J. Parallel Distrib. Comput. 86 (2015) 1-15

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A Knapsack-based buffer management strategy for delay-tolerant

networks”

@ CrossMark

En Wang®*, Yongjian Yang?, Jie WuP

2 Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China
b Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, United States

HIGHLIGHTS

We propose a theoretical message scheduling and drop strategy in DTNs.
We improve the theoretical strategy into a practical scheduling and drop strategy.

The proposed strategy utilizes the knapsack model to deal with messages in different sizes.

]
[
o We propose an efficient local parameter collection method to estimate global parameters.
[]
[]

We conduct extensive simulations on both synthetic and real mobility traces.

ARTICLE INFO

ABSTRACT

Article history:

Received 21 January 2015
Received in revised form

26 May 2015

Accepted 26 July 2015
Available online 3 August 2015

Keywords:

DTNs

Congestion
Knapsack problem
Scheduling

Drop

In delay-tolerant networks, the dramatic change of topology and the frequent interruption of connections
make it difficult to forward the message to destination. Routing protocols in DTNs seek to improve the
delivery ratio through increasing the number of message copies. However, the redundant message copies
easily cause the occurrence of buffer’s overflowing. In this paper, in order to maximize the utilization
of network resources, especially when the bandwidth is limited and the message sizes are different, we
present a theoretical framework called the Knapsack-based Message Scheduling and Drop strategy in
Theory (KMSDT) based on Epidemic routing protocol. KMSDT sorts the messages in the buffer according
to the per-unit utility and, if buffer overflows, decides which message to drop based on the solution to the
knapsack problem. Furthermore, a practical framework called the Knapsack-based Message Scheduling
and Drop strategy in Practice (KMSDP) is also developed. Rather than collecting the global statistics as
done in KMSDT, KMSDP estimates all the parameters through the locally-collected statistics. Simulations
based on both synthetic and real mobility traces are done in ONE. Results show that, without affecting the
average delay and overhead ratio, KMSDP and KMSDT achieve better delivery ratio than other congestion
control strategies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

wildlife tracking [12], and pocket-switched networks [31,30].
Fall[9] puts forward this new network concept in SIGCOMMO3. The

Delay-tolerant networks (DTNs) [4,9], are a kind of challenged
networks in which end-to-end transmission latency may be
arbitrarily long due to the occasional connections. An available
connected source-to-destination path may not exist anytime. DTNs
have been proposed to be used in interplanetary networks [1,33],
battlefields [16], disaster response networks [26], rural areas [21],

* A conference version of the paper has appeared in Proceedings of EWSN 2015.
* Corresponding author.
E-mail addresses: wangen0310@126.com (E. Wang), yyj@jlu.edu.cn (Y. Yang),
jiewu@temple.edu (J. Wu).

http://dx.doi.org/10.1016/j.jpdc.2015.07.008
0743-7315/© 2015 Elsevier Inc. All rights reserved.

nodes in DTNs exchange their messages when they encounter each
other. Successful delivery occurs only when one or more infected
nodes encounter the destination node.

Recently, the topology of mobile ad hoc network is regarded
as connected graph, through which the end-to-end paths can
be established. However, DTNs are occasionally connected and
end-to-end paths are commonly unavailable due to the mobil-
ity of nodes and instability of links. A bundle layer including
the store-carry-forward paradigm [5] and the custody-transfer
thought is proposed to solve the above problems. It requires the
node to carry a bundle and forward it to a reliable hop until
the time-to-live (TTL) of the bundle expires. With this in mind,

http://dx.doi.org/10.1016/j.jpdc.2015.07.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.07.008&domain=pdf
mailto:wangen0310@126.com
mailto:yyj@jlu.edu.cn
mailto:jiewu@temple.edu
http://dx.doi.org/10.1016/j.jpdc.2015.07.008

2 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

Node A Node B
W Connection Message ¢
Message b Message d

Question: when connection is established
which message to send first

Message a Message ¢
Message b Message d
@~ Message ¢

-
Question: when overflow occurs
which message to drop

Fig. 1. An illustration of the message scheduling and drop problem.

choosing the suitable nodes to forward messages is the key point
in DTNs. Since the traditional connection-based routing protocol is
not available any more, many research efforts [34,24] have focused
on developing effective routing protocols in DTNs. However, the
proposed routing protocols seek to improve delivery ratio through
increasing the number of message copies, and store the message
until it finds an available link to use. The overhead in restricted
bandwidth and the overflowing in limited buffer space are often
neglected [29]. Especially in the realistic network environment, the
congestion problem becomes more obvious.

The message scheduling and drop problem is illustrated in
Fig. 1. When node A whose buffer stores messages a and b
encounters node B, node A need to decide which message to send
first. Similarly, when the buffer of node A overflows, it should
decide which message to drop among the already stored messages
(messages a and b) and the new comer (message c). In order
to deal with these buffer-management problems, we present the
Knapsack-based Message Scheduling and Drop strategy in Theory
(KMSDT) and applies it on DTNs under Epidemic routing. First of
all, KMSDT calculates the utility value of each message through
evaluating the impact of either replicating or dropping a message
on delivery ratio. Secondly, KMSDT sorts the messages according
to their per-unit utilities, and whether or not to drop the message
is also decided based on the solution to the knapsack problem.
However, to calculate the utility, KMSDT requires some global
information of the network. Therefore, it is difficult to directly
implement KMSDT in practice, especially in the intermittently-
connected networks. To overcome the problem, we finally propose
another strategy called the Knapsack-based Message Scheduling
and Drop strategy in Practice (KMSDP), which is a distributed
algorithm and estimates the global network parameters through
locally collected statistics. Simulations based on synthetic and real
mobility traces are done in ONE, and results show that KMSDP and
KMSDT achieve better performance than other congestion control
strategies in terms of delivery ratio.

In this paper, we argue that GBSD [15], which adopts the non-
heuristic strategy and unifies the scheduling and drop problems,
is state of the art. However, despite the elegance of the approach,
GBSD has the following drawbacks: (1) It neglects the failure of
transmission due to the limited bandwidth. (2) When messages
of different sizes coexist in the network, GBSD drops the message
with the lowest utility; however, this strategy is not necessarily
optimal. (3) When calculating the utility of a given message i, GBSD
does not consider the impact of the copies of message i, which will
be generated in remaining TTL on the delivery ratio. (4) The method
of estimating the parameters is not applicable when message sizes
differ.

The proposed KMSDT calculates the probability of successful
delivery in limited-bandwidth situations according to the contact-
time distribution. When buffer overflows, KMSDT maximizes the
delivery ratios of messages in different sizes based on the solution
to knapsack problem. Furthermore, we improve the original GBSD
utility-calculation model by taking into consideration of more
copies of a given message being created in the future. In addition,
the network parameters are collected independently for messages
of different sizes. Through the above methods, the four drawbacks
of GBSD are solved.

The main contributions are summarized as follows:

(1) We propose a message scheduling and drop strategy in theory
(KMSDT) based on the improvement of GBSD [15]. It calculates
the probability of successful delivery for limited-bandwidth
situations according to the contact-time distribution. When
buffer overflows, KMSDT maximizes the global delivery ratio of
messages in different sizes based on the solution to knapsack
problem.

(2) We enhance the KMSDT into a knapsack-based message
scheduling and drop strategy in practice (KMSDP) through
collecting the local network parameters independently for
messages in different sizes.

(3) We conduct extensive simulations on both synthetic and real
mobility traces. The results show that KMSDP and KMSDT
achieve a better delivery ratio than other congestion control
strategies without affecting the average delay or overhead
ratio.

The remainder of the paper is organized as follows. We intro-
duce the related work in Section 2. The knapsack-based scheduling
and drop strategy in theory (KMSDT) and in practice (KMSDP) are
presented in Sections 3 and 4, respectively. In Section 5, we evalu-
ate the performance of KMSDT and KMSDP through extensive sim-
ulations. We conclude the paper in Section 6.

