
Configuring and Controlling a Software Defined
Network with a Pica8 Switch

Jason Loux, Dawei Li, and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
{tuf43782, dawei.li, jiewu}@temple.edu

Abstract—Current network protocols are exceedingly strict,
making the administrative duties of network providers difficult.
The switches that control a network rely on stringent definitions,
usually defined by the company who designed the switch, with
which they can forward packets. Software Defined Networking
(SDN) is a concept which allows control over the operations of
a switch via remote software applications. But just how much
control can we exhibit while writing these applications? And how
well does a particular switch respond to this control? Using a
Pica8 3297 OpenFlow switch in conjunction with five PowerEdge
R210 severs and a Cisco switch, we analyze the response time
and the control that the switch maintains while controlled by the
Ryu SDN framework.

Index Terms—OpenFlow, Pica8, Software Defined Networking
(SDN), Ryu

I. INTRODUCTION

Nothing will hurry the industrial and commercial accep-
tance of SDN faster than concrete examples which demonstrate
its capabilities on an obtainable switch. Pica8 3297 is such a
switch, with OpenFlow, a new open standard integrated into
many routers and switches. OpenFlow’s key feature is that it
separates the control plane (that which controls hardware) from
the data plane (packets). [1] Current switches and/or routers
without OpenFlow try to combine the two planes making it
difficult to exhibit direct control. [2] By focusing more on
the control aspect of the switches in a network, we are able to
make it easier to perform administrative actions on all switches
in a network.

The overhead for this control is carried out by the software
Ryu, an open-source SDN management controller. [3] It is the
perfect software to tackle this job because of its mild learning
curve in which applications can be written, and its capabilities
with many physical OpenFlow switches.

We also had configure our network’s servers and switches
with particular network interfaces. (See Fig.1) Then our phys-
ical environment could be considered for testing.

II. TEST SCENARIOS

1) Response Time of Switch When Adding a Flow: We
analyze how quickly the switch responds to an ’add flow’
action by the controller to generate the turnaround time for
this response. We can also observe how efficient our particular
management controller is in carrying out these actions.

2) Handling of Parallel Packet Transfer: In this example
of parallel packet transfer, two servers will attempt to send a
large amount of data to one server at the same time. The goal
of this test is to see how well the switch handles traffic going
to one server. We will also gain a better understanding of how

Fig. 1. Note that the grnlntrn server is connected to the Pica8 via a network
management port. Server5 is connected to Pica8 via the console management
port, giving us direct access and control to the switch to the switch if we
are logged-on to Server5. The IP Addresses used in this diagram depict the
interfaces used for testing. The first IP is the first interface; the second IP is
the second interface.
the Ryu management framework controls the switch and of
how efficient it is in displaying this control.

3) Bandwidth Control using Flow Queueing: With queue-
ing, a controller can set up and configure data structures
which map flows to a specific queue. [5] Therefore, we can
configure a specific flow to enter a queue which distributes
data with whatever limitation we would like. In this way we
can implement bandwidth control by setting a queued flow to
a port. We can then monitor how effectively adjustments are
made by the controller to fluctuate this bandwidth speed.

III. PROCEDURES

A. Adding a Flow via Ryu Controller Application
1) Run server script on Server5. 2) Activate Ryu manage-

ment application on grnlntrn to begin controlling of switch
via software. 3) Once the controller states that it is connected
and that preliminary packets are sent through without error,
activate client script on Server6. 4) Timestamp when the flow is
added via grnlntrn which ensures connection between sending
and receiving servers. 5) Timestamp when Server5 actually
succeeds in its connection.

B. Parallel Packet Processing Control
This test will have two parts and respecitvely the proce-

dures are as follows:
1) Activate listening servers to send information, in this

case, servers 5 and 7. 2) Run Ryu application, which will
install and delete flows every three seconds for each sending
port. In this way, every three seconds each server will get a
chance to send their information. 3) Activate retrieval of first
and second files, which will both run as background processes.

1) Activate the same listening servers again. 2) Run a basic
Ryu application which will install the necessary flows to allow
connection between all servers. 3) Run a python application
which simultaneously retrieves the data from both servers and
time stamps when both files have completed data transfer.



Fig. 2. Above is a histogram of the time between which the controller added
the flows and when the sending server noticed it was connected. This gives us
an understanding of how quickly the Ryu framework is able to install flows
onto the switch and of how quickly the switch implements these flows.

