PR
ELSEVIER

Available online at www.sciencedirect.com

sc.euca@o.“m

Journal of Systems Architecture 52 (2006) 432-440

JOURNAL OF
SYSTEMS
ARCHITECTURE

www.elsevier.com/locate/sysarc

Distributed computing using Java: A comparison of two
server designs

Boris Roussev #*, Jie Wu °

& Information Systems Department, University of the Virgin Islands, Box 10,000, Kingshill, VI 00850, US Virgin Islands
> Computer Science and Engineering Department, Florida Atlantic University, Boca Raton, FI 33431, USA

Received 27 January 2003; received in revised form 15 February 2006; accepted 16 February 2006
Available online 31 March 2006

Abstract

This paper proposes a new concurrent data structure, called parallel hash table, for synchronizing the access of multiple
threads to resources stored in a shared buffer. We prove theoretically the complexity of the operations and the upper limit
on the thread conflict probability of the parallel hash table. To empirically evaluate the proposed concurrent data struc-
ture, we compare the performance of a TCP multi-threaded parallel hash table-based server to a conventional TCP
multi-threaded shared buffer-based server implemented in Java. The experimental results on a network of 36 workstations
running Windows NT, demonstrate that the parallel hash table-based server outperforms the conventional multi-threaded

server.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Networking; Distributed computing; Client-server; Concurrent programming; Java

1. Introduction

With the growing demand for e-business applica-
tions, a net-centric information infrastructure has to
stretch a range of scalability to accommodate
growth in number of users, number of connections,
and complexity of business processes [6,25]. Histor-
ically, scalability is achieved through various forms
of parallel computing such as symmetric multipro-
cessing and massively parallel processors. Recently,
due to the proliferation of low-cost hardware and
the on-going technological convergence of LANSs

* Corresponding author.
E-mail addresses: brousse@uvi.edu (B. Roussev), jie@cse.
fau.edu (J. Wu).

and massively parallel computers, scalability
through clustering and networks of workstations
(NOWs) [2,5] has been proposed and gained popu-
larity. In NOWs and clusters, the workload is dis-
tributed across autonomous computers networked
together.

A typical e-business system is architecturally
divided into two parts: front-end, which presents
data to clients, and back-end, where persistent data
is stored and business logic is executed. To scale up
such a system in a Windows NT environment, the
front-end scales the number of simultaneous users
by replicating the web services coupled with a state-
less load balancing system to spread the load across
the available clones; the back-end scales the com-
plexity of business logic by partitioning data and

1383-7621/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2006.02.001

mailto:brousse@uvi.edu
mailto:jie@cse. fau.edu
mailto:jie@cse. fau.edu

B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432-440 433

services across multiple specialized servers [24]. In
both scenarios, scalability is achieved through a
loose confederation of computers, providing fault-
tolerant redundancy, load balancing, and comput-
ing power [32].

Since many computationally intensive applica-
tions exchange a large amount of messages, network
communication latencies are often a bottleneck in
such servers as HTTP request dispatchers, load bal-
ance brokers, name servers hosting centralized
JNDI trees, dedicated state servers and centralized
databases for HTTPSession failover in J2EE clus-
ters [16], as well as traditional applications like
Linda based frameworks for parallel computing
[11]. In principal, clusters and NOWs bring down
the hardware price/performance ratio, but in
practice, the large network latencies involved in
communicating among workstations make them
low-performance parallel computers, suitable for
running mainly coarse-grain processes concealing
the network latency [9]. Therefore, the key to
NOWSs is the improvement of inter-process and
inter-thread data communication efficiency.