2. Related work

The classical Epidemic routing protocol [27] utilizes the
database replication technology to disseminate messages in
DTNs. Through Epidemic routing protocol, the random pair-wise
exchanges of messages ensure eventual message delivery. After
sufficient exchanges, each non-isolated node eventually receives
all the messages and end-to-end packet transmission is enabled.
Several simple drop strategies for Epidemic routing are listed
as follows: (1) drop front (DF) [20], in which the message of
longest queueing time in the buffer is dropped, when the buffer
overflows; (2) drop last (DL), in which the last message received
in the buffer is dropped; (3) drop oldest (DO), in which the
message in the buffer with the smallest remaining TTL is dropped,;
and (4) drop youngest (DY), in which the message in the buffer
with the largest remaining TTL is dropped. DF and DO achieve
better performances compared with the other two strategies.
However, researchers have also proposed some more refined
buffer-management strategies: Lindgren and Phanse [18] assess
a series of congestion-control strategies based on heuristic ideas,
and confirm that combining the buffer-management strategy and
routing protocol can achieve more efficient utilization of the
network resources. Wahidabanu and Fathima [28] sort messages
into different queues according to their priorities. When buffer
overflowing occurs, the messages with lower priorities are
dropped. To reduce the impact of dropping action on the global
network performance, Dohyung et al. [6] drop the messages with
the largest expected number of message copies. Erramilli and
Crovella [8] present a strategy to schedule the messages according
to their priorities, which are calculated based on the distance from
source to destination. They also notice the lack of a non-heuristic

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 3

buffer-management model in DTNs. In [10], they propose a Social
Selfishness Aware Routing (SSAR) algorithm, which considers
both users willingness to forward and their contact opportunity,
resulting in a better forwarding strategy than purely contact-
based approaches. However, there are following drawbacks of
SSAR compared with our proposed schemes. (1) SSAR focuses on
choosing the appropriate node for forwarding message, and takes
the node’s willingness and contact probability with destination
into consideration, while neglecting the message’s own attributes.
(2) They assume each node has unlimited buffer for its own
packets, but limited buffer for others, which is not reasonable
in DTNs. (3) The SSAR adopts the heuristic algorithm, but our
scheme uses the non-heuristic strategy, which could dynamically
adapt to the changing topology in DTNs. (4) SSAR is a node-
centered strategy, while our scheme is message-centered strategy,
which means that SSAR could not address the following situation:
a node encounters another high-utility node, while it forwards
a low-utility message to the encounter. In [17], they propose
methods to eliminate unnecessary forwarding redundancy and
ensure efficient utilization of network resources. The existing work
is also similar with our proposed scheme, however, there are
following drawbacks of existing work compared with our proposed
schemes. (1) It is really difficult for a node to accurately obtain the
list of messages holding by the surrounding nodes in DTNs. (2) The
existing work requires the current node to choose appropriate next
hop according to the list of messages holding by the surrounding
nodes, in order to reduce forwarding redundancy. However, it does
not consider the message copies holding by the remoter nodes.
(3) The utility of a message in existing work could only eliminate
the local redundancy and reflect the message’s influence on local
delivery ratio. However, our proposed scheme calculates the utility
value of each message through evaluating the impact of either
replicating or dropping a message on global delivery ratio. (4) The
existing work adopts the heuristic algorithm, but our scheme uses
the non-heuristic strategy, which could dynamically adapt to the
changing topology in DTNs.

All the above buffer-management strategies adopt the heuristic
algorithm and cannot dynamically adapt to the changing topology
in DTNs. Therefore, the solutions for certain performance metrics
(such as delivery ratio, average delay) are suboptimal. Some
research groups have tried to develop a non-heuristic buffer-
management strategy by dynamically collecting the network
parameters, and then they obtain the optimal solutions for
delivery ratio or average delay. For example, Yong and Meng [32]
propose an adaptive and idealized buffer-management strategy
considering both the limited bandwidth and the different message
sizes. However, this strategy assumes that network parameters
can be collected through the control channel and the unfinished
transmission of messages can be continued utilizing the next
opportunity; with this in mind, the assumptions are impractical in
DTNs. Elwhishi et al. [7] propose a scheduling scheme for Epidemic
routing and two-hop forwarding. They obtain the optimal solution
for delivery ratio and average delay by solving the relevant
ordinary differential equations. They assume that all messages in
the network are of the same size and the method used to collect the
network parameters does not achieve accurate values. In addition,
they do not consider the impact of bandwidth on delivery ratio.
Krifa and Barakat have published three papers in this research
area. In [14], to optimize delivery ratio, they estimate the utility
value of a given message by calculating the impact of replicating
or dropping the message on delivery ratio, and then they drop
the message with the smallest utility. Based on the result of [14],
the work in [13] enhances the scheduling strategy and prioritizes
the messages with the highest utility. Taking into account the
strategy proposed in [14], excessive information must be stored
and exchanged, which easily leads to the overload of bandwidth,

Krifa and Barakat [15] propose an idealized scheduling and drop
strategy called the global knowledge-based scheduling and drop
(GBSD) strategy, in which signal overhead is reduced by optimizing
the storage structure and statistics-collection method.

3. Knapsack-based scheduling and drop strategy

To deliver a clear problem formulation and gain useful strategy
insights, we first introduce the assumptions related to the work,
and put forward the congestion control problem to be addressed.
Next, we identify the utility-calculation model to be used for
a given message by quantifying the influence of replicating or
dropping the message on delivery ratio. When buffer overflows, we
decide which message to drop based on its utility and the solution
to knapsack problem.

3.1. Assumptions and problem description

In this paper, we make the following assumptions about
the network environment. Each message has a given TTL, after
which the message is no longer useful and should be dropped.
Subsequently, it arbitrarily chooses the source and destination as
well as its size within the specified scope; messages of different
sizes can coexist in the network. Neither an immunization strategy
nor an acknowledgment mechanism is used to confirm the receipt
of packets. The bandwidth is limited and message transmission
time cannot be ignored. If the transmission of a certain message
is interrupted, the message must be retransmitted. The node
pairs’ intermeeting times and contact durations under the mobility
patterns such as random walk, random waypoint and random
directions tail off exponentially [32,23,25].

This paper primarily addresses the following two problems in
terms of buffer-management: (1) when more than one message
exists in a node’s local buffer and the node does not know whether
the contact will last long enough to forward all the messages. To
maximize the delivery ratio, we need to decide which message to
send first. (2) If a new message arrives at a node’s buffer filled with
messages, in order to maximize the delivery ratio we should decide
which message to drop between the messages already in the local
buffer and the new comer.

To address the above two problems, we propose an idealized
scheduling and drop strategy KMSDT, which first expresses the
delivery ratio as a function of dynamic network parameters.
The per-message utility is derived from the marginal value
of the delivery ratio. Several factors including message size
and bandwidth limitation are considered in this process. If the
bandwidth is insufficient to forward all the messages in its local
buffer, the node should replicate messages in decreasing order of
their per-unit utility. If buffer overflowing occurs, the node need to
decide which message to drop based on its utility and the solution
to knapsack problem, in order to maximize the total utility of all
the local messages.

We first define several notations. P; is the probability that
message i can be successfully delivered, K is the total number of

different messages within the network, and P is the delivery ratio
K .
of the network, then P = Y, “) P;. n; is denoted as the copy number

of message i. The utility value U; of a certain message i is quantified
by the influence of dropping or replicating the message on delivery
ratio, then we face the following three situations:

A(ny) =1 If replicate message i during contact.
Am;) =0 If no action for message i is taken.
A(nj)) = —1 Ifdrop an already existing message i.

Therefore, AP = Y1) g—EEA(n,-) =10 UAMm), Uy = 3—2

4 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

Table 1
The main notations through the paper.

Variable Description

N Total number of nodes in the network minus one

K Number of distinct messages in the network at time t

TTL; Initial time-to-live (TTL) for message i

R; Remaining time-to-live(TTL) for message i

T; Elapsed time for message i since its generation time (T; = TTL; — R;)

n;(T;) The copy number of message i in the network after the elapsed
time T;

m;(T;) Number of nodes (excluding source) that have seen message i from
its creation time to the elapsed time T;

Eq Average intermeeting time between nodes

A Parameters in the exponential distribution of intermeeting time
=2

E, Average contact duration times between nodes

A2 Parameters in the exponential distribution of contact duration
time (A, = é)

M; Size of message i

w Bandwidth of the contacts between nodes in a pair

U; Utility of message i

Py, Probability that message i has been successfully delivered at the
present moment

Pg, Probability that undelivered message i will reach the destination
within time R;

& Probability that message i can be forwarded successfully during
contact

p; Probability that message i can be successfully delivered

P Delivery ratio

Based on the above analyses, we sort the messages in decreasing
order of per-unit utility, and messages with the highest per-unit
utility are replicated first during contact. When buffer overflows,
we drop the messages based on the solution to knapsack problem,
in order to maximize the total utility in the local buffer.

3.2. Utility-calculation model

In DTNs, messages are forwarded through random pairwise
encounters. Thus, the intermeeting time and contact duration
between the nodes in a pair will influence the delivery ratio. Here
we define the intermeeting time and contact duration as follows:

Definition 1. Intermeeting time: the elapsed time from the end of
the previous contact to the start of the next contact between nodes
in a pair.

Definition 2. Contact duration: the duration time during which
the nodes in a pair stay in each other’s communication range.

As mentioned in the above assumptions, the recent research
shows that intermeeting times and contact durations are exponen-
tially distributed under many popular mobility patterns such as
random walk, random waypoint, and random direction. Our sim-
ulations are based on two mobility scenarios: a synthetic one (the
random-waypoint mobility pattern) and real-world mobility trace
(epfl, which tracks 500 taxis in San Francisco over 30 days, without
loss of generality, we use the data of the first 100 taxis in this pa-
per). Thus, we first perform simulations on the distributions of the
intermeeting times and contact durations and check whether they
can match an exponential distribution.

As can be seen in Fig. 2, the intermeeting times and contact
durations follow approximately an exponential distribution for the
two scenarios:

—AX
Fo) = ge x>0

x <0.

Suppose that ; and A, are the parameters for the exponen-
tial distribution of intermeeting time and contact duration, respec-
tively. E; and E; represent the mathematical expectation values,
respectively; then A, = é and A, = é (Table 1).