C. Bandwidth Control using Flow Queueing
1) Activate listening servers to wait to send data until a

connection is made (Servers 5 and 7). 2) Run Ryu application
which, once Server6 attempts to make a connection, will install
a queued flow from port 3 (Server7) to port 2 (Server6)
quartering port 3’s bandwidth (to roughly 250 megabits).
3) Run Server6’s client code so connection is attempted to
both servers 5 and 7. 4) Use iperf and wireshark to monitor
bandwidth of Server7. 5) Install a new flow which restores
Server7’s bandwidth. 6) Analyze Server7’s connectivity and
ensure bandwidth is restored to one gigabit.

IV. RESULTS

Adding a Flow via Ryu Controller Application
After fifty tests across the network, we found that it took

an average of 0.912 milliseconds for the switch to respond to
an added flow via the controller application (See Fig.2). This
time is expensive, which leads us to believe that a C-language
based controller is the most effecient choice for large networks.
We can see that this result creates significant overhead when
we use the turn-by-turn algorithm in the next test.

Parallel Packet Processing Control
First, we analyze the time it took for each individual file

to complete data transfer to server six. The first file, from
server five, averaged about 20.37 seconds. From server seven,
the second file took 21.23 seconds. It is expected that the first
file completed its transfer, considering that first set of flows
installed were always the ones which allowed connection from
Server5 to Server6. This seems pretty reasonable for a 1.1
gigabyte file, however, this was not the aggregate time it took
for both files finish; that time averaged at about 23.1 seconds
(See Both Non-Parallel[NP] in Table I).

TABLE I. PARALLEL PROCESSING RESULTS (MS)

File1 File2 Both [NP] Both [P]
20368 21233 23098 21473

In the second part, the only time which was measured
was the time that it took for both files to finish transferring
their data. This time averaged around 21.47 seconds (Both
Parallel[P] in Table I); this is the aggregate time it took for
both files to transfer their data (1.625 seconds less than the
aggregate time in the prior test).

Bandwidth Control using Flow Queueing
As data is sent from both servers, Fig.3(a) illustrates that

the packet lengths for Server5 going to Server6 are clearly

Fig. 3. (a) Note Server5’s sent 17442 byte packet size compared to Server7’s
1514 byte packet size. This demonstrates the controller’s ability to limit
bandwidth to a particular port on the Pica8 switch. (b) Note Server7’s sent
packet size increase when the bandwidth-restoring flow is installed. (c) Here
we see the bandwidth of server7 after limiting flow installed, and then once
the restoration flow is installed.

larger than the packets going from server7 to server6. This
is as expected, considering in the first half of this test the
bandwidth on server7 was quartered.

In Fig.3(b) we can see the packet length increasing from
server7 to server6 as time moves forward, showcasing that
the bandwidth increased once the restoring flow was installed.
Fig.3(c) provides a summary of the bandwidth control using
iperf monitor. The first iperf test was captured while the first
limiting flow was installed on server7 and the second after the
restoring flow has been installed via the controller.

V. CONCLUSION

While installing flows onto the switch took under a mil-
lisecond to complete, this is still a huge step forward for the
SDN community. The amount of time and money that goes
into getting new protocols from a switch provider for a switch
that does not have OpenFlow is nothing short of disparaging
for a network provider. The fact that the Pica8 switch was
able to handle parallel packet processing in a port so much
faster than a turn-based scheme suggests that it can handle vast
amounts of data from multiple sources through its ports at one
time. This is great news for any large networking company
that will have this demand from a switch at all times. Finally,
Ryu’s ability to control bandwidth on our physical switch an
encouragement for anyone who would like to perform this
important administrative task on their network.

REFERENCES

[1] Open Networking Foundation, Software-Defined Networking (SDN)
Definition, 2016. [Onlne]. https://www.opennetworking.org/sdn-
resources/sdn-definition

[2] Open Networking Foundation, ONF Overview, 2016. [Onlne].
https://www.opennetworking.org/about/onf-overview

[3] Ryu SDN Framework Community, What’s Ryu?, 2014. [Onlne].
https://osrg.github.io/ryu/

[4] Pica8 Inc, Product Documentation, 2016. [Onlne].
http://www.pica8.com/support/documentation

[5] Brocade Communications Systems Inc, FastIron Ethernet Switch Soft-
ware Defined Netwrking (SDN) Configuration Guide, 2015. [Online].
http://www1.brocade.com