This paper deals with the issue of concurrent
access to a shared buffer implemented in Java and
with high-performance networking. In particular,
we propose a new concurrent data structure, called
parallel hash table (PHT), for solving the synchroni-
zation problem in the classical producer/consumer
model in a way that increases the performance of
Java networking significantly. The PHT allows con-
current access of multiple consumers and a single
producer to a shared buffer. It is a variant of a par-
allel dictionary [3] without the assumption that
insert, delete and search instructions are presented
to the dictionary in batches; and that each batch
contains only one kind of instructions. Based on
the PHT, we propose a new client-server design
alternative. The new server design is implement in
Java. We prove theoretically the upper limit of the
conflict probability in the PHT and test the new ser-
ver design on a network of 35 workstations running
Windows NT. The presented performance results
demonstrate the benefits from the proposed concur-
rent data structure. We also present results showing
that for server designs, better performance is
achieved by using a greater number of worker
threads, in the range of 50-70 rather than in the
range of 15 as routinely recommended [33].

Our work relates to existing work on concurrent
access in the field of parallel computing. The litera-
ture separates concurrent access algorithms into

three disjoint groups [19]. Traditional algorithms
[1,21,29] are locking: a process must obtain a mutu-
ally exclusive lock to enter a critical section, thereby
preventing other processes from entering concur-
rently. When such locks are used, a process stalled
inside a critical section can delay all others for an
arbitrary amount of time, a behavior termed block-
ing. Non-blocking algorithms [13,23,31] guarantee
that some process makes progress in a finite amount
of time, which implies that they do not enforce
mutual exclusion. Non-blocking algorithms elimi-
nate the need for data buffer sharing between
threads and reduce thread synchronization. In the
Leader/Followers pattern [31], one thread, the lea-
der, waits for a client request to arrive on a handle
set, while all other threads, called followers, are
queueing up waiting their turn to become the leader.
Upon detecting a new client request, the current lea-
der promotes a follower to become the new leader
thread, processes the request, and then reverts to a
follower thread, waiting to become the leader thread
again. Generally, non-blocking algorithms may
increase the dispatching latency for simultaneous
requests. It is also harder to implement request buf-
fering and thread borrowing when priority thread
pool segmentation is used because there is no expli-
cit queue, which can lead to poor scalability [26].
Lock-free algorithms, the third group of algorithms,
do not use locks, but can still result in blocking
behavior [4,17,19,34].

Each type of algorithms has its own advantages
and disadvantages. Lumetta and Culler [19] studied
performance over a range of access contention tests
from the message-passing literature. Stevens [33]
discussed a number of client—server design alterna-
tives implemented in C using POSIX threads [27]
and contrasts their performance within a common
experimental setup. Stevens’ experimental results
show that the overall TCP server response time
depends entirely on the protocol used to synchro-
nize the work of the main server thread accepting
the connected sockets (the producer) and the worker
threads processing the client requests (the consum-
ers). This motivates our quest for a synchronization
protocol that will decrease the overhead incurred by
the worker threads when receiving a new client
request from the main server thread. A non-block-
ing or a blocking concurrent queue algorithm
reported in [22] can be used as the cornerstone of
a pre-threaded server design. A large body of
conservative check-and-act concurrent design pat-
terns in Java can be found in [18,30]. The proposed

434 B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432—440

algorithm is most similar to preemption-safe locking
solutions such as POSIX [27].

The remainder of the paper is structured as fol-
lows. Section 2 reviews Java network and concur-
rent programming and multithreading. Section 3
discusses a pre-threaded server design, in which ref-
erences to connected sockets are passed through a
shared buffer. Section 4 describes the PHT structure
and operation, and presents a pre-threaded server
design, in which references to connected sockets
are passed through a PHT. Section 5 analyzes the
complexity of the PHT operations and the PHT
conflict probability. Section 6 reports performance
results for the two server designs, and the last sec-
tion concludes.

2. Java network and concurrent programming

The popularity of Java is generally due to its
platform independence, pure object-orientation,
and execution safety [12]. Recently, there has been
a great upsurge in interest in the use of Java as a
language for high performance computing on
NOWSs and clusters [10]. Java is believed to have
the potential to supersede Fortran 90 and C/C++
for science and engineering as well as for systems
implementation. Java enormously simplifies net-
work programming by providing elegant TCP/IP
API, object serialization, network class loading,
i.e., code mobility, RMI, Servlets, JSP, Java Nam-
ing and Directory Interface, Java Transaction
API, and built-in concurrent constructs.

