
Joint Scheduling of Overlapping MapReduce
Phases: Pair Jobs for Optimization

Huanyang Zheng and Jie Wu , Fellow, IEEE

Abstract—MapReduce includes three phases of map, shuffle, and reduce. Since the map phase is CPU-intensive and the shuffle

phase is I/O-intensive, these phases can be conducted in parallel. This paper studies a joint scheduling optimization of overlapping

map and shuffle phases to minimize the average job makespan. New concepts of the strong pair and the weak pair are introduced.

Two jobs are defined as a strong pair if the shuffle and map workloads of one job equal the map and shuffle workloads of the other job,

respectively. Two jobs are defined as a weak pair if their total map workloads equal their total shuffle workloads. We prove that if the

entire set of jobs can be decomposed to strong pairs of jobs, then the optimal schedule can pairwisely execute jobs that can form a

strong pair. Following the above intuition, several offline and online scheduling policies are proposed. Extensions are made based on

weak pairs. Real data-driven experiments validate the efficiency and effectiveness of the proposed policies.

Index Terms—MapReduce framework, map and shuffle phases, joint scheduling, makespan optimization

Ç

1 INTRODUCTION

MAPREDUCE is a well-known programming framework
used to process the ever-growing amount of data col-

lected by modern instruments, such as the Large Hadron
Collider and next-generation gene sequencers. Although
MapReduce has been widely adopted in a number of data
centers, more improvements are still needed to meet the
huge demands of big data computing. In the current Map-
Reduce framework, each job consists of three dependent
phases: map, shuffle, and reduce. The map and reduce phases
generally deal with a large amount of data computations,
while the shuffle phase transfers the data among different
MapReduce workers. In terms of the resource demand, the
map and reduce phases are CPU-intensive, while the shuffle
phase is I/O-intensive.

Currently, most state-of-the-art research on MapReduce
optimizations focuses on the map and reduce phases.
However, the shuffle phase also plays a very important
role in transferring the data from map workers to reduce
workers. It has a significant impact on the average job
makespan, especially when the data is big. Moreover,
Chen et al. [1] reported that jobs processed by the Face-
book MapReduce cluster are shuffle-heavy. Consequently,
this paper studies a joint scheduling optimization of map
and shuffle phases to minimize the average job makespan
(the time span from the job arrival to the completion of
the shuffle phase). The reduce phase is not jointly opti-
mized since its workload is relatively light. According to
Zaharia et al. [2], only 7 percent of jobs in a production
MapReduce cluster are reduce-heavy.

MapReduce usually involves a lot of nodes across the
network. This paper focuses on single node optimizations
for MapReduce. Our key observation is that the map and
shuffle phases have different resource demands for a single
node in MapReduce. Since the map phase is CPU-intensive
and the shuffle phase is I/O-intensive, they can potentially
be conducted in parallel to minimize the average job make-
span. The key challenge comes from the fact that the map
and shuffle phases cannot be fully parallelized due to their
dependency relationship. The shuffle phase of a job must start
later than its map phase, and cannot finish earlier than its
map phase. This is because the shuffle phase may wait to
transfer the data emitted by the map phase. An example
includes the WordCount [3], in which the map workers
emit key-value pairs at a certain rate to be shuffled to the
reduce workers. If the map workload of a job is larger than
its shuffle workload, the I/O resource may be underutil-
ized, leading to a non-optimal job schedule. In addition, this
paper considers that the job workload to be fixed as a prior
(map and shuffle workloads are not symbiotic, and applica-
tions such as SecondarySort are not considered).

To illustrate the above motivation more clearly, an exam-
ple is shown in Fig. 1, which involves two jobs of J1 and J2.
J1 is shuffle-heavy and J2 is map-heavy. Assuming that the
resources are fully utilized, the map and shuffle phases
of J1 take 1 and 2 time slots, respectively. The resource
demand of J2 is the opposite of that of J1 (1 time slot for the
shuffle phase and 2 time slots for the map phase). As shown
in Fig. 1a, schedule one executes J2 first, leading to an
underutilization of the I/O resource. This is because J2’s
shuffle phase needs to wait to transfer the data emitted by
its map phase (suppose a constant data emission rate). Con-
sequently, schedule one takes 4 time slots to finish all the
jobs. As shown in Fig. 1b, schedule two is a better scheme. It
executes J1 first and only takes 3 time slots to finish all the
jobs. It can be seen that, in order to maximally utilize the

� The authors are with Center for Networked Computing, Temple University,
Philadelphia, PA 19122USA. E-mail: {huanyang.zheng, jiewu}@temple.edu.

Manuscript received 18 Sept. 2017; revised 6 Oct. 2018; accepted 9 Oct. 2018.
Date of publication 12 Oct. 2018; date of current version 8 Oct. 2021.
(Corresponding author: Huanyang Zheng.)
Digital Object Identifier no. 10.1109/TSC.2018.2875698

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021 1453

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5529-4080
https://orcid.org/0000-0002-5529-4080
https://orcid.org/0000-0002-5529-4080
https://orcid.org/0000-0002-5529-4080
https://orcid.org/0000-0002-5529-4080
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
mailto:

I/O resource, the shuffle-heavy job should be executed
earlier than the map-heavy job.

New concepts of the strong job pair and the weak job pair
are introduced to address the above problem. Two jobs are
called a strong pair if the shuffle and map workloads of one
job equal the map and shuffle workloads of the other job,
respectively. Two jobs are called a weak pair if their total
map workloads equal their total shuffle workloads. We
prove that if the entire set of jobs can be decomposed to
strong pairs of jobs, then the optimal schedule is to pair-
wisely execute jobs that can form a strong pair. Several off-
line and online scheduling algorithms are proposed to
minimize the average job makespan. They first group jobs
according to job workloads, and then, execute jobs within
each group through a pairwise manner. Extensions are
made based on weak pairs.

The remainder of this paper is organized as follows.
Section 2 surveys the related works. Section 6 describes the
model and formulates the problem. Sections 4 and 5 study the
offline job scheduling with strong and weak job pairs, respec-
tively. Online scheduling is extended. Section 6 includes
extensive real data-driven experiments. Finally, Section 7 con-
cludes this paper and discusses future directions.

2 RELATED WORK

Extensive studies on the MapReduce scheduler have been
conducted over the past few years. An example includes the
delay scheduling [4], which postpones the task scheduling
and ameliorates the locality degradation in the Hadoop
scheduler. Another example is the ARIA [5], which allocates
appropriate amounts of resources to each MapReduce job
to meet service level objectives. Zhang et al. [6] improved
ARIA by estimating the amount of resources required to
complete a program. Wolf et al. [7] proposed a framework
to optimize different scheduling metrics, based on a perfor-
mance model, with respect to the job execution time. Tang
et al. [8] proposed a scheduling policy that dynamically
determines the start time of each reduce task according to
its job context. Mantri [9] can mitigate the impact of outliers.
It monitors task executions with real-time outlier estima-
tions, then takes reactions, such as restarting and terminat-
ing specified outliers. Tarazu [10] was a communication-
aware scheme, which schedules predictive load-balancing
MapReduce jobs to reduce the network traffic within hetero-
geneous Hadoop clusters. Quincy [11] achieved a balanced
tradeoff between the job fairness and the data locality
through a min-cost flow method and a preemption

mechanism. Amoeba [12] supported lightweight elastic
tasks that can release the CPU resources without losing I/O
computations. Moreover, multi-resource (CPU and I/O)
packing problems were also investigated for MapReduce
schedulers [13], [14], [15]. For example, Graphene [13] was
designed to schedule jobs that have complex dependency
structures and heterogeneous resource demands. Graphene
focused on the long-running tasks and those with tough-to-
pack resource demands. These troublesome tasks can be
scheduled in advance of the remaining tasks without violat-
ing the dependency constraints. PRISM [14] divided tasks
into several phases, where each phase has a constant
resource usage profile, and performs scheduling at the
phase level. The importance of phase-level scheduling was
demonstrated by the resource usage variability within the
lifetime of a task using a wide-range of MapReduce jobs. A
phase-level scheduling algorithm was also introduced to
improve execution parallelism and resource utilization.
Verma et al. [15] developed a method to break the barrier
between the Map and Reduce stages in MapReduce, in
order to improve the efficiency. A barrier-less MapReduce
framework was designed to obtain the equivalent generality
and retain ease of programming. However, the above works
focus on the resource scheduling for map and reduce
phases. The overlapping shuffle phase is not jointly
optimized.