Our goal is to express the probability P; as a function form of n;,
and then calculate the utility of message i by quantifying the effect
of replicating or dropping a copy of message i on P;. To achieve
this goal, some probability notations used throughout the paper
are defined in Table 1.

The probability for message i to be delivered is given by the
probability that message i has been delivered and the probability
that message i has not yet been delivered, but will be delivered
during the remaining time R;. Therefore, P; can be formulated as

Eq. (1).
P; = (1 — Pr)Pg, + Pr,. (1

Because of the fact that all the nodes including the destination
have an equal chance to see the message i, therefore, Py, can be
written as follow:

Py = m;(T;)
! N

Pg; as shown in Eq. (1) denotes the probability that the message
i, which has not yet reached its destination, can be delivered within
the remaining time R;. Calculating Pg, is the core of the utility-
calculation model. In [15], Py, is approximated by the probability
that one copy of message i (the total number of copies at time T;
is n;(T;)) has been delivered within time R;, without considering
that (1) more copies of message i may be created in the future
and (2) the failure of message transmission may be caused by
limited bandwidth. To overcome these two drawbacks, we present
an improved method to calculate Pg;.

We first consider the change of n;(t) along with the time t.
Based on the ordinary-differential-equation model used in [2], the
following relationship is derived:

; (2)

dn;(t)
dt

where ¢; is the probability that message i can be forwarded suc-
cessfully during contact, as illustrated in Table 1. The parameter
M= é is the reciprocal of the average intermeeting time. Further-
more, A1 is the average number of contacts between nodes per-unit
time. Therefore, after solving Eq. (3) with the initial condition n;(0),
we get following equation:

= giAmi(t)[N — n;(t)], (3)

Nn;(0)
ni(0) + [N — n;(0)]eeitNt*

n(t) = (4)

Suppose that the current time is T;, the number of nodes that hold
message i in buffers after time R; can be expressed as Eq. (5).

Nn;(T;)

MR = T FIN = n(TyJe o

(3)

The parameter ¢; in Eqs. (3)-(5) can be derived from the contact-
time distribution. we assume that the bandwidth is W and the size
of message i is M;. In order to successfully forward message i, the
contact duration should be greater than % In addition, the contact
durations follow an exponential distribution with parameter A,.
Therefore, &; can be expressed as follow:

M;
=W, (6)

Next, we analyze the meaning of 1 — Pg. The equation 1 —
Pg; represents the probability that message i has not yet been
delivered at T;, and will not be delivered in the remaining time
Ri (R; = TIL — T;). In other words, 1 — Py, gives the probability
that not only the n;(T;) nodes with message i in the buffer will not
contact the destination node during R;, but also the new infected

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 5

a 007y

0.06 ‘

[JIntermeeting time
Probability density | |
005F

0.04

0.03

Probability density

0.02

0.01

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Intermeeting time (s)

C [Contact duration
Probability density
0251 il
2
= 02}
j
)
°
£ 0.15F
=
[}
o
o o1}
o
0.05f
0 0 200 400 600 800 1000 1200

Contact duration (s)

b 0.25 r T T T
[JIntermeeting time
Probability density
0.2 1
2
2
¢ 0.15
he]
2
3
S 01
<)
o
0.05
0

0 2000 4000 6000 8000 10000 12000 14000 16000
Intermeeting time (s)

<
~

[Contact duration
Probability density

o o
; IS p

N h w
(4] w (3]

Probability density
o
N

0.15
0.1
0.05
0 il . .
0 500 1000 1500 2000

Contact duration (s)

Fig.2. Intermeeting time in(a)and (b) and contact duration in(c)and (d) distributions for the random-waypointin (a) and (c) and real-world mobility scenarios in (b) and (d).

nodes will not finish the delivery to destination within R;. Thus,
1 — Pg, can be expressed as Eq. (7).

Ri
_ _—ni(TH)R; —An] (Tj+t) (Rj—t)
=e i ll_[e i\ i

t=0

1 — Py,

R.
e~ MR T e Ti+0R)
t=0

R.
1—'[e M T (©)
=0
e*lﬂ,’(TH»R,‘)R,’ (7)
e h i
The quantity n;(T; + R;) in Eq. (7) can be obtained through
Eq. (5), and the integral in the denominator can be calculated
through integration by parts:

R; R;
/ ni(T; + t)tdt = / tdn;(T; + t)
0 0

R; R;
= tn,-(Ti + t) — / ni(T,- + t)dt
0 0
= Rini(T; + Ry)
_ (NR,- + In[n;(T;) — ni(Ty)e MR 4 NES'*NR"]>
81')»
In(N
+ () (8)
&

By combining Egs. (5), (7), and (8), the probability Py, that the
undelivered message i at T; can reach the destination in the
remaining time R; is shown in Eq. (9).
1
Néi

Pr,=1-— (9)

-
e*NRi[;(Ty) — ny(T;)e—ei*NRi 4 Ne—eimNRi] %

By substituting Eqgs. (2)-(9) into Eq. (1), we get the final
expression for P;:
- mi(T;)) — N N
N
1
X -+ 1
e)»NRi[ni(Ti) _ ni(Ti)efé‘i)»NR,' + Nefs,')»NRi]?i

(10)

Note that the delivery ratio P equals to the sum of P; (as shown
in Eq. (11)). With the help of Eq. (11), we can derive the effect
of replicating or dropping a given message i on delivery ratio as
Eq. (12):

K K
m(T;)) =N 1
P = P; = ————N¢=

i=1

1
x : +1] (11)
e*NRi[n;(T;) — n;(Ty)e—i*NRi + Ne~eitNRi] &
& o
APP) = Ani(Ty)
o)

K, 1—g 1
=) IN—m(T)IN"7 e™"— (1 — e7")
- Ei
i=1 !
—&i—1

x [i(Ty) — ny(Tye VR 4 Ne~5i*Nki]~ A”i(Ti)} -(12)

The scheduling and drop strategy described in this paper aims
to maximize the delivery ratio of the whole network. Whenever
a given message i is replicated during contact, the copy number
of message i increases by one [An;(T;) = +1]; if no operation is
performed on message i, the copy number of message i remains
unchanged [An;(T;) = 0]; when a copy of message i is dropped
from the buffer, the copy number of message i decreases by one

6 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

a Node A Node B b Node A
‘ Message 2 ‘ Message
Message 1
‘ Message 3 ‘ Message
Message 2 49
e | J
Ricssazel Message 2
<¢=| Message 1
TT Message 3

Fig. 3. Different schedule (a) and drop (b) strategies in a buffer.

[An;(T;) = —1]. Therefore, the utility of message i is precisely the
derivative of the delivery ratio P. We obtain the following equation
for calculating message utility:

1= 1
Ui = [N —my(T)IN "5 e —(1 — e7e*)
&i

x [mi(Ty) — ny(T)e™ "N 4 Ne~ciHNRi 6 (13)

3.3. Idealized knapsack-based scheduling and drop strategy

After calculating the message utility, the scheduling and drop
strategy can be executed. A higher per-message utility indicates
that replicating the message would lead to a more significant in-
crease in the delivery ratio P. Therefore, when two nodes are within
each other’s communication range, messages should be replicated
in decreasing order of the utility to maximize P. In addition, a
higher per-message utility also means that dropping the message
would lead to a more significant decrease in the delivery ratio
P. When a buffer overflows, the message with the lowest per-
message utility should be dropped. Previous studies [14,13,15]
have proven that the above scheduling and drop strategy leads to a
good performance in terms of delivery ratio. However, when mes-
sage sizes differ, the strategy is no longer applicable.

In Fig. 3, the vertical rectangular box represents the local
buffer of a node, and the smaller rounded rectangles represent
the messages stored in the local buffer. The utilities per message
satisfy: U; > U, > Us,and U,+Us > U;.The message sizes satisfy:
My = 2M, and M, = M3. Fig. 3-(a) shows two different scheduling
methods. We assume that only messages with no greater than M,
can be successfully forwarded due to the limited contact duration
and bandwidth. By analyzing the first scheduling method, only
message 1 would be replicated, which leads to a gain of U; in the
delivery ratio. However, through the second scheduling method,
messages 2 and 3 would be replicated, which leads to a gain of
U, + Us in the delivery ratio. Thus, the second scheduling strategy
obtains a better performance in terms of delivery ratio.

According to the above analyses, the scheduling strategy
that simply considers the per-message utility cannot be applied
to the networks where message sizes differ. Additionally, the
bigger message size indicates that, for a given bandwidth, more
buffer space is occupied and more transmission time is required.
Therefore, we schedule the messages according to the utility per-
unit % and replicate messages in decreasing order of %’l

InFig. 3-(b), the message utilities also satisfy U; > U, > Us,and
U,+Us; > U;.The message sizes satisfy My = 2M, and M, = Ms.In
addition, the local buffer is already full. Messages 2 and 3 are the
smallest-sized messages. When message 1 arrives and the buffer
overflows, which message to drop, among all buffered messages
and the new-comer, should be decided. If we simply drop the
message with the smallest utility, message 3 would be dropped
first, followed by message 2. In this case, the delivery ratio would
decrease by U, + Us. If we adopt another strategy and only drop
message 1, the delivery ratio would decrease by U;. Thus, when
message sizes differ, dropping the message of the smallest utility
is obviously not the optimal strategy.