As net-centric computing is a critically important
foundation of the digital economy [20], a distributed
information system typically has significant net-
working and data communication requirements
[11,33]. To be successful in the distributed comput-
ing domain, Java should be instrumental in provid-
ing not only high computational performance, but
also high-performance networking and concurrent
constructs. Today, many new technologies, like
Java Virtual Machine (JVM), multiprocessor, and
multithreaded kernels, have matured. In JVM, for
example, the time required to spawn a new thread
or to obtain an object’s lock in most implementa-
tions is little, yet not negligible. The use of multipro-
cessors is a norm. Mapping of threads to processors
has been optimized tremendously. In the JDK 1.4
release, the new I/O packages, java.nio.”, finally
address Java’s long-standing shortcomings in the
aspect of high-performance, scalable I/O [35]. These
packages introduce several key abstractions, namely

Buffer, Channel, and Selector, which work together
with non-blocking reads toward solving the prob-
lems in traditional Java I/O. As a result, designs
that have been impossible until recently become via-
ble propositions.

In this paper we use the TCP protocol, which is a
connection-oriented protocol that provides a reli-
able and full-duplex byte stream for a user process
or thread [28]. TCP can use either IPv4 or IPv6
[8]. The Java class libraries relevant to network pro-
gramming are java.net, java.io and java.nio.”. At
the core of Java’s TCP sockets support are the
Socket, ServerSocket, InetAddress, InetSocketAd-
dress, SocketChannel, ServerSocketChannel and
Selector classes. To send and receive data over a
TCP connection, Java provides a rich collection of
stream classes, subclassing the abstract InputStream
and OutputStream, providing methods for charac-
ter-based data exchange.

Java is a shared-memory, thread-based language
with built-in monitors and binary semaphores as a
means of synchronization at the object and class
level [18]. The java.lang. Thread class contains meth-
ods for creating, controlling, and synchronizing
Java threads. Java monitors are a relatively simple
and expressive model that allows threads to implic-
itly serialize their execution and to coordinate their
activities via explicit wait, notify, and notifyAll
operations. However, Java monitors lack true con-
ditional variables, and as a result, all threads are
forced to use a single built-in Boolean variable. This
forces developers to use the notifyAll() method
when there are multiple threads waiting on different
conditions within the same monitor, instead of call-
ing the less expensive, single notification method
notify(). Writing portable multithreaded Java appli-
cations remains problematic for many reasons: (1)
non-standard scheduling semantics—cooperative
versus preemptive; (2) haphazard thread notifica-
tion; (3) priority inversion problem caused by the
haphazard notification semantics of notify; (4) dif-
ferences in the number of priority levels in major
operating systems, e.g., Windows NT and Solaris,
and the availability of priority boosting in NT prac-
tically preclude the use of thread priorities as a con-
trol mechanism [14,15].

3. Server design using a shared buffer
We run multiple instances of the same client

against each server: java TCPClient IP port nchil-
dren nrequest [millisec | filename].

B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432-440 435

We specify the IP address of the server, its port
number, the number of child threads for the client
to spawn, the number of requests each child thread
should send to the server, and the number of milli-
seconds the server should delay its response or the
file name to request the server to return each time.
The time interval is used to simulate the processing
of a client request. It is important to note that the
client closes the connection after receiving the ser-
ver’s response, so TCP’s TIME_WAIT state occurs
on the client rather than on the server. The experi-
mental setup is similar to those of dedicated state
servers used in J2EE clusters and HTTP servers.

The two types of servers extend a common
abstract class, and implement its abstract method
handleRequest(), which processes a single client
request. In addition, each server extends the super
class constructor to kick off the required worker
threads, monitors, locks, barriers and/or buffers
used for synchronization and communication.