In 2013, Lin et al. [16] proposed a landmark model for the
overlapping map and shuffle phases in MapReduce. They
proved that the problem of minimizing the average job
makespan is NP-hard in the offline scenario and APX-hard
in the online scenario. Therefore, no online scheduling policy
can guarantee a constant approximation ratio with respect to
the optimal scheduling policy. However, Lin’s scheduling
policymay not be efficient, since the optimal pattern is under-
explored. We show that optimal results can be obtained by
pairing map-heavy jobs and shuffle-heavy jobs under load-
balancing offline scheduling scenarios. Li et al. [17] consid-
ered amodelwith overlapping shuffle and reduce phases, uti-
lizing the data locality to minimize the time for the shuffle
phase. However, Li’s scheduling policy does not guarantee
an approximation ratio over time. This paper is also related to
Wang’s research [18], where the shuffle phase is reconfigura-
ble to dynamically coordinate the map and reduce phases. A
mathematical model was proposed to judge the computing
complexities with different operating orders within the map-
side shuffle, so that a faster execution can be achieved through
reconfiguring the order of sorting and grouping. Some sam-
pled features during the shuffle stage were collected to sup-
port the evaluation of the computing complexities of each
operating order. By contrast, this paper optimizes theMapRe-
duce with a fixed shuffle workload. In addition, our schedul-
ing policy is similar to OMO [19], which aimed to optimize
the overlap between the map and reduce phases. OMO is
based on the lazy start of reduce tasks and the batch finish of
map tasks, which catch the characteristics of the overlap and
achieve a good alignment of the two phases.

Our problem is a variation of the flow shop scheduling
problem [20], which is a class of scheduling problems with
a set of machines. Each job is processed on this set of
machines in compliance with the given processing orders.
A continuous flow of jobs is scheduled with the objective of

Fig. 1. An example for the joint scheduling of overlapping phases.

1454 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

a minimum completion time or waiting time. Flow shop
scheduling is a special case of job shop scheduling [21], in
which there is a strict order of machines for each job to be
processed [22]. Our problem is similar to a flow shop sched-
uling problem with two machines: one machine represents
the map phase, while the other machine represents the shuf-
fle phase. The difference is that our problem minimizes the
average job makespan, while the flow shop scheduling prob-
lem minimizes the completion time or the waiting time. As a
result, our problem prefers to schedule jobs with lighter
workloads before jobs with heavier workloads, but the flow
shop scheduling problem does not have such a preference. It
has been proven that the flow shop scheduling problemwith
only two machines can be optimally solved in a polynomial
time, but the flow shop scheduling problem with more than
two machines is NP-hard [20]. There are some extensions of
the flow shop scheduling problem.Wang et al. [23] proposed
an effective distribution algorithm to solve the distributed
flow shop scheduling problem. The earliest completion fac-
tory rule was employed based on an encoding that generates
feasible schedules and calculates the schedule objective
value. A probability model was built for describing the prob-
ability distribution of the solution space. Marichelvam et al.
[24] presented a cuckoo search meta-heuristic algorithm to
minimize the makespan for the flow shop scheduling prob-
lem. A constructive heuristic was incorporated to obtain the
near-optimal solutions rapidly.

3 MODEL AND PROBLEM FORMULATION

This paper focuses on a MapReduce framework with over-
lapping map and shuffle phases. In MapReduce, map work-
ers continuously emit processed data (at a constant rate),
which are in turn shuffled to reduce workers. We consider
that map and shuffle phases mainly take CPU and I/O
resources, respectively. Hence, they may be conducted in
parallel. However, the shuffle phase is dependent on the
map phase. This is because the shuffle phase may wait to
transfer the data emitted by the map phase. If the data trans-
fer rate of the shuffle phase is higher than the data emission
rate of the map phase, then the shuffle phase has to wait for
the data emission. As a result, the shuffle phase of a job
must start later than its map phase and cannot finish earlier
than its map phase. The reduce phase is not jointly opti-
mized, since its workload is light [2].

We study both offline and online scenarios with n jobs in
total. The offline scenario means that all jobs arrive at the
system at the start time, waiting to be scheduled (job infor-
mation is pre-known). The online scenario means that the
scheduler only obtains the workload information of a job
upon its arrival, which may not be the start time. Let
J ¼ fJ1; J2; . . . ; Jng denote the set of jobs, where Ji is the ith
job. Let tmi and tsi denote the map and shuffle workloads of
Ji, respectively. The workload of a job is its execution time
under fully-utilized resources. A MapReduce job may
include multiple parallel subtasks on different machines. In
such an event, its workload is the sum among different sub-
tasks. The CPU resource is always fully utilized. In contrast,
the I/O resource may be underutilized due to the depen-
dency relationship between the map and shuffle phases.
The actual shuffle time is considered to be reversely

proportional to the I/O utilization for model simplicity. For
example, when the I/O utilization is 25 percent, the shuffle
time is quadrupled. Note that this assumption can be
improved. One reason is that MapReduce framework
manipulates the shuffle with patch pattern, i.e., shuffle data
is not delivered to network until a local data buffer is fully
filled. As a result, shuffle can present burst of data at I/O
ports. Other reasons can be overhead and and machine per-
formance variance. However, when the shuffle workload is
large enough with respect to the local buffer, this assump-
tion becomes solid in terms of approximating the average
performance [19].

We have the following definitions:

Definition 1. The job of Ji is said to be balanced if and only if
tmi ¼ tsi . If t

m
i > tsi , Ji is map-heavy. On the other hand, if

tmi < tsi , Ji is shuffle-heavy.

Definition 2. The makespan of a job is the time span from its
arrival to its shuffle phase completion, including its waiting
time before the job execution.

The objective of this paper is to minimize the average job
makespan through jointly scheduling overlapping map and
shuffle phases. We do not minimize the latest job comple-
tion time (or other objectives) since these objectives have
been well-studied in the flow shop scheduling field [20].
We assume that the MapReduce has a centralized scheduler,
which abstracts the job schedule as a sequential order. The
scheduler executes the next job, only if the MapReduce
cluster has sufficient machines with idle CPU resources.
This is because the next job may require the CPU resources
of multiple machines to start its map phase. Our problem is
NP-hard and APX-hard in the offline and online scenarios,
respectively [16]. Therefore, this paper studies some special
cases to design effective heuristics for our problem.

Note that a job may not execute immediately after its
arrival, since it may be scheduled to wait for other jobs.
To minimize the average job makespan, we prefer to exe-
cute jobs with lighter workloads earlier. This is because
the smaller jobs can finish earlier. This preference can intro-
duce an unfair policy that many small tasks could block the
issue of large tasks for a long interval (algorithmperformances
can be degraded if considering the fairness issue). However,
this paper does not explore the fairness problem for simplicity.
The key challenge comes from the dependency relationship
between the map and shuffle phases, which may lead to I/O
underutilization (and thus, a non-optimal schedule). As a
result, the optimal schedule may not be simply ranking jobs
by their workloads. The following section will explore some
insights. Finally, all notations are shown in Table 1.

