	Model	(2)



Failure	Effect	Model	(2)



Task	Allocation	for	Stream	Topology	(1)

• Correlated tasks: adjacent tasks on the same processor
• Tasks on the same processor fail together in a processor-level failure

• Task allocations cause correlated tasks that affects the recovery
latency in a processor-level failure.

• Assign tasks to processors (bin packing problem, NP-hard)
• Taskà Item, Processorà Bin
• Height and Width

• Item ---- the reprocessing latency and resource requirement of a task
• Bin ---- the recovery latency constraint and the resource capacity of a processor



Task	Allocation	for	Stream	Topology	(2)



Task	Allocation	for	Stream	Topology	(2)



Task	Allocation	for	Stream	Topology	(2)

How to allocate resource for tasks considering recovery latencies caused by
correlated failures?



Task	Allocation	Problem	with	Recovery	
Latency	Guarantee

• Minimize	amount	of	processors	used

• Constraints
• Resource	capacity

• Allocation

• Recovery	latency	upper	bound



Algorithms
• 2SP-based greedy algorithms: NFDH, FFDN, BFDH

• Sort items according to their heights (reprocessing latency)
• Pack current item in the head of the queue to a bin according to NF/FF/BF strategy
• Check bin height (recovery latency) constraint

• Observation: tasks with more adjacent tasks are more likely to cause correlated
failures

• Proposed RTAP algorithm
• Sort items in descending order according to packing “hardness”
• Partition items into groups, avoid putting tasks that may break the recovery latency
constraint in the same processor

• Apply 1BP methods (NF/FF/BF) to each group

• Computational complexity



Test	Stream	Topologies	

•



Results

• ms-level execution times: applicable to task allocations and online adjustments

• 15-25% less processors used comparing with 2SP-based benchmarks.



Future	Works

• Extended version with more details in the approach and experiments

• Considering resource sharing among failed tasks and failure-free tasks

• Implementation and integration with stream processing systems



Thank	you	very	much!

• Hongliang Li
• lihongliang@jlu.edu.cn

• College	of	Computer	Science	and	Technology,	Jilin	University,	Changchun,	China
• Department	of	Computer	and	Information	Sciences,	Temple	University,	Philadelphia,	PA,	USA	