Algorithm 1 DPMKP

1: forj = 0; j < totalWeight; j + + do
22 fori=0;i<n;i++do
3 if (i = 0|j = 0) then
4 bestValues[i][j] = 0;
5 else
6
7
8
9

ifj < sizes[i — 1] then
bestValues[i][j] = bestValues[i — 1][j];

else
: iweight = sizes[i — 1];
10: ivalue = values[i — 1];
11: bestValues[i][j] = MAX (bestValues[i — 1][j]);
12: ivalue = ivalue + bestValues[i — 1][j — iWeight];

13: if bestSolution = null then
14: bestSolution = NEWint[n];
15: tempWeight = totalWeight;
16: fori=n; i>1;i— —do

17 if bestValues[i][tempWeight] > bestValues[i — 1][tempWeight]
then

18: bestSolution[i — 1] = 1;

19: tempWeight = sizes[i — 1];

20: if tempWeight = 0 then

21: break;

22: bestValue = bestValues[n][totalWeight];

It is worth noticing that if the buffer size is fixed, the purpose of
the drop strategy is to maximize the total utility of all messages in
the local buffer. Therefore, the message drop problem changes to
solve the following typical 0-1 knapsack problem:

n
Restriction : Zkak <M, x=1{0,1}, k=1,2,3---n,
k=1

n
Objective : Max Z Ugxy
k=1

where Uy is the utility of the k; message. M is the buffer size,
and M is the size of the ky; message. The number of all the
buffered messages and the newly arrived message is denoted as
n. x indicates whether the k;; message is buffered.

To solve the 0-1 knapsack problem as described above, we
adopt the dynamic programming method (as shown in Algorithm
1) to decide which messages should be buffered and which to drop.

To summarize, the message utility can be calculated by Eq. (13).
Because of the various message sizes, the messages are scheduled
according to the per-unit utility % and are replicated in decreas-

ing order of %’l during contact. When buffer overflowing occurs,
drop decisions are made based on the solution to the 0-1 knapsack
problem, in order to maximize the total utility of all the messages
in the local buffer. Through this method, we propose the idealized
scheduling and drop strategy KMSDT. However, in order to calcu-
late the utility of message i through Eq. (13), n;(T;) and m;(T;) at
time T; must be known. However, KMSDT assumes that every mes-
sage can perceive its own value of n(T) and m(T). The assumption
in terms of global parameters indicates that KMSDT is unavailable
in real-DTN scenarios. Therefore, we propose the KMSDP, which
estimates the global parameters n(T) and m(T) by utilizing dis-
tributed collected-history information.

4. Knapsack-based scheduling and drop strategy in practice

According to the above descriptions, it is clear that the
idealized scheduling and drop strategy KMSDT requires global
information of the network. The research [32,2] suggests that
network parameters can be obtained through the control channel.

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 7

List of messages

node p node ¢
Mature part of list of nodes; stat_version stat_version s
message i n_Bin array n_Bin array |
m_Bin array m_Bin array

S

Mature part of |
message j

b

Fig. 4. Network history data structure.

However, this is not applicable in a realistic network environment.
Therefore, we propose a practical knapsack-based scheduling and
drop strategy KMSDP. For the reason that it is difficult to determine
n;(T;) and m;(T;) at time T;, each node must estimate the current
n;(T;) and m;(T;) for message i by collecting the history statistics of
the once-stored messages. Each node maintains a list of messages
of which it tracks the history in the network. For each message, it
maintains a list of nodes that have already seen the message, and it
also store the arrays recording whether or not the message is ever
buffered. This history information is used to approximate n(T) and
m(T), which are used to calculate the utility of each message.

4.1. Collecting and maintaining history information

Fig. 4 shows the history data structure that KMSDP uses. Each
node selects a part of the once-stored messages whose history
data must be collected and puts them into its list of messages.
Each item in the message list contains the message identification
(ID) and the mature part of the message. The mature part of the
message is a time field, which means that n(T) and m(T) before this
time field are mature statistics (the meaning of mature statistics is
explained in Section 4.2). Each node in the node lists maintains its
node ID, stat_version, n_Bin[], and m_Bin[]. The stat_version entry
represents the time unit (i.e., bin) when the last update occurs.
The n_Bin[] entry indicates whether or not the node stores the
message during the certain bin. Finally, the m_Bin[] entry indicates
whether or not the node has ever stored a copy of the message
before the bin. Both n_Bin[] and m_Bin[] are boolean arrays. For
example, n_Bin[k] = 1 means that the node buffers a copy of the
message during bin k, and m_Bin[k] = 1 means that the node ever
stored a copy of the message before bin k (whether it still stores
the copy is uncertain). The bin size (i.e., length of the time unit) for
n_Bin[] and m_Bin[] is called Bin_Unit. Because the messages have
afixed TTL, a larger Bin_Unit leads to a smaller n_Bin[]. So the nodes
need to maintain and exchange fewer data. However, with a larger
Bin_Unit, some contact information would be omitted, which leads
to an inaccurate utility calculation. For a smaller Bin_Unit, the node
needs to maintain more data, so the utility calculation is more
accurate. However, because of the limited bandwidth, exchanging
a large amount of data during contact could easily makes the
strategy inoperable. Consider that the values stored in n_Bin[] and
m_Bin[] can only be changed when the nodes encounter with each
other, the size of Bin_Unit depends on the average intermeeting
time Eq. In order to achieve a good tradeoff between bandwidth
overload and statistical accuracy, we argue that, based on [11],
Bin_Unit should be determined as Bin_Unit = %1

For instance, the TTL of the message is 18 000 s and the average
intermeeting time is E; = 3000 s (obtained by the intermeeting
time statistics), then Bin_Unit = 1500 s and the length of
n_Bin[] and m_Bin[] is 12, and we may get the following bin
arrays: n_Bin[] = (000011100000) and m_Bin[] =
(000011111111).According to the data in the bin arrays, we

can learn that, during the first-four bins, the node has not stored or
seen the message. And the message reaches the node during bin 5.
Afterwards, it is dropped during bin 8.

According to the above considerations, we present the follow-
ing two questions: (1) there are different sizes of messages, which
message’s statistics (taking into account the message sizes) should
be used to estimate the parameters of the present message? And
(2) whether the nodes need to collect the history statistics of all
messages ever stored or just a part of the statistics?

To address the first question, experiments based on the
random-waypoint mobility are done and the message sizes are
randomly chosen from following scope (0.5, 1, 1.5, 2 MB) to obtain
the change in n;(T;), m;(T;) and m;(T;) —n;(T;) during the simulation
time for a given message i. For messages of the same size, we
arbitrarily select two of them and get the results as shown in
Figs. 5-8.

In Figs. 5-8, the green, blue and red curves show the changes in
n(T), m(T), and m(T) — n(T), respectively. As can be seen in the
results, messages of the same size have similar curves, including
the changes in amplitude. In addition, the peak values are almost
the identical. However, the curves for messages of different sizes
are quite different. To estimate the utility of message i as accurately
as possible, we use the history statistics of messages whose sizes
are the same with message i to estimate n;(T;) and m;(T;).

To address the second question, we first point out that collect-
ing the history information from all messages would increase the
storage and bandwidth overhead. In addition, because the local
buffers of the nodes are limited in size and the messages are gen-
erated arbitrarily, the nodes may monitor too many messages of
the same size and miss monitoring other types of messages. There-
fore, we present another data structure. We assume that there are
n types of messages in the network (in our experiment n = 4, and
message sizes are 0.5, 1, 1.5, and 2 MB) and they equally divide
the local buffer (the part to store the information) into n parts so
that each part can be used to monitor a fixed number of messages.
When a new message arrives, we first check whether or not the
corresponding buffer section used to monitor this kind of message
is full. If the buffer section still has space, we add the new mes-
sage to the message list and begin to collect the message’s infor-
mation. When the TTL for the message being monitored elapses,
it is deleted from the message list. Through this method, different
messages have an equitable chance to be monitored.

Furthermore, for each type of messages, the maximum
number of messages to be simultaneously monitored should be
determined. In order to not miss messages (i.e., each generated
message should have an opportunity to be collected), newly
generated messages of the same type should all have the
opportunity to be monitored from the time that the first message
of this type arrives at the buffer to the time that TTL elapses. Given
a message generation interval: t;,, and number different message
sizes: n,, the average time that messages of the same size are
generated is t;,n,,. Therefore, % messages should be monitored
for each type of messages.

Each node in the data structure is supposed to maintain up-to-
date statistics; the detailed update operation includes the follow-
ing two parts: (1) At the beginning of each Bin_Unit, update n_Bin([]
and m_Bin[] in the lists of nodes. If a certain field within n_Bin[]
changes, update stat_version to the current time. Otherwise, keep
stat_version unchanged. (2) When the nodes encounter each other,
they check whether or not they have monitored the identical mes-
sages (e.g., collect the history statistics of the same message). If so,
replace the old version with the new version.