TABLE 1
Notations

Ji and n Ji is the ith job and n is the number of jobs
J set of jobs, J ¼ fJ1; J2; . . . ; Jng
tmi and tsi the map and shuffle workloads of Ji
S a schedule for J
Gi the ith job group
Di;j the job priority difference between Ji and Jj
a a weight parameter
k a parameter to determine number of job groups

ZHENG ANDWU: JOINT SCHEDULING OF OVERLAPPING MAPREDUCE PHASES: PAIR JOBS FOR OPTIMIZATION 1455

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

4 OFFLINE SCHEDULING WITH STRONG JOB PAIR

4.1 Strong Job Pair and Its Optimality

To obtain more insights on the offline scheduling, we start
with a special case of J , based on the following definition:

Definition 3. Two jobs, Ji and Jj, are called a strong pair if
tmi ¼ tsj and t

s
i ¼ tmj .

If two jobs can form a strong pair, then their map and shuffle
workloads are exactly opposite to each other, meaning that
they can be executed together to avoid I/O underutilization.
This is a special case that can result in the optimal offline
schedule, as shown in the following theorem [25]:

Theorem 1. If J can be decomposed to strong pairs of jobs, then
jobs that can form a strong pair are pairwisely executed in the
optimal offline schedule for J . For each strong job pair, the shuf-
fle-heavy job is executed before the map-heavy job.

The proof of Theorem 1 is described in [25]. It means that
we can avoid I/O underutilization by pairwisely executing
jobs that can form a strong pair. This idea can be extended
by organizing a bundle of jobs (such as a 3-tuple of jobs) as
a basic scheduling unit. However, such an extension may
bring a higher scheduling complexity and may post a higher
optimality prerequisite on the workload distributions of
jobs. Therefore, we use a pair of jobs (rather than a 3-tuple
of jobs) as the basic scheduling unit.

4.2 Pair-Based Scheduling and Discretization

Our first idea is to schedule jobs based on their workloads
and try to pair jobs that have the same workloads based on
Theorem 1. Consequently, Algorithm 1 is proposed, which
has two stages. The first stage (lines 1 to 3) is based on Lin’s
MaxSRPT algorithm [16], where jobs are sorted according to
maxðtmi ; tsi Þ. Note that maxðtmi ; tsi Þ represents the dominant
workload of Ji. Jobs with lighter workloads should be exe-
cuted earlier, since small jobs could finish earlier to mini-
mize the average job makespan. The second stage (lines 4
and 5) is our novel contribution based on Theorem 1. Jobs
are iteratively paired according to their map and shuffle
workload differences. We prioritize jobs with smaller
workloads (the first stage) over jobs with better pairs (the
second stage), since the former one generally rules the lat-
ter one (as verified in experiments). The time complexity
of Algorithm 1 is Oðn lognÞ, and n is the number of jobs.
This time complexity results from the sorting procedure in
Algorithm 1 (lines 3 and 5).

Algorithm 1. Pair-Based Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according tomaxðtmi ; tsi Þ;
4: for each subset of jobs with the samemaxðtmi ; tsi Þ do
5: Reorder jobs by iteratively taking out a pair of jobs of

Ji ¼ argmaxiðtsi � tmi Þ and Jj ¼ argmaxjðtmj � tsjÞ;
6: return the order array of S as the schedule;

As shown in [25], Algorithm 1 works well when only a
small portion of jobs can be paired.

Theorem 2. Algorithm 1 is optimal when all jobs in J are simul-
taneously map-heavy, balanced, or shuffle-heavy.

4.3 Couple-Based Scheduling and Generalization

Wefind that Algorithm 1 fails to workwell when a large por-
tion of jobs can be paired. Therefore, Algorithm 2 is proposed
to address the above issue. Similar to Algorithms 1 and 2 also
has two stages. In the first stage (lines 1 to 3), all jobs are
sorted according to their total map and shuffle workloads,
i.e., tmi þ tsi . Its intuition is similar to that of Algorithm 1: jobs
with lighter workloads should be executed earlier, since the
smaller jobs can finish earlier to minimize the average job
makespan. The key difference is that jobs are sorted by total
map and shuffle workloads in Algorithm 2, instead of
dominant workloads in Algorithm 1. The second stage of
Algorithm 2 (lines 4 and 5) is identical to Algorithm 1, where
jobs are iteratively paired based on their map and shuffle
workload differences. The time complexity of Algorithm 2
remainsOðn lognÞ1.

Algorithm 2. Couple-Based Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according to tmi þ tsi ;
4: for each subset of jobs with the same tmi þ tsi do
5: Reorder jobs by iteratively taking out a pair of jobs of

Ji ¼ argmaxiðtsi � tmi Þ and Jj ¼ argmaxjðtmj � tsjÞ;
6: return the order array of S as the schedule;

As shown in [25], Algorithm 2 works well when a large
portion of jobs can be paired.

Theorem 3. Algorithm 2 is optimal when J can be decomposed
to strong pairs of jobs.

Moreover, we have the following corollary:

Corollary 1. Algorithms 1 and 2 are equivalent and optimal
when all jobs in J are simultaneously balanced.

While Algorithm 1 works well when only a small portion
of jobs can be paired, Algorithm 2 works well when a large
portion of jobs can be paired. They are equivalent and opti-
mal when all jobs are balanced. To balance this tradeoff,
Algorithm 3 is proposed to combine Algorithms 1 and 2. It
uses ½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ� as Ji’s priority,
then sorts all jobs according to their priorities. a serves as a
weight parameter that satisfies 0 � a � 1.

Algorithm 3. Generalized Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Set Ji’s priority as ½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ�;
4: Sort all jobs in S according to their priorities;
5: for each subset of jobs with the same priority do
6: Reorder jobs by iteratively taking out a pair of jobs of

Ji ¼ argmaxiðtsi � tmi Þ and Jj ¼ argmaxjðtmj � tsjÞ;
7: return the order array of S as the schedule;

1456 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

4.4 Group-Based Policy

Previous sections introduced Algorithms 1, 2, and 3 to
schedule jobs with a discretization process, which controls
the granularity of the job priority. Jobs with similar priori-
ties are grouped for the pairing process. The discretization
process is essentially a grouping (or clustering) procedure,
and thus, it could be replaced by other grouping methods.
This section presents a pairwise scheduling policy that
groups jobs through a dynamic programming approach.
The grouping goal is to divide jobs into k groups, such that
the Sum of the Maximum Job Priority Difference within
each group (SMJPD) is minimized. Let G1; . . . ; Gk denote
the k job groups. SMJPD ¼ Pk

l¼1fmaxJi;Jj2Gl
Di;jg with Di;j ¼�

�½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ� � ½a �maxðtmj ; tsjÞ þ ð1� aÞ�
ðtmj þ tsjÞ�

�
�. Here, Di;j denotes the job priority difference

between Ji and Jj. The optimal grouping result can be
obtained by a dynamic programming approach. Without
loss of generality, we assume that all jobs are already sorted
according to their priorities, i.e., ½a �maxðtmi ; tsi Þ þ ð1� aÞ�
ðtmi þ tsi Þ� is non-decreasing with respect to the index i. Let
OPTj;l denote the optimal SMJPD for the first j jobs
(J1; J2; . . . ; Jj), when they are divided to l groups. OPTn;k is
the desired result. The optimal substructure for the dynamic
programming approach is shown as follows:

OPTj;l ¼ min
l�i�j

fOPTi�1;l�1 þ Di;jg: (1)

Since jobs are assumed to be sorted by their priorities, Di;j is
also the maximum job priority difference for the job group
of Ji; Jiþ1; . . . ; Jj. Then, Eq. (1) can be interpreted as follows.
The optimal grouping for the first j jobs of l groups is com-
posed of (1) the optimal grouping for the first i� 1 jobs of
l� 1 groups, and (2) the remaining jobs of Ji; Jiþ1; . . . ; Jj as
a new group. The index of i is traversed to guarantee the
optimality. Since i is traversed, computing the dynamic pro-
gramming entry of OPTj;l takes OðnÞ on average. OðnkÞ
entries exist in total, and thus, the eventual time complexity
of the dynamic programming approach is Oðn2kÞ. As for the
initialization, we set OPTj;l ¼ 0when j ¼ 0 or j � l.