The concurrent TCP server uses pre-threading.
Instead of spawning a new thread per client request,
the server pre-spawns a pool of worker threads, as is
illustrated in Fig. 1. The server thread accepts client
requests and passes the connected sockets to the
worker threads through a bounded buffer. The buf-
fer synchronizes the work of the main server thread
and the worker threads. It is implemented as a fixed
array of references to sockets along with two indices
that circularly traverse the array, keeping track of
the next position to put and take, respectively. This
is a classical producer/consumer solution where a
monitor is used to synchronize the access to the
shared buffer. The disadvantage of this approach
is the so-called thunder herd problem. All worker
threads are awakened even though only one can
obtain the lock guarding the shared buffer. The sin-
gle-entry point lock quickly degrades performance

comm. link

comm. link

pool of
available
worker
threads

Fig. 1. The server thread S pre-threads worker threads W; to
serve clients C;.

under a great number of contentions, especially on
multiprocessors.

4. PHT-based server design

A dictionary is a dynamic set that supports the
operations insert, search, and delete. A hash table
is a data structure for implementing dictionaries
[7]. The expected time to search for an element in a
hash table is O(1). With hashing, an element x with
key k is stored in slot A(k), where / is a hash function
used to compute the slot index from the key k.

A PHT is a hash table whose slots can be
accessed concurrently by multiple threads. We
assume that at most one thread at a time, called pro-
ducer, can execute insert and multiple threads, called
consumers, can execute search and delete. PHT col-
lisions are resolved using open addressing [7]. Each
element in a PHT is of type SynchronizedRef [18].
SynchronizedRef is a class maintaining a single ref-
erence variable accessed and updated under syn-
chronization. Using SynchronizedRef objects as
PHT elements allows the system to loosen the syn-
chronization among consumer threads, and between
the producer thread and the consumer threads by
employing an optimistic control strategy. In the
optimistic approach, concurrent threads are not
serialized by a global lock, as it is in the conven-
tional server design, presented in the previous sec-
tion. Instead, each thread can access any slot
without acquiring a buffer-wide synchronization
lock as a precondition, thus, creating favorable con-
ditions for enhanced performance. There are two
different cases to consider:

e The insert method, called by the producer, uses
the hashCode() method of the Object class to
compute the element key and double hashing
[7] to compute the PHT slot.

e Consumer threads retrieve elements from the
PHT using method search(). They pass as an
argument to search() a pseudo-randomly gener-
ated number, used to calculate the first slot to
be checked for an element. If the slot is not null,
the element is retrieved, and the slot is set to null.
Otherwise, the next slot in the probe sequence is
calculated and checked.

If a conflict occurs, i.e., two or more consumers
access the same slot, because the PHT slots are
objects of type SynchronizedRef, only one of the
consumer threads will retrieve the element, and set

436 B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432—440

socket

socket

search
socket ‘\®

insert

Fig. 2. Operation and structure of the PHT-based server design.

the slot to null. The rest will see the null value and
try to retrieve an element from other slots.

Next, we introduce a PHT-based server design
using pre-threading. In this design, the references
to the connected sockets are passed through a
PHT. The structure and operation of the PHT server
are shown in Fig. 2. The main server thread, S,
accepts client requests and inserts the connected
sockets in the PHT using the table’s insert() method.
The worker threads, W,, retrieve connected sockets
from the PHT using the table’s search() method.

5. Theoretical analysis of parallel hashing

The load factor o for a PHT T with m slots and n
elements is n/m, and it cannot exceed 1. In our analy-
sis, we make the assumption of uniform hashing, i.e.,
each key is equally likely to have any of the m! permu-
tations of {0,1,...,m — 1} as its probe sequence. In
the PHT implementation we use double hashing [7],
which is a suitable approximation for uniform
hashing.

Theorem 1. Inserting an element into a PHT with
load factor o < 1 requires at most 1/(1 — o) probes on
average, assuming uniform hashing.

The proof is analogous to that of the correspond-
ing theorem for standard hashing presented in [7]. If
o is a constant, Theorem 1 predicts that inserting an
element runs in O(1) time.

Theorem 2. In a PHT with load factor o= nim <1,
the expected number of probes in a successful search
is at most 1/o.