4.2. Estimation of n(T) and m(T)

For every message being monitored, each node uses two one-
dimensional arrays n_sum and m_sum, whose sizes equal to the

SEe |
{/ ﬂ

30

20

0 2 4 6 8 10 12 14 16 18
x 10%

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

b80

70+ 1

60 1

50 - 1

ol b/ |
%

30+ | 1

200 |/]

0 2 4 6 8 10 12 14 16 18
x 10%

Fig.5. Plots of n(T), m(T), and m(T) — n(T) for 0.5 MB messages. The green curve is the change in n(T), the blue curve is the change in m(T), and the red curve is the change
in the difference m(T) — n(T). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

aGO

50 -

] f |

30+ ,f]

20f \ 1

10t __‘ -
0 . ‘ ‘ . . .

0 6 8 8 12 14 16 18
x 104

b70

60] 1
50 1

40t i

30 1

20+ 1

0 . . .
0 2 4 6 8 8 12 14 16 18
x 10*

Fig.6. Plots of n(T), m(T), and m(T) — n(T) for 1 MB messages. The color scheme is the same as for Fig. 5. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

a 40 T T T T T T T T
351 _“H—‘ 4
30t Jf .
251 \ Jr .
20|]
|
15 ll 4
b

10} 1
L |
5 1
0 AR PR .

0 2 4 6 8 10 12 14 16 18
x 10%

b 4

40t
35+
30+
25t

20

0
0 8 10 12 14 16 18

x 104

Fig.7. Plots of n(T), m(T),and m(T) —n(T) for 1.5 MB messages. The color scheme is the same as for Fig. 5. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

sizes of n(T) and m(T) in the local buffer (e.g., Bin_Number) to
record the weighted average history statistics of n(T) and m(T),
respectively. The goal is to use the history statistics to estimate
the current parameters of the newly-arrived message. However,
during the collection of network parameters, some information
obtained is immature because of the transmission delay in DTNs.
We assume that some nodes have updated the items related to
the current node in their data structure; the updated record might
take a long time to reach the current node, so some parts of the
information in the local data structure is incomplete and immature.
Note that the average time needed for the information to reach
the current node is the average intermeeting time (i.e., E;). In this
paper, we assume that the current time is T. Therefore, the history
information prior to time T—E; is mature and can be used to update
the mature data (n_sum and m_sum).

Whenever the information of a certain message i becomes
mature (as shown in Fig. 9), we first calculate n;(T;) and m;(T;) for
this message. Next, we calculate the mean of the newly derived
n;(T;) and n_sum(T;) that is already stored in the array n_sum. We
then update n_sum(T;) with the mean value. The identical process
is used to update m_sum(T;) in the array m_sum. Thus, the history
information stored in the one-dimension array can be more similar
to the current network’s information, therefore, the estimations of
n(T) and m(T) for each message at time T can be rather accurate.

In summary, in order to collect exact values of n;(T;) and m;(T;)
at time T; for a given message i, each node uses the history statistics
of the once-stored messages to estimate n;(T;) and m;(T;), and then
uses the estimated value to calculate the per-message utility. Based
on the above process, the practical knapsack-based scheduling and
drop strategy KMSDP is achieved. Simulation results show that

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 9

a® b 4 .
40+ 1 ’J J
r .
35t 1 sl ~ |
sor | 25 4
n
25 /]
20}]
o | .
5 [P 15 Iy 1
L]
Fh "
10 1
of | | - Iy
5t (1 5¢ A 1
[q
0 r L 1 1 L 1 ! ! 0 1 al L 1 L L 1
0o 2 4 6 8 10 12 14 16 18 0o 2 4 6 8 10 12 14 16 18

x 10*

x 10*

Fig. 8. Plots of n(T), m(T), and m(T) — n(T) for 2 MB messages. The color scheme is the same as for Fig. 5. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Node A Node B

Calculate the
n_sum(T) and

m_sum(T)

Calculate the
n_sum(T) and
m_sum(T)

Mature parts of
the messages

Mature parts of
the messages

Exchange
information
Messages being Messages being
monitored — monitored

Fig. 9. Process to calculate n_sum(T) and m_sum(T).

Table 2

Simulation parameters under random-waypoint mobility pattern.
Parameter Value
Simulation time 18000 s
Number of nodes 100
Moving speed (random-waypoint) 2m/s
Transmission speed 250 kbps
Transmission range 100 m
Buffer size 10, 15, 20, 25, 30 MB
Interval of message generation [5, 15], [15, 25], [25, 35], [35, 45]
TTL 300
Message size 0.5,1,15,2 MB

KMSDP successfully achieves similar delivery ratio compared with
the idealized strategy KMSDT.

5. Performance evaluation
5.1. Experimental setup

To evaluate the performance of KMSDT and KMSDP, we use the
opportunistic network simulator ONE and conduct experiments
under both the synthetic random-waypoint scenario and the three
real-world DTN traces: epfl [22], roma taxi [3] and pmtr [19]. In
the former scenario, each node repeats its own behavior: select a
destination arbitrarily and walk along the shortest path to reach
the destination. In the latter real traces, epfl contains the GPS
information of 500 taxis is collected for 30 days, without loss of
generality, the first 100 taxis are as the input of the simulation,
roma taxi contains mobility traces of taxi cabs in Rome, Italy. It
contains GPS coordinates of approximately 320 taxis collected over
30 days, and pmtr contains mobility traces from 44 mobile devices
at University of Milano.

To study the performance of KMSDT and KMSDP for messages
in different sizes, we first determine how messages are generated.
In this paper, messages are generated with the sizes arbitrarily
chosen from 0.5, 1, 1.5, and 2 MB. The destination and source nodes
are then chosen arbitrarily from the whole network. Next, we allow
a warm-up period to collect and calculate the network parameters
(without loss of generality, we set TTL/2 to make sure that the
initial values of n;(T;) and m;(T;) may make KMSDP feasible). After
the warm-up period, we use the Epidemic routing protocol to
forward messages. Seven buffer-management strategies (KMSDT,
KMSDP, GBSD [15], DF, DL, DO, and DY) are implemented in order
to compare their performances. The simulation parameters are
given in Table 2.

While a range of data is gathered from the experiments, we take
the following three main performance metrics into consideration.
(1) Delivery ratio

__ The number of messages successfully delivered to the destination
The total number of messages generated in the network
(2) Average delay — The total elapsed time of the successfully delivered messages

The total number of successfully delivered messages

(3) Overhead ratio = The successfully forvyarded message number
The successfully delivered message number

Overhead ratio (load ratio) reflects the efficiency of utilizing
contacts. A high overhead ratio means that many copies of mes-
sages forwarded through contacts cannot reach the destination
node during their TTLs, so the contacts are utilized inefficiently.
Conversely, a low overhead ratio indicates that the contacts are
used efficiently.

5.2. Performance analysis with the same message size

First of all, to verify the accuracy of the message utility calcu-
lated by Eq. (9), we implement the six buffer-management strate-
gies (KMSDT, GBSD, DF, DL, DO, and DY) with the same message
size of 1 MB under the synthetic random-waypoint mobility sce-
nario. Results (as shown in Fig. 10) show that KMSDT obtains high-
est delivery ratio, acceptable average delay, and lowest overhead
ratio in terms of different buffer size, and message generation rate,
compared with other buffer-management strategies.

5.3. Performance analysis with different message sizes

5.3.1. Performance evaluation under random-waypoint scenario

We first discuss the experiments under the synthetic random-
waypoint mobility pattern. One hundred nodes are placed in a
4500 x 3400 m? area. The buffer size is 10 MB and the generation
rate is one message per 15-25 s. We vary buffer size and message
generation rate to evaluate the performance of KMSDT, KMSDP,
and the other buffer-management strategies.

10 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

—+—Df

0.9 DI

—¥%— Do

0.8 Dy
—£—GBSD
07| p— kmsDT

Delivery ratio
o
(o))

0.5 |
04
0.3
0.2‘ L L L
10 15 20 25 30
Buffer size (MB)
0.8
——Df
0.7 DI
—*—Do
o 06 Dy
T 5| 2 GBSD
> | ~P—KwmsDT
2 04
a
0.3

15-25 25-35 35-45
Message generation rate (s)

(a) Delivery ratio.

>
k]
[}
©
Q
(o]
©
[
>
<
—A—GBSD
800 ‘ ‘ ——KMSDT
10 15 20 25 30
Buffer size (MB)
2000 ‘
——Df W
1800 DI
—»—Do T
> Dy ot
© 1600 e
2 —A—GBSD
——KMSDT
o 14007 <
@
[}
> 12 A
Z 1200
1000
8004 ‘ ‘
5-15 15-25 25-35 35-45

Message generation rate (s)
(b) Average delay.

160 ;

140}

Overhead ratio
N
o N
o o
+

o3
o

D
o

40

Py f

—+— Df

DI
—— Do

Dy
—A—GBSD
——KMSDT

A 4
v

>

10 15

20 25 30

Buffer size (MB)

—+—Df

180 DI
—%—Do

Overhead ratio

60

5-15

156-25

25-35 35-45

Message generation rate (s)

(c) Overhead ratio.

Fig. 10. Delivery ratio, average delay, and overhead ratio as a function of buffer size and message generation rate under the random-waypoint scenario (same message size).