Algorithm 4. Group-Based Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Set Ji’s priority as ½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ�;
4: Sort all jobs in S according to their priorities;
5: Divide jobs into k groups by dynamic programming:

Initialize a two-dimensional array of OPT ;
Initialize OPTj;l ¼ 0when j ¼ 0 or l ¼ 0;
Compute OPTj;l ¼ minl�i�jfOPTi�1;l�1 þ Di;jg;
Trace back the optimal job grouping through index i;

6: for each group of jobs do
7: Reorder jobs by iteratively taking out a pair of jobs of

Ji ¼ argmaxiðtsi � tmi Þ and Jj ¼ argmaxjðtmj � tsjÞ;
8: return the order array of S as the schedule;

Algorithm 4 is proposed, setting the job priority of Ji as
½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ� (lines 1 to 3). Then, the
dynamic programming approach is applied to group jobs

based on their priorities. Meanwhile, groups are also sorted
according to their priority ranges (lines 4 and 5). For each
group, jobs are iteratively paired according to their map
and shuffle workload differences (lines 6 and 7). We priori-
tize jobs with smaller workloads (the first stage) over jobs
with better pairs (the second stage), since the former one
generally rules the latter one (verified in experiments). The
time complexity of Algorithm 4 is Oðn2kÞ, which results
from the dynamic programming approach. Although Algo-
rithm 4 has a higher time complexity than Algorithms 1, 2,
and 3, it skips the discretization process, which may result
in information loss. As a tradeoff, Algorithm 4 controls the
job granularity through a more flexible manner via k.

4.5 Extension to Online Scheduling

The proposed online scheduling algorithm includes an ini-
tialization process. At the system start time, Algorithm 4 is
used to schedule the existing jobs. If the number of existing
jobs is less than k, then each job is regarded as a job group.
Note that job groups are sorted according to their priority
ranges. Upon a new job arrival, Algorithm 5 is called. It
includes two sub-methods: method one completely resched-
ules all jobs (lines 2 and 3) and method two slightly modifies
the existing old schedule (lines 5 to 10). Methods one and
two are chosen through a random number generator. The
random number is uniformly distributed between 0 and 1.
Therefore, line 2 indicates that Algorithm 5 has a small
probability of 1

nk2
to choose method one, and has a large

probability of 1� 1
nk2

to choose method two. Here, n is the

total number of jobs that are waiting for the schedule. The
above probabilities aim to balance the time complexity.

Algorithm 5. Online Group-Based Scheduling Policy

Input: The old schedule, S, and a new arriving job, Ji.
Output: A new schedule of the current job execution order.

1: Set Ji’s priority as ½a �maxðtmi ; tsi Þ þ ð1� aÞ � ðtmi þ tsi Þ�;
2: if a random number is smaller than 1=nk2 then
3: Call Algorithm 4 to completely reschedule all jobs;
4: return the new schedule;
5: else
6: for each job group, Gl, in S do
7: ComputemaxJj2Gl

Di;j;

8: Add Ji into Gl ¼ argminGl
fmaxJj2Gl

Di;jg;
9: Reorder jobs in Gl via the same way as Algorithm 4;
10: return the updated S as the schedule;

Method one calls Algorithm 4 to reschedule all jobs, and
thus takes a time complexity of Oðn2kÞ. In contrast, method
two modifies the existing old schedule to resolve the new
job. It checks every job group for the new arrival job, and
then adds the new job to its closest existing job group. The
closest group is the one that can minimize the maximum job
priority difference with the new job (lines 6 to 8). It can be
found within a time complexity of OðkÞ, since we only need
to check the minimum and maximum job priorities in each
job group. All jobs in this group and the new arrival job are
completely reordered in a pairwise manner (line 9). Since
each job group is expected to include n

k jobs, method two is
also expected to take OðnkÞ. Consequently, Algorithm 5 takes

OðnkÞ, since ½ 1
nk2

�Oðn2kÞ þ ð1� 1
nk2

Þ �OðnkÞ� 2 OðnkÞ.

ZHENG ANDWU: JOINT SCHEDULING OF OVERLAPPING MAPREDUCE PHASES: PAIR JOBS FOR OPTIMIZATION 1457

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

4.6 Job Prediction and Error Handling

The performance of our algorithms depend on the parame-
ters a, n, and k. However, jobs are no longer known a priori
for the online scenario. At this time, job prediction
approaches can be applied to determine these parameters.
For example, CherryPick [26] leverages Bayesian optimiza-
tion to build performance models for various applications,
and the models are just accurate enough to distinguish the
best or close-to-the-best configuration from the rest with
only a few test runs. We can use the same approach to deter-
mine the parameters a, n, and k. In addition, the history of
job workloads can be used to improve the prediction accu-
racy. For example, Cortez [27] introduced an extensive char-
acterization of job workloads, including distributions of the
job lifetime, deployment size, and resource consumption.
Moreover, job prediction can be used to handle errors with
respect to job workload information. If the job workload
information is not available, we can use predicted job work-
load to schedule it.

5 OFFLINE SCHEDULING WITH WEAK JOB PAIR

Based on the strong job pair, the previous section describes
several scheduling algorithms. However, the requirement
of the strong job pair is very strict, and thus, is not likely to
be satisfied in real scenarios. To relax such a strict require-
ment, this section further proposes the concept of the weak
job pair and the corresponding scheduling algorithms.

5.1 Weak Job Pair and Its Optimality

We start with relaxing the strong job pair to the weak job
pair, as defined in the following:

Definition 4. Two jobs, Ji and Jj, are called a weak pair if
tmi þ tmj ¼ tsi þ tsj .

Definition 5. A weak pair is further called a strict weak pair if
the shuffle-heavy job in this weak pair occupies no more than
half of the total map workload and no less than half of the total
shuffle workload.

The weak pair is an extension of the strong pair. A strong
pair must be a weak pair, but vice not versa. The key idea is
that the weak pair also avoids I/O underutilization, leading
to a better schedule. However, weak pairs do not guarantee
the optimality, since pairing a small job and a large job
(in terms of total workloads) may not be effective. Such a
pairing avoids I/O underutilization at the cost of schedul-
ing a heavier job ahead, as shown in the following example:

Jobs J1 J2 J3 J4

tmi 1 98 45 55

tsi 2 97 49 51

Let us consider two schedules for the above example. The first
schedule is just J1, J2, J3, and J4. Note that J1 and J2 form a
weak pair, while J3 and J4 form anotherweak pair.Moreover,
the weak pair formed by J3 and J4 has a larger total workload
than the weak pair formed by J1 and J2. The first schedule
completely avoids I/O underutilization. The job makespan
for J1, J2, J3, and J4 is 2, 99, 148, and 199, respectively. Conse-
quently, the average job makespan is 112. In contrast, the

second schedule is J1, J3, J4, and J2. Note that J1 and J3 do
not form a weak pair. The job makespan for J1, J2, J3, and J4
is 2, 51, 102, and 199, respectively. Consequently, the average
job makespan is 88.5, which is smaller than 112. Clearly, the
first schedule is not optimal. This is simply because the first
schedule avoids I/O underutilization at the cost of scheduling
a heavier job ahead (i.e., J2 is scheduled ahead). On the other
hand, if weak pairs are formed without scheduling a heavier
job ahead, then the optimality can be obtained:

Theorem 4. If J can be decomposed to strict weak pairs of jobs,
then jobs that can form a strict weak pair are pairwisely exe-
cuted in the optimal offline schedule for J . For each strict
weak job pair, the shuffle-heavy job is executed before the
map-heavy job.