Proof. Threads retrieve elements from the PHT not
by key but by using a pseudo-random probe
sequence. In a successful search, every probe but
the last accesses an empty slot and the last slot
probed is occupied. Let us define p; = Pr {exactly i
probes access empty slots} for i=0,1,2,... For
i>(m—n), we have p; =0, since we can find at
most (m — n) empty slots. Thus the expected num-
ber of probes is

l+iipi. (1)
i=0

To evaluate (1) we define ¢; = Pr {at least i probes
access empty slots} for i=0,1,2,... Since i takes
on values from the natural numbers

Z p; = Z 4q;-

i=0 i=1

The probability that the first probe accesses an
occupied slot is ¢ = (m — n)/m. A second probe, if
necessary, is to one of the remaining m — 1 unp-
robed slots, n of which are occupied. We make a sec-
ond probe only if the first probe accesses an empty
slot. Thus,

o= () ()

The ith probe is made only if the first i — 1 probes
access empty slots. Thus,

_m—n\[(m—n)—1 (m—n)—(G-1)

qf—(m)(m—1)(m—(i—1)
m— m\!

<

<(%0)-
After (m — n) probes, all (m — n) empty slots have
been seen and will not be probed again. Thus
q;=0 for i>(m —n). Now, we can evaluate (2).

Given the assumption that « <1, the average num-
ber of probes in a successful search is

1+§:ip,-=l+zoo:qi
=0 =1

m—n m — n\?2 m—n\3
<1+ + (=) + (5

m m

If o is a constant, Theorem 2 predicts that search-
ing an element runs in O(1) time.

B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432-440 437

—&— 50 threads

0.0025 -

0.002 -~

0.0015 A

0.001 +

Conflict probability

0.0005 -

100 200 300

400 500 600 700

Parallel hash table size

Fig. 3. Conflict probability in a PHT with 50 worker threads.

Next, we consider the net effect of multiple
threads accessing the shared buffer and the number
of conflicts that can occur in the PHT.

Theorem 3. Given a PHT with m slots and k worker
threads, the probability P of having two or more
threads in conflict, i.e., accessing the same PHT slot,
is given by the formulae

()G (-a)

where n, n = ki(t,/t,), is the average number of threads
accessing the PHT during the time interval t, neces-
sary for retrieving one element from the PHT. t, is
the time need by a worker thread to process one
request.

Proof. The average number of threads accessing the
PHT during the time span of one request retrieval is
n. Let us assume that a worker thread is retrieving a
request from slot i, 1 < i < m. Then, the probability
of a second thread accessing slot i is 1/m; the prob-
ability of a third thread accessing slot i is 1/m?; .. .;
the probability of a jth thread accessing the same
slot is 1/mY~". This can be modeled with the Bino-
mial probability distribution with » number of trials
and probability of success 1/m, which remains con-
stant from trial to trial

- () -3

We are interested in the cumulative probability P
(x < 1) of two or more threads accessing slot i.
The cumulative probability P is given by the
formulae

B0
S Y

Fig. 3 shows the correlation between the PHT
size and the conflict probability for the case of 50
worker threads.

6. Experimental results

To compare the performance of the two server
designs, using a shared buffer and a PHT, respec-
tively, we conducted a simulation experiment on a
network of 36 single-processor workstations. Each
workstation was equipped with a 1-GHz CPU and
256 MB of memory, and ran J2SE 1.4.0 Client
VM with enabled JIT compiler over Windows NT.
For each server design, we ran multiple experiments
using different numbers of worker threads and buf-
fer capacities to find out the optimal configuration.
Each experiment was repeated 10 times.

In all tests, we ran multiple instances of the same
client against each server and measured the time
required to process a fixed number of requests. All
server CPU timings were obtained by running the
same client on 35 different hosts located on the same
subnet as the server. In all the tests, each client
spawned 4 child clients to create 4 simultaneous
connections to the server, for a maximum of 140
(35 machines x 4) simultaneous connections at the
server at any time. Each client makes 20 connections
to the server, amounting to 2800 connections alto-
gether. Each client sends 1 byte to the server, which

438 B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432—440

Server description Avg. CPU time | Avg. CPU time
1 | 50 worker threads and 101-slot buffer 16562 28960
2 | 50 worker threads and 101-slot PHT 14562 24265

Fig. 4. Performance comparison between the two server designs.