It is worth noticing that, according to the above calculation
method, the calculation results of average intermeeting time and
contact duration (as shown in Fig. 2) under the random-waypoint
scenario are 5709.9 and 61.7 s, respectively. Therefore, we set the
number of nodes to 100, and the generation rate to one message
per 15-25 s. We vary the buffer sizes. The delivery ratio, average
delay, and overhead ratio are plotted in Fig. 11, respectively.

Fig. 11-(a) shows that the delivery ratio increases along with
the buffer size. It is mainly due to that the increasing of buffer
size indicates the decreasing of the congestion level. It is worth

noticing that when the buffer size increases to 30 MB, the delivery
ratios of KMSDT and KMSDP reach 80%, which is much higher than
the delivery ratios of the other five buffer-management strategies.
Among DF, DL, DO, and DY, the DO and DF have better delivery
ratios, which is natural and reasonable.

Fig. 11-(b) provides some important data regarding average
delay. As can be seen, DY achieves the best performance in terms
of average delay, and we attribute it to the fact that DY always
drops the youngest messages (message with the smallest T;), so the
older messages are hardly delivered. The successfully-delivered

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

0.8
el
T
S os —+— Df
> ! DI
[
% 0.4 —*= Do
[a] Dy
3 —A— |
02} GBSD
0 KMSDP
0’ —— KMSDT
10 15 20 25 30
Buffer Size(MB)
0.8
0.6
el
©
S —— Df
> 04 DI
.02) —%— Do
a Dy \
0.2 —A— GBSD !
| KMSDP
oi —— KMSDT
5,15 15,25 25,35 35,45

Message Generation Rate(s)

(a) Delivery ratio.

11

3000
—— Df
DI
2500 —%— Do
>
g by
[a] —A— GBSD
% 2000 KMSDP o
21;, —— KMsDT
< 7
15007;/ |
I
1000 : ‘ ‘
10 15 20 25 30
Buffer Size(MB)
3000
\ —— Df
DI
. 25007 |—*= Do
© Dy
[
la}
8, 2000
o
(9]
>
3

15,25 25,35 35,45

Message Generation Rate(s)

(b) Average delay.

150

Overhead Ratio

=
o
(=]

—— Df

DI
—%— Do

Dy
—A— GBSD

KMSDP
—— KMSDT

20

25

Buffer Size(MB)

50, ‘
10 15
350
—— Df
300 ol
o —%— Do
T 250 Dy
x A
o GBSD
& 200 KMSDP
<
5]
>
o]

15,25

25,35 35,45

Message Generation Rate(s)

(c) Overhead ratio.

Fig. 11. Delivery ratio, average delay, and overhead ratio as a function of buffer size and message generation rate under the random-waypoint scenario.

messages under DY are always those that can be easily delivered
within a short time, which leads to the lowest average delay. The
average delay for KMSDP is slightly higher than that of DY, but
lower than the other strategies. In addition, the average delay for
KMSDT is close to that for GBSD. Therefore, KMSDT and KMSDP
perform commendably in terms of average delay.

Fig. 11-(c) describes the trend of overhead ratio for different
buffer-management strategies. GBSD outperforms all the other
buffer-management strategies. The overhead ratios for KMSDT
and KMSDP almost have no difference with that of GBSD, which

is acceptable due to the fact that KMSDT and KMSDP have
significantly better delivery ratios.

Next, we study how the generation rate affects the buffer-
management strategies. We set the number of nodes to 100 and
the buffer size to 10 MB. We vary the message generation rate and
plot the delivery ratio, average delay, and overhead ratio in Fig. 11,
respectively.

It is worth noticing that the notation ‘5,15’ for the message
generation rate in Fig. 11-(a) means that a new message
is generated per 5-15 s. Thus, the message generation rate

12 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

—A— GBSD
——KMsDT
KMSDT-GBSD

0.4r

Delivery ratio

031

0.2+

0.1r

2 3 4 5 6 7 8 9 10
MessageSizemay, /MessageSizemn,

Fig. 12. Delivery ratio under different values of

Table 3
Different distributions of message sizes.

Message size Uniform N distribution U distribution
1 126
0.5 0.1 53 50
9 84
1.0 0.1 3 513
36 36
1.5 0.1 vl 55
84 9
2.0 0.1 513 57l
126 1
2.5 0.1 50 53
126 1
3.0 0.1 57 57
84 9
35 0.1 53 53
36 36
4.0 0.1 i G
9 84
4.5 0.1 53 513
5.0 0.1 = 126

decreases along with the increasing abscissa, which results in the
remission of congestion. The results show that KMSDT and KMSDP
outperform the other buffer-management strategies in terms of
the delivery ratio. Fig. 11-(b) indicates that generation rate does
not affect average delay to any great extent. The average delay of
KMSDP is slightly higher than that of DO, and there is almost no
difference between KMSDT and GBSD regarding average delay.

Messages in above experiments are all generated with the sizes
arbitrarily chosen from 0.5, 1, 1.5, and 2 MB. Next, in order to
verify the applicability of KMSDT, we keep the minimal message
size (0.5 MB) unchanged, set the buffer size as 20 MB and vary the
ratio between maximal message size and minimal message size
from 2 to 10. Results are shown in Fig. 12-(a), which indicates that
the delivery ratios of both KMSDT and GBSD decrease along with
increase of the ratio between maximal message size and minimal
message size. However, KMSDT always performs better than GBSD.
At the same time, the trend of difference between them becomes
more obvious when the ratio is large enough.

Consider that the message sizes of experiments in Fig. 12-(a)
meet the uniform distribution. However, in order to verify that
KMSDT still performs well under different distributions of message
sizes (as shown in Table 3), the binomial distribution (p = 0.5) and
corresponding type U distribution are implemented. Results are
shown in Fig. 12-(b), which indicates that KMSDT performs better
than GBSD no matter in which distribution (N means binomial
distribution and U means corresponding type U distribution). It
is worth noticing that regarding to delivery ratio, KMSDT-U >
KMSDT > KMSDT-N, especially when the ratio between maximal
message size and minimal message size is large enough. In other
words, more disperse the distribution of message sizes is, the
better performance KMSDT will get. The more aggregate the
distribution of message sizes is, the worse the performance KMSDT
will get. It is natural and reasonable, and can also prove that the
knapsack-based solution has played a key role in KMSDT.

0.85 T :
p ——GBSD-N
085 KMSDT N ||
0751 ——GBSD-U
KMSDTU
0.7r —A—GBSD
2
5 065 ——KMSDT
2 06f
=
© 0.55r
a
0.5r
0.45r
041
0.35

2 3 4 5 6 7 8 9 10
MessageSizemay, /MessageSizemn

Message sizepqx
Message sizepn *

In conclusion, compared with the other five buffer-management
strategies, KMSDT and KMSDP improve the delivery ratio without
affecting the overhead ratio or average delay.

5.3.2. Performance evaluation under the real traces: epfl, roma taxi
and pmtr

Epfl contains GPS data from 500 San Francisco taxis acquired
over 30 days, without loss of generality, we use the data of the first
100 taxis in this paper. For the first part of experiments, we test
the epfl dataset using ONE to simulate taxi mobility over the first
18000 s. Based on the Epidemic routing protocol, seven buffer-
management strategies (KMSDT, KMSDP, GBSD, DF, DL, DO, and
DY) are implemented. We vary the buffer size and generation rate
and observe the variation trends in terms of delivery ratio, average
delay, and overhead ratio.

Note that the expectations of the intermeeting time and contact
duration (as shown in Fig. 2) under epfl are calculated to be 3287.7
and 105.5 s, respectively. Therefore, we fix the message generation
rate to one message per 25-35 s. Through changing the buffer size,
we obtain the variation trends of delivery ratio, average delay, and
overhead ratio in Fig. 13.

In a realistic network environment, the movement of the
taxis lacks the regularity and the nodes cannot communicate
with each other as frequently as done in the random-waypoint
mobility pattern. As a result, some messages cannot be delivered.
Therefore, the delivery ratio obtained in the realistic scenario
differs significantly from that obtained from the synthetic random-
waypoint scenario. However, according to Fig. 13-(a), we realize
that KMSDT and KMSDP achieve the best delivery ratios among
the seven buffer-management strategies, and the delivery ratio
increases along with the increase of buffer size. Furthermore,
Fig. 13-(b) shows that DY obtains the best performance in terms
of average delay and KMSDP outperforms the other four buffer-
management strategies, although its average delay is higher than
that of DY. Moreover, the average delay for KMSDT is similar with
that of GBSD. Fig. 13-(c) shows that KMSDT and KMSDP achieve
similar overhead ratios, which are better than those of the other
five buffer-management strategies.

Next, we fix the buffer size to 10 MB and vary the message
generation rate. The delivery ratio, average delay, and overhead
ratio are plotted in Fig. 13, respectively. Fig. 13-(a) shows that
KMSDT achieves the best delivery ratio, which increases linearly
with message generation rate. Moreover, KMSDP also obtains a
better delivery ratio than GBSD. As shown in Fig. 13-(b), we find
that the average delay for KMSDP is much lower than that for GBSD.