The proof of Theorem 4 is omitted since it is a very simple
extension of Theorem 1. The key insight of Theorem 4 is that
strict weak pairs are formed without scheduling a heavier
job ahead. For each strict weak pair, the total workload of the
shuffle-heavy job is close to the total workload of the map-
heavy job. The shuffle-heavy job and the map-heavy job in a
strict weak pair occupy no less than half of the total shuffle
and map workloads, respectively. Compared to the strong
pair, the weak pair is more practical. The next two sections
leverage weak pairs for the scheduling.

5.2 New Couple-Based Scheduling

Algorithm 6 is proposed to leverage weak pairs of jobs. It is
a variation of Algorithm 2 and also needs the discretization
process. The idea is to maintain weak pairs in the schedul-
ing. Lines 1 and 2 show the initialization. Line 3 sorts jobs
that have the same jtmi � tsi j, i.e., jobs that can form a weak
pair are grouped. Note that each job group may have more
than two jobs, i.e., a job may form different weak pairs with
the other jobs. Lines 4 and 5 process each subset of jobs. The
smallest possible pair is iteratively taken out. If a subset of
jobs includes an odd number of jobs, then the last job will
be put to the end of the schedule. Lines 6 and 7 determine
the scheduling based on pairs, which are ordered by their
total workloads, tmi þ tmj þ tsi þ tsj . Finally, line 8 returns the
result. Let n denote the number of jobs in J . The time com-
plexity of Algorithm 6 becomes Oðn2Þ. This is because we
need Oðn2Þ to find out the smallest pair in each subset of
jobs. Sorting takes only Oðn lognÞ.

Jobs J1 J2 J3 J4 J5 J6

Discrete tmi 3D 7D 2D 3D 7D 8D

Discrete tsi 4D 6D 4D 1D 5D 10D

The above table shows an example for Algorithm 6 after
the discretization process. In line 3, J1 and J2 are sorted
together, while J3, J4, J5, and J6 are sorted together. Note
that J3 can form two different weak pairs with J4 and J6,
respectively. Lines 4 and 5 form weak job pairs for each sub-
set of jobs. In the first subset, J1 and J2 are paired. In the sec-
ond subset, J3 and J4 are paired in the first iteration, since
they form the smallest weak pair (compared to J3 and J5, J6
and J4, and J6 and J5). J6 and J5 are paired in the second
iteration (shuffle-heavy job before map-heavy job for each
weak pair). Line 5 sorts these three weak pairs into J3 and

1458 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

J4, J1 and J2, and J6 and J5. Consequently, the final sched-
ule is J3, J4, J1, J2, J6, and J5.

Algorithm 6.New Couple-Based Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: Put all jobs into the order array of S;
3: Sort all jobs in S according to jtmi � tsi j;
4: for each subset of jobs with the same jtmi � tsi j do
5: Pair jobs by iteratively taking out a pair, Ji and Jj, such

that tmi þ tsi þ tmj þ tsj is the smallest among all possible
pairs in the job subset;

6: Sort all pairs by their total workloads, tmi þ tsi þ tmj þ tsj ;
7: Put sorted pairs into S; in each pair, the job that maximizes

tsi � tmi is scheduled first;
8: return the order array of S as the schedule;

Algorithm 6 is a variation of Algorithm 2. The former is
based on weak pairs while the latter is based on strong
pairs. Note that Algorithm 6 is not necessarily better than
Algorithm 2 in terms of the average job makespan. This is
because weak pairs may be formed at the cost of scheduling
a heavier job ahead. Actually, all proposed algorithms are
trying to balance the tradeoff between the job pairing and
the job workload. The next section uses matching to control
the above tradeoff without the discretization process.

Algorithm 7.Match-Based Scheduling Policy

Input: The job set, J , and its workloads, ftmi g and ftsig.
Output: A schedule of the job execution order.

1: Initialize an array, S, to denote the job execution order;
2: if the number of jobs in J is odd then
3: Find out the most map-heavy job that maximizes

tmi � tsi , put it to the end of S, and remove it from J .
4: for each pair of jobs in J , say Ji and Jj do
5: Define the matching weight between jobs Ji and Jj as

wij ¼ a � jtmi þ tmj � tsi � tsj j þ ð1� aÞ � jtmi þ tsi � tmj � tsj j.
6: Find out the minimum weighted matching for jobs in J

through the weighted Blossom algorithm; Two matched
jobs are regarded as a matched pair;

7: Sort all pairs by their total workloads, tmi þ tsi þ tmj þ tsj ;
8: Put sorted matched pairs into S; in each pair, the job that

maximizes tsi � tmi is scheduled first;
9: return the order array of S as the schedule;

5.3 Match-Based Scheduling Policy
This section uses the matching to balance the tradeoff
between the job pairing and the job workload without the
discretization process. The key idea is that, when two jobs
are paired, we need to consider both their pairing degree
and their workload difference. The pairing degree measures
to what degree two jobs can form a weak pair, such that I/O
underutilization can be avoided. On the other hand, a
smaller workload difference between two jobs gets rid of
scheduling a heavier job ahead. We use the matching
weight to check whether two jobs can be paired. Given two
jobs, Ji and Jj, their matching weight is defined as follows:

wij ¼ a � jtmi þ tmj � tsi � tsj j þ ð1� aÞ � jtmi þ tsi � tmj � tsj j: (2)

The former part, jtmi þ tmj � tsi � tsj j, is the pairing degree.
The latter part, jtmi þ tsi � tmj � tsj j, is the workload difference
between Ji and Jj. a is just a weight parameter that satisfies
0 � a � 1 (also used in Algorithms 3, 4, and 5). Note that a
smaller wij indicates a better pairing between Ji and Jj. wij

reduces to 0 when Ji and Jj form a strong pair. When a ¼ 1,
the matching weight only considers the job pairing degree.
In this case, jobs that can form weak pairs have the mini-
mum matching weight. On the other hand, when a ¼ 0, the
matching weight only considers the job workload differ-
ence. In this case, jobs with the same workloads have the
minimummatching weight.

The minimum weighted matching, which can be com-
puted through the weighted Blossom algorithm [28], is used
to balance the tradeoff between the job pairing degree and
the job workload difference. Consequently, Algorithm 7 is
proposed. Line 1 is the initialization. Lines 2 and 3 focus on
a corner case, in which J includes an odd number of jobs. In
this corner case, the most map-heavy job, which maximizes
tmi � tsi , is scheduled to the end of S. Lines 4 and 5 compute
the matching weight for each pair of jobs in J . Conse-
quently, line 6 pairs jobs through the minimum weighted
matching. Lines 7 and 8 sort and schedule matched job pairs
by their total workloads, tmi þ tsi þ tmj þ tsj . In each pair, the
job that maximizes tsi � tmi is scheduled first. Finally, line 9
returns the result. The time complexity of Algorithm 7 is
Oðn4Þ due to the weighted Blossom algorithm [28], [29], [30].