in turn responds with 4000 bytes after waiting for a server performance depends on two factors: the num-
predefined interval of time specified in milliseconds. ber of probes in each operation and the number of
According to Theorem 3, the conflict probability for thread conflicts. Both theoretical analysis and exper-
the experimental setup with 500 ms processing imental results indicate that the numbers of probes
request time ¢, is 0.0019703951, given that the time and conflicts and their associated delays do not offset
to retrieve a request from the PHT ¢, is 2 ms. the performance edge gained by reducing the isola-

The experiment results are summarized in the tion level in the PHT. Theorem 2 predicts that when
table in Fig. 4. Both servers are configured to have the server is overloaded, e.g., a table with « = 0.95,
50 worker threads and 101-slot buffer capacity. the average search will take 1.05 probes, meaning
The CPU time recorded in columns 3 and 4 corre- that a worker thread can quickly retrieve a socket
sponds, respectively, to 250 and 500 ms server delay and attend to a pending request.
before sending back the response. It simulates the The number of worker threads and the buffer
time, ¢, needed by a worker thread to process a capacities recorded in the table in Fig. 4 were found
request. The buffer capacity is measured by the experimentally to give the best results for both serv-
number of its slots. Since each slot can hold at most ers. We have also found that, for both server
one reference to a connected socket, at any moment, designs, better performance can be achieved by
the number of client sockets accepted by the main using a greater number of worker threads, in the
server thread and not yet processed can be at most range of 50-70, rather than in the range of 15 as
equal to the buffer capacity. routinely recommended. These results are presented

The results in Fig. 4 demonstrate that the pro- in the table in Fig. 5.
posed PHT-based design can improve the communi- A few limitations regarding our experiment
cation efficiency by 12% and 16% respectively for design must be acknowledged. First, due to limited
250 and 500 ms server delays, when compared with resource availability, we have used only single-pro-
the traditional shared buffer technique. The signifi- cessor workstations for the experiment. On a
cant improvement gained justifies the small imple- multi-processor computer, we expect better experi-
mentation complexity added by the proposed mental results for the PHT-based server. Second,
method. The implementation of the PHT operations we have used server CPU time as the primary mea-
and the SynchronizedRef class amounts to 60 lines sure of performance when comparing the two server
of Java code. designs. We realize that the efficiency of the server

The superior performance of the PHT server is due processing is only one aspect of the performance
to the fine-grained serialization level used by the of a distributed client-server system. Another
PHT. In the PHT server, the global lock guarding important determinant is the number of conflicts,
the shared buffer has been replaced by locks, guard- which reflects how efficiently the server handles cli-
ing the individual elements. As a result, multiple ent requests. Even though we theoretically estab-
threads can access different parts of the PHT without lished the upper limit of the conflict probability,
blocking each other, thus creating conditions for the real case scenario will be understandably better
increased network performance. In this context, the than the theoretical limit.

threads 10 30 40 50 60 70
Shared buffer CPU time 74118 | 26506 | 22347 | 16562 | 18649 | 19077
PHT CPU time 71535 | 24325 | 17561 | 14562 | 17328 | 18240

Fig. 5. Effect of threads number on the performance the two servers.

B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432-440 439

7. Conclusion

In this work, we introduced a new concurrent
data structure, called PHT, as an extension to the
standard hash table. We presented a new server
design based on the PHT. The experimental results
show that on average the PHT-based server outper-
forms the conventional shared buffer server by 14%.
We proved theoretically the complexity of the PHT
operations, as well as the thread conflict probability.
We considered the number of worker threads a ser-
ver should spawn in order to get maximum perfor-
mance. We found out that better performance is
achieved by using a greater number of worker
threads, in the range of 50-70, rather than in the
range of 15 threads, as it is routinely recommended.

References

[1] T.E. Anderson, The performance of a spin lock alternative
for shared-memory multiprocessors, IEEE Trans. Parallel
Distribut. Syst. 1 (1) (1990).

[2] T.E. Anderson, D.E. Culler, D.A. Pattersonthe NOW Team,
A case for NOW, IEEE Micro 15 (1) (1995).