In order to further prove the applicability of the proposed
KMSDT and KMSDP, we evaluate our strategy under the extra
two real-word traces: roma taxi and pmtr. The simulation results
are shown in Figs. 14 and 15, respectively. We omit the detailed
description of the Figs. 14 and 15, for the reason that the curve-
shapes are similar with that of Fig. 13.

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 13

0.5 6000 700 ‘ ‘
—+— Df [f
DI
04 .., 5000 |—*= Do
-,9 = % Dy 9o
@ 03 ——f a] —A— GBSD &
% DI % 4000 KMSDP E
2 02 —* Do 5 —— KMSDT <
] > i 2
a Dy < i 8
o1 —A— GBSD b 3000
Y KMSDP
—— KMSDT 2000;
%0 15 20 2 30 10 15 20 25 30
Buffer Size(MB) Buffer Size(MB) Buffer Size(MB)
6000 : 700 :
[—— Df —+— Df]
5000 DI 600 DI w
° - —»— Do 74<i> o —%— Do
= £ Dy 3 T
8 8 4000] @
o [a] —£— GBSD >
2 % KMsDP | ———T 5
= 5 3000 | —— KMSDT F g
a z z
<< ‘ o
2000 i
1 — |
!
ol ‘ | 1000 | ‘ ‘ 100 ‘ ‘
5,15 15,25 25,35 35,45 5,15 15,25 25,35 35,45 5,15 15,25 25,35 35,45
Message Generation Rate(s) Message Generation Rate(s) Message Generation Rate(s)
(a) Delivery ratio. (b) Average delay. (c) Overhead ratio.

Fig. 13. Delivery ratio, average delay, and overhead ratio as a function of buffer size and message generation rate under the epfl scenario.

0.35 10000 800
‘ 700
> 9000 :
0.3 L
o z W % 600
S > 8000 —
= A o
g 025 P < 500
1 D H o
g ——Df I o 7000 A—M ——Df g 400
= 02 Dl 2 DI 5
] *~Do g 6000 *~Do 3 300
Dy < Dy
0.15 - —A—GBSD —A—GBSD || 200
/ KMSDP 5000 KMSDP ‘
oA ‘ ‘ ‘ ‘ ——KMSDT . ‘ ‘ ‘ ‘ ‘ ——KMSDT 100 —
6 8 10 12 14 16 18 20 00055 40 12 14 16 18 20 6 8 :aoﬁ 12_ 1:/|B 18 20
Buffer Size(MB) Buffer Size(MB) uffer Size(MB)
9500
—+—Df ‘
9000 DI
. —%— Do ‘
o £ 8500 Dy ¥ o)
= £ T /| =—GBSD 5
@ & 8000, KMSDP r
2 0. ° ——KMSDT g
g 2 7500 <
T 0 5 o
o S >
Z 7000 e) Dy
200 —A—GBSD
0.18 KMSDP 650 KMSDP
0161 ‘ ‘ D KMSDT 6000 ‘ ‘ ‘ 100 ‘ ‘ P—KMSDT
100 150 200 250 300 100 150 200 250 300 100 150 200 250 300
Message Generation Rate(s) Message Generation Rate(s) Message Generation Rate(s)
(a) Delivery ratio. (b) Average delay. (c) Overhead ratio.

Fig. 14. Delivery ratio, average delay, and overhead ratio as a function of buffer size and message generation rate under the roma taxi scenario.

To sum up, in realistic scenarios, KMSDT and KMSDP signifi-
cantly improve the delivery ratio compared with the other five
buffer-management strategies (GBSD, DF, DL, DO, and DY), with-
out affecting the average delay.

6. Conclusion

In DTN, the probabilistic nodal mobility and interruptible wire-
less links lead to nondeterministic and intermittent connectivity.

The store—carry-forward paradigm is used by most routing proto-
cols to efficiently forward messages. However, excessive copies of
messages can easily lead to buffer overflowing because of the lim-
ited storage space, especially when the bandwidth is also limited
and the message sizes differ. In this situation, how to allocate net-
work resources becomes the key point. In this paper, we present
an idealized knapsack-based scheduling and drop strategy KMSDT
based on the Epidemic routing protocol. In order to improve
the delivery ratio, KMSDT schedules messages according to the

14 E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15

5

8 x 10
0.25 1000
7.5 { —+—Df
\ ! . %, o
0.2 b w7t 1 800 | ——Do
X X A =
o — & £ Dy
b= — @ 65¢ 9] —A—GBSD
M
x 015 e b b ——or [L 60 KMSDP
Fal ——Df ® 6 ——A&—A | D g pl—P>—KwmsoT S 2
2 DI 5 ——Do <
= 041 o = 400
8 —%—Do j: 55F Dy | o
Dy —£—GBSD o
0.05} —A—GBSD | 5r KMSDP |1 200
| KMSDP ——KMSDT |
‘ ——KMSDT 45 ‘ ‘ : - |
0 . . : 3 4 5 6 7 ol : j :]
3 4 5 6 7 Buffer Size(MB) 3 4 5 6 7
Buffer Size(MB) Buffer Size(MB)
x 10°
0.25 7.5 1000
‘ J
0.2 7 800
Y 3 o
_g (%. 5 ——Df
& 0.15 2 65 P © 600 DI
el —*—Do
—+—Df A A
3 5 . o f a—— g
Z 01 Do g Do § 400 —4—GBSD
[a} Dy ‘ z i Dy 3 KMSDP
0.05 1 —A—GBSD | 557 —£—GBSD 200 B KMSOT
KMSDP KMSDP
0 —D—KMSDT 5 —D—KmSDT || 0
6000 7000 8000 9000 10000 6000 7000 8000 9000 10000 6000 7000 8000 9000 10000
Message Generation Rate(s) Message Generation Rate(s) Message Generation Rate(s)
(a) Delivery ratio. (b) Average delay. (c) Overhead ratio.

Fig. 15. Delivery ratio, average delay, and overhead ratio as a function of buffer size and message generation rate under the pmtr scenario.

per-unit utility. When the buffer overflows, which messages to
drop is decided according to the solution of the knapsack prob-
lem. However, KMSDT cannot be applied in the realistic network
environment because it requires global parameters. Therefore, we
develop a practical scheduling and drop strategy KMSDP. KMSDP
uses the distributed collected history information to approximate
the global information, and uses these estimated parameters to cal-
culate the utility. We conducted simulations in ONE under both
the synthetic random-waypoint mobility scenario and the real
traces: epfl, roma taxi and pmtr. The simulation results show that,
compared with other buffer-management strategies, KMSDT and
KMSDP significantly improve the delivery ratio without affecting
the average delay. KMSDT and KMSDP aim to maximize the deliv-
ery ratio without considering other performance metrics. Future
work will focus on developing a more efficient scheduling and drop
strategy to optimize both the delivery ratio and the average delay.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61272412, Specialized Research
Fund for the Doctoral Program of Higher Education under Grant
No. 20120061110044, Jilin Province Science and Technology De-
velopment Program under Grant No. 20120303, and China Schol-
arship Council (No. [2014]3026). This work is supported in part by
NSF grants CNS 149860, CNS 1461932, CNS 1460971, CNS 1439672,
CNS 1301774, ECCS 1231461, ECCS 1128209, and CNS 1138963.

References

[1] L. Akyildiz, B. Akan, C. Chen, InterPlaNetary Internet: state-of-the-art and
research challenges, Comput. Netw. 43 (2) (2003) 75-112.

[2] B. Aruna, L. Brian, V. Arun, DTN routing as a resource allocation problem, in:
Proc. of ACM SIGCOMM 2007, pp. 373-384.

[3] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, A. Rabuffi, CRAW-
DAD data set roma/taxi (v. 2014-07-17), July 2014. Downloaded from
http://crawdad.org/roma/taxi/.

[4] S.Burleigh, A. Hooke, L. Torgerson, Delay-tolerant networking: an approach to
interplanetary Internet, [EEE Commun. Mag. 41 (6) (2003) 128-136.

[5] J. Cao, Y. Zhang, L. Xie, Consistency of cooperative caching in mobile peer-to-
peer systems over MANET, Int. . Parallel Emergent Distrib. Syst. 21 (3) (2006)

151-168.
[6] K. Dohyung, P. Hanjin, Y. Ikjun, Minimizing the impact of buffer overflow in

DTNs, in: Proc. of International Conference on Future Internet Technologies,
CFI, 2008.

[7] A.Elwhishi, P. Ho, K. Naik, B. Shihada, A novel message scheduling framework
for delay tolerant networks routing, IEEE Trans. Parallel Distrib. Syst. 24 (5)
(2013) 871-880.

[8] V. Erramilli, M. Crovella, Forwarding in opportunistic networks with resource
constraints, in: Proceedings of the Third ACM Workshop on Challenged
Networks, in: Proc. of ACM CHANTS 2008, pp. 41-48.

[9] K.Fall, Adelay-tolerant network architecture for challenged internets, in: Proc.
of ACM SIGCOMM 2003, pp. 27-34.

[10] W. Gao, Q. Li, G. Cao, Forwarding redundancy in opportunistic mobile
networks: Investigation and elimination, in: Proc. of IEEE INFOCOM 2014,
pp. 1-9.