5.4 Extension to Online Scheduling

This section extends the match-based scheduling policy to
the online scenario, where jobs are no longer known a pri-
ori. The scheduler can only obtain the workload information
of a job upon its arrival. Due to the problem hardness, we
propose a heuristic scheduling algorithm based on Algo-
rithm 7. The key idea is similar to Algorithm 5, which uses a
probabilistic procedure to balance the tradeoff between the
algorithm performance and the time complexity.

Algorithm 8. Online Match-Based Scheduling Policy

Input: The old schedule, S, and a new arriving job, Ji.
Output: A new schedule of the current job execution order.

1: if a random number is smaller than 1=n4 then
2: Call Algorithm 7 to completely reschedule all jobs;
3: return the new schedule;
4: else
5: for each job in J , say Jj do
6: Define the matching weight between Ji and Jj as

wij ¼ a � jtmi þ tmj � tsi � tsj j þ ð1� aÞ � jtmi þ tsi � tmj � tsj j.
7: Find the job, say Jj, that minimizes wij;
8: if tsi � tmi > tsj � tmj then
9: Put Ji before Jj and update S.
10: else
11: Put Ji after Jj and update S.
12: return the updated S as the schedule;

The proposed online scheduling algorithm includes an
initialization process. At the system start time, Algorithm 7
is used to schedule the existing jobs. Upon a new job arrival
(say Ji), Algorithm 8 is called. It includes two sub-methods:
method one completely reschedules all jobs (lines 1 to 3),
and method two just inserts Ji into the existing old schedule

ZHENG ANDWU: JOINT SCHEDULING OF OVERLAPPING MAPREDUCE PHASES: PAIR JOBS FOR OPTIMIZATION 1459

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

(lines 4 to 11). Methods one and two are chosen through a
random number generator. The random number is uni-
formly distributed between 0 and 1. Therefore, line 1 indi-
cates that Algorithm 8 has a small probability of 1

n4
to choose

method one, and has a large probability of 1� 1
n4

to choose

method two. Here, n is the total number of jobs that are
waiting for the schedule.

Method one calls Algorithm 7 to reschedule all jobs, and
thus takes a time complexity of Oðn4Þ. In contrast, method
two modifies the existing old schedule to resolve the new
job. It computes the matching weight between the newly
arrived job, Ji, and each existing job in J (lines 5 and 6). The
job, say Jj, that has the minimum matching weight with Ji
is found in line 7. Ji will be inserted around Jj, depending
on their workloads. If Ji is more shuffle-heavy (i.e.,
tsi � tmi > tsj � tmj), Ji is inserted before Jj in S (lines 8 and
9). On the other hand, if Jj is more shuffle-heavy (i.e.,
tsi � tmi � tsj � tmj), Ji is inserted after Jj in S (lines 10 and
11). Since lines 5 and 6 need to compute the matching
weight between the newly arrived job and each existing job,
method two takes OðnÞ. Consequently, Algorithm 8 takes
OðnÞ, since ½ 1

n4
�Oðn4Þ þ ð1� 1

n4
Þ �OðnÞ� 2 OðnÞ. Note that

method one has a better scheduling performance at the cost
of a larger time complexity, while method two has a worse
scheduling performance but a smaller time complexity.
They are balanced through the random number generator,
leading to a linear time complexity on expectation.

6 EXPERIMENTS

6.1 Settings

Our experiments are conducted based on the Google cluster
dataset [31], [32], which are described in [25]. Four algo-
rithms are used for comparison:

� MaxDiff ranks jobs by their map and shuffle work-
load differences (tmi � tsi for job Ji). The job with a
larger workload difference will be executed later. It
prioritizes shuffle-heavy jobs over map-heavy jobs to
avoid I/O resource underutilization.

� Pairwise is based on Theorem 1, which has sug-
gested that jobs should be pairwisely scheduled.
This policy orders jobs by iteratively taking out a
pair of jobs of Ji ¼ argmaxiðtsi � tmi Þ and Jj ¼
argmaxjðtmj � tsjÞ.

� MaxShuffle ranks jobs by their shuffle workloads.
Jobs with a larger shuffle workload are executed ear-
lier in order to avoid I/O resource underutilization.

� MaxSRPT is proposed by Lin et al. [16]. It schedules
jobs according to their dominant workloads, i.e.,
maxðtmi ; tsi Þ for job Ji. Our algorithms improve
MaxSRPT through executing jobs pairwisely.

Our experiments denote Algorithms 1, 2, 3, 4, 5, 6, 7, and
8 as Pair-based, Couple-based, Generalized, Group-based,
OGroup-based, NCouple-based, Match-based, and OMatch-
based scheduling policies for simplicity. In default, we can
set D ¼ 0:1 seconds as the discretization step (Algorithms 1,
2, 3, and 6), a ¼ 0:5 as the weight parameter (Algorithms 3, 4,
5, 7, and 8), and k ¼ 20 as the number of groups (Algorithms
4 and 5). Three metrics are used for comparison. The first
metric is the average job makespan, which is the time span

from the job arrival to its shuffle phase completion. The other
twometrics are the average job waiting time and the average job
execution time. The waiting time of a job is the time span from
the job arrival to the start of its map phase. The execution
time of a job is the time span from the start of its map phase
to the completion of its shuffle phase. The job makespan is
the sum of the jobwaiting time and the job execution time.

6.2 Evaluation Results for Offline Scheduling

Experiments in the Google cluster dataset are conducted for
the offline scenario, inwhich all jobs are supposed to arrive at
the system start time. The results are shown in Table 2 with
the unit of seconds. MaxDiff, Pairwise, and MaxShuffle have
the worst performances. However, Pairwise has a significant
smallest average job execution time through executing jobs
pairwisely. It ignores the total map and shuffle workloads of
jobs, leading to an overly large job waiting time. We also find
that the Pair-based scheduling policy has a larger average job
wait time than the MaxSRPT policy, since the discretization
process is information-lossy. However, the former policy has
a smaller average job execution time through executing jobs
pairwisely. The Couple-based policy improves the Pair-
based policy through considering the total map and shuffle
workloads of a job rather than its dominant workload. The
Generalized policy improves the Pair-based and the Couple-
based policies by combining them with a given weight
parameter of a. The Group-based policy improves the Gener-
alized policy by grouping jobs optimally. An interesting
observation is that the NCouple-based policy does not have a
good performance. This is because weak pairs are formed at
the cost of scheduling a heavier job ahead. For the Google
cluster dataset, we can conclude that scheduling jobs with
lighter workloads before jobs with heavier workloads ismore
important than avoiding I/O underutilization through weak
pairs. Finally, the Match-based policy has the best perfor-
mance, since it subtly balances the tradeoff between the job
pairing and the jobworkload through amatching procedure.

The impacts of the discretization step size, D, is shown in
Fig. 2 (offline scenario in the Google cluster dataset). Fig. 2a
shows that a small D does not have a significant impact on
the average job waiting time. However, a large D results in
an exponentially increased average job waiting time, due to
the information loss on the total or dominant job workload.
Meanwhile, Fig. 2b shows that both overly small and overly
large D will increase the job execution time. This is because
the pairing process is broken down by an improper D. The

TABLE 2
Offline Performance Evaluation in the Google Cluster Dataset

Scheduling
algorithms

Average job
waiting time

Average job
execution time

Average job
makespan

MaxDiff 8806 682 9488
Pairwise 8289 149 9138
MaxShuffle 7929 898 8827
MaxSRPT 4768 840 5608
Pair-based 4809 581 5390
Couple-based 4787 563 5350
Generalized 4683 560 5243
Group-based 4619 532 5151
NCouple-based 5399 636 6035
Match-based 4431 512 4943

1460 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

corresponding average job makespan is shown in Fig. 2c.
We can conclude that D should not be overly small or overly
large to minimize the average job makespan. For the Google
cluster dataset, a good value for D can range from 0.01 to 0.1.