[3] H. Bast, M. Dietzfelbinger, T. Hagerup, A perfect parallel
dictionary, in: Proc. of the 17th Int’l Symposium on Math-
ematical Foundations of Computer Science, Prague, 1992.

[4] E. Brewer, F. Chong, L. Liu, S.Sharma, J. Kubiatowicz,
Remote queues: exposing message queues for optimization
and atomicity, in: Symp. on Parallel Algorithms and
Architectures, 1995.

[5] B. Christiansen, P. Cappello, M. Ionescu, M. Neary, K.
Schauser, D. Wu, Javelin: Internet-based parallel computing
using Java, Concurrency: Practice and Experience 9 (11)
(1997) 1139-1160.

[6] D. Clark, D. Estrin, P. Green, J. Kurose, B. Leiner, L.
Masinter, J. Pasquale, D. Sincoskie, K. Sollins, Strategic
directions in networks and telecommunications, ACM
Comput. Survey 28 (4) (1996) 679-690.

[71T. Cormen, C. Leiserson, R. Riveset, Introduction to
Algorithms, The MIT Press, 1994.

[8] S. Deering, R. Hinden, Internet Protocol, version 6 (IPv6)
specification, RFC 2460, 1998.

[9] T. von Eicken, A. Basu, V. Buch, Low-latency communica-
tion over ATM networks using active messages, IEEE Micro
15 (1) (1995).

[10] G. Fox, W. Furmanski, Java for parallel computing and as a
general language for scientific and engineering simulation
and modeling, Concurrency: Practice and Experience 9 (6)
(1997) 415-425.

[11] D. Gelernter, Generative communication in Linda, ACM
Trans. Progr. Languages Syst. 7 (1) (1985) 80-112.

[12]J. Gosling, B. Joy, G. Steele, The Java Language Specifica-
tion, Sun Microsystem, Inc., Palo Alto, CA, 1996.

[13] M. Greenwald, D. Cheriton, The synergy between non-
blocking synchronization and operating system structure,
Operating Systems Design and Implementation, 1996.

[14] A. Holub, Programming Java threads in the real World,
JavaWorld, September 1998.

[15] P. Jain, D.C. Schmidt, Experiences converting a C++
communication software framework to Java, http://www.cs.
wustl.edu/.

[16] A. Kang, J2EE clustering, JavaWorld, February 2001.

[17] V. Karamcheti, A. Chien, A comparison of architectural
support for messaging in the TMC CM-5 and the Cray T3D,
in: Int’l Symp. on Computer Architecture, June 1995, pp.
298-307.

[18] D. Lea, Concurrent Programming in Java, second ed.,
Addison-Wesley, 1999.

[19] S. Lumetta, D. Culler, Managing concurrent access for
shared memory active messages, in: Proc. of IPPS/SPDP’98,
Orlando, FL, 1998.

[20] S. March, A. Hevner, S. Ram, Research commentary: an
agenda for information technology research in heteroge-
neous and distributed environments, Inform. Syst. Res. 11
(4) (2000).

[21]J. Mellor-Crummey, M. Scott, Algorithms for scalable
synchronization on shared-memory multiprocessors, ACM
Trans. Comput. Syst. 9 (1) (1991).

[22] M. Michael, M. Scott, Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms, in:
Proc. of the 15th ACM Symp. on Principles of Distributed
Computing, PA, 1996, pp. 267-276.

[23] M. Michael, M. Scott, Relative performance of preemption-
safe locking and non-blocking synchronization on multipro-
grammed shared memory multiprocessors, in: International
Parallel Processing Symp., 1997.

[24] Microsoft Corporation, A Blueprint for Building Web Sites
Using the Microsoft Windows DNA Platform, White Paper,
2000.

[25] NSF, Exploratory Research on Scalable Enterprise System,
NSF 99-149, 1999.

[26] I. Pyarali, M. Spivak, R. Cytron, D.C. Schmidt, Evaluating
and optimizing thread pool strategies for real-time CORBA,
in: Proc. of the ACM SIGPLAN Workshop on Language,
Compiler and Tool Support for Embedded Systems, 2001,
pp. 214-222.