[11] http://en.wikipedia.org/wiki/Wiki/Nyquistrem.

[12] P.Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, D. Rubenstein, Energy-efficient
computing for wildlife tracking: design tradeoffs and early experiences with
zebranet, in: Proc. of ASPLOS 2002, pp. 96-107.

[13] A. Krifa, C. Barakat, An optimal joint scheduling and drop policy for delay
tolerant networks, in: Proc. of IEEE WoWMoM 2008, pp. 1-6.

[14] A. Krifa, C. Barakat, Optimal buffer management policies for delay tolerant
networks, in: Proc. of IEEE SECON 2008, pp. 260-268.

[15] A.Krifa, C. Barakat, Message drop and scheduling in DTNs: Theory and practice,
IEEE Trans. Mob. Comput. 11 (9) (2012) 1470-1483.

[16] R.Krishnan, P. Basu, J. Mikkelson, The spindle disruption-tolerant networking
system, in: Proc. of MILCOM 2007, pp. 1-7.

[17] Q.Li,S.Zhu, G. Cao, Routing in socially selfish delay tolerant networks, in: Proc.
of IEEE INFOCOM 2010, pp. 2301-23009.

[18] A. Lindgren, K.S. Phanse, Evaluation of queuing policies and forwarding
strategies for routing in intermittently connected networks, in: Proc. of IEEE
Comsware 2006, pp. 1-10.

[19] P. Meroni, S. Gaito, E. Pagani, G.P. Rossi, CRAWDAD data set unimi/pmtr (v.
2008-12-01), December 2008. Downloaded from http://crawdad.org/unimi/
pmtr/.

[20] P. Pawelczak, P.R. Venkatesha, L. Xia, Cognitive radio emergency networks -
requirements and design, in: Proc. of IEEE DySPAN 2005, pp. 601-606.

[21] A. Pentland, R. Fletcher, A. Hasson, Daknet: rethinking connectivity in
developing nations, IEEE Comput. 37 (1) (2004) 78-83.

[22] M. Piorkowski, N. Sarafijanovic-Djukic, M. Grossglauser, CRAWDAD data
set epfl/mobility (v. 2009-02-24), February 2009. Downloaded from
http://crawdad.org/epfl/mobility/.

[23] G. Robin, N. Philippe, K. Ger, Message delay in manet, in: Proc. of ACM
SIGMETRICS 2005, pp. 412-413.

http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref1
http://crawdad.org/roma/taxi/
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref4
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref5
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref7
http://en.wikipedia.org/wiki/Wiki/Nyquistrem
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref15
http://crawdad.org/unimi/pmtr/
http://crawdad.org/unimi/pmtr/
http://crawdad.org/unimi/pmtr/
http://crawdad.org/unimi/pmtr/
http://crawdad.org/unimi/pmtr/
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref21
http://crawdad.org/epfl/mobility/

E. Wang et al. / . Parallel Distrib. Comput. 86 (2015) 1-15 15

[24] L. Sassatelli, A. Ali, M. Panda, T. Chahed, E. Altman, Reliable transport in delay-
tolerant networks with opportunistic routing, IEEE Trans. Wireless Commun.
13(10) (2014) 5546-5557.

[25] T. Spyropoulos, K. Psounis, C.S. Raghavendra, Performance analysis of
mobility-assisted routing, in: Proc. of ACM Mobihoc 2006, pp. 49-60.

[26] M.Y.S. Uddin, H. Ahmadi, T. Abdelzaher, R. Kravets, Intercontact routing for
energy constrained disaster response networks, I[EEE Trans. Mob. Comput. 12
(10) (2013) 1986-1998.

[27] A. Vahdat, D. Becker, Epidemic routing for partially-connected ad hoc
networks, Tech. rep., Apirl 2000.

[28] R. Wahidabanu, G. Fathima, A new queuing policy for delay tolerant networks,
Int. J. Comput. Appl. 1 (20) (2010) 56-60.

[29] E. Wang, Y. Yang, J. Wu, A knapsack-based message scheduling and
drop strategy for delay-tolerant networks, in: Proc. of the 12th Euro-
pean International Conference on Wireless Sensor Networks, EWSN 2015,
pp. 120-134.

[30] J. Wu, Y. Wang, Hypercube-based multi-path social feature routing in human
contact networks, IEEE Trans. Comput. 63 (2) (2014) 383-396.

[31] M. Xiao, J. Wu, L. Huang, Community-aware opportunistic routing in mobile
social networks [supplemental], [EEE Trans. Comput. 63 (7)(2014) 1682-1695.

[32] L. Yong,].Q. Meng, Adaptive optimal buffer management policies for realistic
DTN, in: Proc. of IEEE GLOBECOM 2009, pp. 1-5.

[33] Z. Zhang, Z. Xianwei, G. Jiwen, Noncooperative dynamic routing with
bandwidth constraint in intermittently connected deep space information
networks under scheduled contacts, Wirel. Pers. Commun. 68 (4) (2013)
1255-1285.

[34] H. Zheng, Y. Wang, J. Wu, Optimizing multi-copy two-hop routing in mobile
social networks, in: Proc. of IEEE SECON 2014, June 2014.

En Wang received his B.E. degree in Software Engineering
from Jilin University, Changchun, Jilin, China, in 2011; and
M.E. degree in Computer Science and Technology from
Jilin University, Changchun, Jilin, China, in 2013. He is
currently a Ph.D. candidate in the Department of Computer
Science and Technology, Jilin University, Changchun, Jilin.
And he is also a visiting scholar in the Department of
Computer and Information Sciences, Temple University,
Philadelphia, PA. His research interests are in the design
and realize a variety of novel routing protocols and buffer-
management strategies in delay tolerant networks. He has
authored 8 papers on delay tolerant networks and social networks. His current
research focuses on the efficient utilization of network resources, scheduling and
drop strategy in terms of buffer-management, energy-efficient communication
between human-carried devices.

Yongjian Yang received his B.E. degree in Automatiza-
tion from Jilin University of Technology, Changchun, Jilin,
China, in 1983; and M.E. degree in Computer Communi-
cation from Beijing University of Post and Telecommuni-
cations, Beijing, China, in 1991; and his Ph.D. in Software
and theory of Computer from Jilin University, Changchun,
Jilin, China, in 2005. He is currently a professor and a Ph.D.
supervisor at Jilin University, the Vice Dean of Software
College of Jilin University, also Director of Key lab under
the Ministry of Information Industry, Standing Director of
Communication Academy, member of the Computer Sci-
ence Academy of Jilin Province. His research interests include: Theory and software
technology of network intelligence management; Key technology research of wire-
less mobile communication and services; research and exploiture for next genera-
tion services foundation and key productions on wireless mobile communication.
He participated 3 projects of NSFC, 863 and funded by National Education Ministry
for Doctoral Base Foundation. He has charged 12 projects of NSFC, key projects of
Ministry of Information Industry, Middle and Young Science and Technology Devel-
oping Funds, Jilin provincial programs, ShenZhen, ZhuHai and Changchun. As the 1st
author, he has published more than 60 papers in national and foreign journals.

Jie Wu received his B.S. in computer engineering and
M.S. in computer science from Shanghai University of Sci-
ence and Technology (now Shanghai University), Shang-
hai, China, in 1982 and 1985, respectively, and his Ph.D.
in computer engineering from Florida Atlantic University,
Boca Raton, in 1989. Jie Wu is the chair and a Laura H.
Carnell Professor in the Department of Computer and In-
formation Sciences at Temple University. Prior to joining
Temple University, he was a program director at the Na-
tional Science Foundation and Distinguished Professor at
Florida Atlantic University. His current research interests
include mobile computing and wireless networks, routing protocols, cloud and
green computing, network trust and security, and social network applications.
Dr. Wu regularly published in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE Transactions on Com-
puters, IEEE Transactions on Service Computing, and Journal of Parallel and Dis-
tributed Computing. Dr. Wu was general co-chair for IEEE MASS 2006 and IEEE
IPDPS 2008 and program co-chair for IEEE INFOCOM 2011. Currently, he is serving
as general chair for IEEE ICDCS 2013 and ACM MobiHoc 2014, and program chair
for CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on Distributed
Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the IEEE.
He is the recipient of the 2011 China Computer Federation (CCF) Overseas Outstand-
ing Achievement Award.

http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref24
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref26
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref28
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref30
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref31
http://refhub.elsevier.com/S0743-7315(15)00126-4/sbref33

	A Knapsack-based buffer management strategy for delay-tolerant networks
	Introduction
	Related work
	Knapsack-based scheduling and drop strategy
	Assumptions and problem description
	Utility-calculation model
	Idealized knapsack-based scheduling and drop strategy

	Knapsack-based scheduling and drop strategy in practice
	Collecting and maintaining history information
	Estimation of n (T) and m (T)

	Performance evaluation
	Experimental setup
	Performance analysis with the same message size
	Performance analysis with different message sizes
	Performance evaluation under random-waypoint scenario
	Performance evaluation under the real traces: epfl, roma taxi and pmtr

	Conclusion
	Acknowledgments
	References