The impacts of the weight parameter, a, and the group
number, k, are together shown in Fig. 3 (offline scenario in
the Google cluster dataset). As for the weight parameter a,
Fig. 3a shows an interesting pattern. The Generalized policy
reduces to the Pair-based policy when a ¼ 1, and reduces to
the Couple-based policy when a ¼ 0. However, it achieves
the smallest average job waiting time when a is around 0.6.
In addition, the Match-based policy is significantly different
than all the other policies with respect to a, and it achieves
the smallest average job waiting time when a is around 0.2.
The average job execution time is shown in Fig. 3b. a has a
slight impact on the average job execution time for the Gen-
eralized and Group-based policies, but has a significant

impact for Match-based policy. This is because, when a ¼ 1
in the Match-based policy, the matching weight only con-
siders the job pairing degree, such that I/O underutilization
can be avoided at the cost of scheduling a heavier job ahead.
The average job makespan is shown in Fig. 3c. The Match-
based policy has a smaller average job makespan than the
Generalized and Group-based policies. Another notable
point is with respect to k. While Fig. 3a shows that an overly
small k leads to a large average job wait time, and Fig. 3b
shows that an overly large k leads to a large average job exe-
cution time. As shown in Fig. 3c, in order to minimize the
average job makespan for the Group-based policy, k should
be neither too small nor too large, depending on the dataset.

6.3 Evaluation Results for Online Scheduling

Experiments in the online scenario are conducted in the
Google cluster dataset, which includes the job arrival time.

Fig. 2. Offline performance evaluation with respect to the discretization step size of D.

Fig. 3. Offline performance evaluation with respect to the weight parameter a.

Fig. 4. Online performance evaluation with respect to the number of waiting jobs.

ZHENG ANDWU: JOINT SCHEDULING OF OVERLAPPING MAPREDUCE PHASES: PAIR JOBS FOR OPTIMIZATION 1461

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

We start with the number of waiting jobs per hour under
each scheduling policy. The results are shown in Fig. 4. Not
all policies are presented here due to the page limitation.
Fig. 4a shows the result for the Pairwise policy, which has
the worst performance. Compared to other policies, the
Pairwise policy has a larger number of waiting jobs for a
longer time around days 4, 5, and 12. It also has more wait-
ing jobs from days 22 to 30. Fig. 4b shows the result for the
MaxSRPT policy, which is not the best one, due to the peak
for days 20 to 24. In contrast to the Pairwise and MaxSRPT
policies, the Group-based policy has a smaller number of
waiting jobs over time, as shown in Fig. 4c. This is because
it considers to schedule jobs in a pairwise manner to avoid
the underutilization of the I/O resource. The performance
of the OGroup-based policy is shown in Fig. 4d. It has a
slightly worse performance from days 26 to 30 than its off-
line version. Note that the scheduling time complexity of
the online version is OðnkÞ, which is lower than the schedul-
ing time complexity of the offline version, Oðn2kÞ. The per-
formance of the Match-based policy is shown in Fig. 4e. The
Match-based policy has the best performance among all pol-
icies, since it balances the tradeoff between the job pairing
and the job workload. However, the time complexity for the
Match-based policy is Oðn4Þ upon each new job arrival, in
which n is the number of waiting jobs. To reduce the sched-
uling complexity, the OMatch-based policy is introduced,
as shown in Fig. 4f. The OMatch-based policy has a slightly
worse performance than Match-based policy. However, the
time complexity of the OMatch-based policy is OðnÞ, which
is significantly smaller than the time complexity of the
Match-based policy.

Detailed performance statistics are shown in Table 3 with
the unit of minutes. A new concept of an 80 percent-interval
is used to represent the variable interval after removing the
largest 10 percent of the values and the smallest 10 percent
of the values. For each job, we define its ratio as the ratio of
its practical execution time to its dominant workload. A
larger ratio indicates that the corresponding job needs to
wait for the I/O resource for a relatively longer time. A job
with a ratio of one means that its execution time cannot be
shortened. The worst ratio is the smallest ratio among all
jobs. In Table 3, it can be seen that the Pairwise policy has
the smallest job execution time, but it has a larger job wait-
ing time. In contrast, the MaxSRPT policy has a small job

waiting time with a large job execution time. The proposed
Pair-based and Couple-based policies balance the job
waiting and execution times to obtain smaller job make-
spans. The Generalized policy has a slight improvement
by combining the above two policies, while the Group-
based policy also has some improvements by optimally
grouping jobs. The OGroup-based policy has a slightly
worse performance than Group-based policy, as well as
a smaller scheduling time complexity. Note that the
NCouple-based policy does not have a good performance.
Although its job execution time is small, its job waiting
time is large. The Match-based policy has the best perfor-
mance by balancing the tradeoff between the job pairing
and the job workload. Similar to the OGroup-based pol-
icy, the OMatch-based policy also has a slightly worse
performance than the Match-based policy, as well as a
smaller scheduling time complexity.

7 CONCLUSION

MapReduce includes three phases of map, shuffle, and
reduce. Since the map phase is CPU-intensive and the shuf-
fle phase is I/O-intensive, these phases can be conducted in
parallel. This paper focuses on a joint scheduling optimiza-
tion in MapReduce, where map and shuffle phases can be
overlapped and be conducted in parallel. The scheduling
objective is to minimize the average job makespan. The key
challenge is that the map and shuffle phases cannot be fully
parallelized due to their dependency relationship: the shuf-
fle phase may wait to transfer the data emitted by the map
phase. To avoid I/O underutilization, jobs that can form a
strong pair should be pairwisely executed. Several offline
and online scheduling policies are proposed to execute jobs
in a pairwise manner. Scheduling optimalities are discussed
under several scenarios. We also explore scheduling policies
based on weak pairs, in terms of balancing the tradeoff
between the job pairing and the job workload. Finally, real
data-driven experiments validate the efficiency and effec-
tiveness of the proposed scheduling policies.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, and CNS 1439672.

TABLE 3
Online Performance Evaluation in the Google Cluster Dataset

Scheduling Job waiting time statistics Job execution time statistics Job makespan statistics

algorithms Average 80%-interval Max Average 80%-interval Worst ratio Average 80%-interval Min Max

MaxDiff 42 [1, 138] 220 5 [0, 13] 239 47 [0, 138] 0 230
Pairwise 35 [1, 103] 193 1 [0, 3] 45 36 [0, 101] 0 178
MaxShuffle 23 [0, 86] 176 15 [2, 37] 542 38 [3, 95] 1 154
MaxSRPT 16 [0, 45] 183 13 [0, 44] 220 28 [0, 74] 0 81
Pair-based 19 [1, 51] 205 3 [0, 5] 113 22 [1, 48] 1 54
Couple-based 18 [1, 49] 195 3 [0, 5] 75 21 [1, 46] 1 49
Generalized 16 [1, 44] 187 3 [0, 5] 69 19 [1, 45] 1 47
Group-based 15 [1, 41] 174 3 [0, 4] 58 18 [1, 39] 1 41
OGroup-based 16 [2, 47] 185 3 [0, 5] 68 19 [1, 46] 1 48
NCouple-based 21 [2, 63] 201 1 [0, 3] 51 32 [1, 56] 0 97
Match-based 12 [1, 38] 164 3 [0, 4] 54 15 [1, 37] 1 39
OMatch-based 13 [2, 40] 178 3 [0, 4] 61 16 [1, 42] 1 44

1462 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-
uating MapReduce performance using workload suites,” in Proc.
IEEE Int. Symp. Model. Anal Simul. Comput. Telecommun. Syst.,
2011, pp. 390–399.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. USENIX Symp. Operating Syst. Des. Implementa-
tion, 2008, pp. 29–42.