[27] Portable Operating Systems Interface (POSIX), http://
standards.ieee.org.

[28] J. Postel (Ed.), Transmission Control Protocol, RFC 793,
1981.

[29] D. Reed, R. Kanodia, Synchronization with eventcounts and
sequencers, Commun. ACM 22 (2) (1979).

[30] B. Roussev, J. Wu, Client-Server design alternatives: back to
pipes but with threads, in: Proc. of IEEE Int’l Conference on
Networking, France, 2001.

[31] D.C. Schmidt, M. Stal, H. Rohnert, F. Buschmann.
Pattern-Oriented ~Software Architecture: Patterns for
Concurrent and Networked Objects, vol. 2, Wiley & Sons,
NewYork, 2000.

[32] M.A. Sportack, Windows NT Clustering Blueprints, SAMS
Publishing, 1997.

[33] W.R. Stevens, Unix Network Programming, vol. 1, second
ed., Prentice-Hall, 1998.

[34] J. Valois, Implementing Lock-Free Queues, in: Int’l. Conf.
on Parallel and Distributed Computing Systems, 1994.

[35] J. Zukowski, New I/O functionality for J2SE 1.4. Available
from: <http://java.sun.com>.

http://www.cs.wustl.edu/
http://www.cs.wustl.edu/
http://standards.ieee.org
http://standards.ieee.org
http://java.sun.com

440 B. Roussev, J. Wu | Journal of Systems Architecture 52 (2006) 432—440

Dr. Roussev is an Associate Professor of
Information Systems at the University of
the Virgin Islands. His diverse back-
ground includes teaching and research
experience in Europe, South Africa, and
the US. Boris Roussev’s interests are in
the areas of object-oriented and eco-
nomic-driven software development,
requirements engineering and project
management. He conducts research on
causes of project failures, working from
the presumption that value-neutral principles and practices in
software development are unable to deal with the sources of
project failures, and that in order to manage effectively the
computer technology, one has to consider the social context in
which it is deployed and produced. In addition, Dr. Roussev has
experience in software risk management and software process
quality factor analysis. All of the above is combined with industry
experience in software methods such as domain engineering,
product lines, MDA with xXUML, generative programming, and
aspect-oriented programming.

Dr. Jie Wu is a Professor at the
Department of Computer Science and
Engineering, Florida Atlantic Univer-
sity. He has published over 300 papers in
various journal and conference proceed-
ings. His research interests are in the area
of mobile computing, routing protocols,
fault-tolerant computing, and intercon-
nection networks. Dr. Wu served as a
program vice chair for 2000 Interna-
tional Conference on Parallel Processing
(ICPP) and a program vice chair for 2001 IEEE International

Conference on Distributed Computing Systems (ICDCS). He is a
program co-chair for the IEEE 1st International Conference on
Mobile Ad-hoc and Sensor Systems (MASS’04). He was a co-
guest-editor of a special issue in IEEE Computer on “Ad Hoc
Networks”. He also editored several special issues in Journal of
Parallel and Distributing Computing (JPDC) and IEEE Trans-
actions on Parallel and Distributed Systems (TPDS). He is the
author of the text “Distributed System Design™ and is the editor
of the text “Handbook on Theoretical and Algorithmic Aspects
of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks”. Cur-
rently, Dr. Wu serves as an Associated Editor in IEEE Trans-
actions on Parallel and Distributed Systems and several other
international journals. Dr. Wu is a recipient of the 1996-1997 and
2001-2002 Researcher of the Year Award at Florida Atlantic
University. He served as an IEEE Computer Society Distin-
guished Visitor and is the Chairman of IEEE Technical Com-
mittee on Distributed Processing (TCDP). Dr. Wu is a Member
of ACM and a Senior Member of IEEE.

	Distributed computing using Java: A comparison of two server designs
	Introduction
	Java network and concurrent programming
	Server design using a shared buffer
	PHT-based server design
	Theoretical analysis of parallel hashing
	Experimental results
	Conclusion
	References