[3] W. Zhang, S. Rajasekaran, T. Wood, andM. Zhu, “Mimp: Deadline
and interference aware scheduling of hadoop virtual machines,” in
Proc. IEEE/ACM Int. Symp. Cluster Cloud Grid, 2014, pp. 394–403.

[4] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[5] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for MapReduce environments,”
in Proc. IEEE Int. Conf. Autonomic Comput., 2011, pp. 235–244.

[6] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Automated
profiling and resource management of pig programs for meeting
service level objectives,” in Proc. IEEE Int. Conf. Autonomic Com-
put., 2012, pp. 53–62.

[7] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh,
K.-L. Wu, and A. Balmin, “Flex: A slot allocation scheduling opti-
mizer for MapReduce workloads,” in Proc. ACM/IFIP/USENIX
Int. Middleware Conf., 2010, pp. 1–20.

[8] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A self-adaptive sched-
uling algorithm for reduce start time,” Future Generation Comput.
Syst., vol. 43, pp. 51–60, 2015.

[9] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in Proc. USENIX Symp. Operating
Syst. Des. Implementation, 2010, pp. 24–33.

[10] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing MapReduce on heterogeneous clusters,”
ACMSIGARCHComput. Archit. News, vol. 40, no. 1, pp. 61–74, 2012.

[11] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM Symp. Operating Syst. Principles, 2009,
pp. 261–276.

[12] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao,
I. Stoica, I. Y. L. Dont, and B. Us, “True elasticity in multi-tenant
clusters through amoeba,” in Proc. ACM Symp. Cloud Comput.,
2012, pp. 1–7.

[13] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
Proc. ACM Special Interest Group Data Commun., 2014, pp. 455–466.

[14] Q. Zhang, M. F. Zhani, Y. Yang, R. Boutaba, and B. Wong, “Prism:
Fine-grained resource-aware scheduling for MapReduce,” IEEE
Trans. Cloud Comput., vol. 3, no. 2, pp. 182–194, Apr.-Jun. 2015.

[15] A. Verma, B. Cho, N. Zea, I. Gupta, and R. H. Campbell,
“Breaking the MapReduce stage barrier,” J. Cluster Comput.,
vol. 16, no. 1, pp. 191–206, 2013.

[16] M. Lin, L. Zhang, A. Wierman, and J. Tan, “Joint optimization of
overlapping phases in MapReduce,” Perform. Eval., vol. 70, no. 10,
pp. 720–735, 2013.

[17] J. Li, J. Wu, and X. Yang, “Optimizing MapReduce based on local-
ity of kv pairs and overlap between shuffle and local reduce,” in
Proc. Int. Conf. Parallel Process., 2015, pp. 1–10.

[18] J. Wang, M. Qiu, B. Guo, and Z. Zong, “Phase reconfigurable shuf-
fle optimization for hadoop MapReduce,” IEEE Trans. Cloud Com-
put., 2015.

[19] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “Omo: Optimize
MapReduce overlap with a good start (reduce) and a good finish
(map),” in Proc. Int. Perform. Comput. Commun. Conf., 2015, pp. 1–8.

[20] Q.-K. Pan,M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua, “A dis-
crete artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem,” Inf. Sci., vol. 181, no. 12, pp. 2455–2468, 2011.

[21] N. Lim, S. Majumdar, and P. Ashwood-Smith, “MECP-RM: A
technique for resource allocation and scheduling of MapReduce
jobs with deadlines,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 5, pp. 1375–1389, May 2017.

[22] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “G: Pack-
ing and dependency-aware scheduling for data-parallel clusters,”
in Proc. USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 81–91.

[23] S.-y. Wang, L. Wang, M. Liu, and Y. Xu, “An effective estimation
of distribution algorithm for solving the distributed permutation
flow-shop scheduling problem,” Int. J. Prod. Economics, vol. 145,
no. 1, pp. 387–396, 2013.

[24] M. Marichelvam, T. Prabaharan, and X.-S. Yang, “Improved
cuckoo search algorithm for hybrid flow shop scheduling prob-
lems to minimize makespan,” Appl. Soft Comput., vol. 19, pp. 93–
101, 2014.

[25] H. Zheng, Z. Wan, and J. Wu, “Optimizing MapReduce frame-
work through joint scheduling of overlapping phases,” in Proc.
Int. Conf. Comput. Commun. Netw., 2016, pp. 1–9.

[26] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in Proc. USENIX Symp. Net-
worked Syst. Des. Implementation, 2017, pp. 469–482.

[27] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proc. ACM Symp. Operating Syst. Principles, 2017,
pp. 153–167.

[28] R. Duan, S. Pettie, and H.-H. Su, “Scaling algorithms for weighted
matching in general graphs,” in Proc. ACM-SIAM Symp. Discrete
Algorithms, 2017, pp. 781–800.

[29] Z. Guan, G. Si, X. Zhang, L. Wu, N. Guizani, X. Du, and Y. Ma,
“Privacy-preserving and efficient aggregation based on block-
chain for power grid communications in smart communities,”
IEEE Commun. Mag., vol. 56, no. 7, pp. 82–88, Jul. 2018.

[30] Z. Guan, J. Li, L. Wu, Y. Zhang, J. Wu, and X. Du, “Achieving effi-
cient and secure data acquisition for cloud-supported internet of
things in smart grid,” IEEE Internet Things J., vol. 4, no. 6,
pp. 1934–1944, Dec. 2017.

[31] J. Wilkes, “More Google cluster data,” Google research blog, Nov.
2011. [Online]. Available: http://googleresearch.blogspot.com/
2011/11/

[32] C. Reiss, J.Wilkes, and J. L.Hellerstein, “Google cluster-usage traces:
format + schema,” white paper, Google Inc., Nov. 2011. [Online].
Available: http://code.google.com/p/googleclusterdata/wiki/
TraceVersion2

Huanyang Zheng received the BEng degree in
telecommunication engineering from Beijing Uni-
versity of Posts and Telecommunications, China,
in 2012. He is currently working toward the PhD
degree in the Department of Computer and Infor-
mation Sciences, Temple University. His research
interests include wireless and mobile networks,
social networks and structures, and cloud systems.

Jie Wu is an associate vice provost for interna-
tional affairs with Temple University. He also
serves as director of Center for Networked Com-
puting and Laura H. Carnell professor with the
Department of Computer and Information Scien-
ces. Prior to joining Temple University, he was a
program director with the National Science Foun-
dation and was a distinguished professor with
Florida Atlantic University. His current research
interests include mobile computing and wireless
networks, routing protocols, cloud and green

computing, network trust and security, and social network applications.
He regularly publishes in scholarly journals, conference proceedings,
and books. He serves on several editorial boards, including the IEEE
Transactions on Service Computing and the the Journal of Parallel and
Distributed Computing. He was general cochair/chair for IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014,
as well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
distinguished speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). He is the recipient of the 2011 China
Computer Federation (CCF) Overseas Outstanding Achievement
Award. He is a CCF distinguished speaker and a fellow of the IEEE.

ZHENG ANDWU: JOINT SCHEDULING OF OVERLAPPING MAPREDUCE PHASES: PAIR JOBS FOR OPTIMIZATION 1463

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:30:18 UTC from IEEE Xplore. Restrictions apply.

http://googleresearch.blogspot.com/2011/11/
http://googleresearch.blogspot.com/2011/11/
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

