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Abstract

This paper assesses the performance of two Java frameworks for high performance computing (HPC) on networks

of workstations (NOWs). The lottery-based work stealing algorithm is intrinsically distributed, and consequetly

scalable to an extremely large number of participant workstations. Although proved to be near optimal for the

distribution of well-structured multithreaded computations across large number of workstations, no claim has been

made regarding the performance of the algorithm for a limited number of workstations or for relatively small

computations. In this paper the performance of the lottery-based work stealing algorithm has been compared

to that of a centralized work scheduling algorithm to determine whether the lottery-based algorithm is eÆcient

across the board. It was found that, the centralized work scheduling algorithm is more eÆcient for small number

of workstations. This conclusion suggests that HPC will bene�t greatly by adopting a composite work scheduling

algorithm. This composite algorithm could use the lottery-based work stealing algorithm to distribute computations

across large networks, and a centralized algorithm to distribute within smaller networks.
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1 Introduction

For the past 20 years parallel computing has been used successfully in many applications such as weather forecasting,

molecular modeling, tax return, etc [1]. Despite some success, parallel computing is not widely accepted in industry.

Parallel computers conjure images of sophisticated and expensive multiprocessor architectures, running obscure oper-

ating systems, and executing programs written in non-portable special-purpose languages. The on-going technological

convergence of local area networks (LANs) and massively parallel computers augments the e�ect of the reverse com-

puting food chain law [2], where in contrast to biology, the smallest �sh, personal computers, is eating the market

of workstations, which has consumed the market for minicomputers and now is eating away the market for larger

mainframes and supercomputers. The driving force behind this \law" is the better price/performance ratio of NOWs

over parallel systems. We can identify the following motivating factors for using NOWs for HPC: (1) Surveys show

that the utilization of CPU cycles of desktop workstations is typically less than 10%. (2) Performance of workstations

and PCs is rapidly improving. (3) As performance grows, percent utilization will decrease even further. (4) Organiza-

tions are reluctant to buy large supercomputers, due to the large expense and short life span. (5) The communication

bandwidth between workstations increases as new networking technologies and protocols are implemented in LANs

and wide area networks (WANs). (6) NOWs are easier to integrate into existing networks than special parallel com-

puters. (7) The development tools for workstations are more mature than the contrasting proprietary solutions for

parallel computers - mainly due to the non-standard nature of many parallel systems. (8) NOWs are cheap and really

available alternative to specialized HPC platforms. (9) Use of NOWs as a distributed computing resource is very

cost e�ective (incremental system growth). Therefore, one could expect HPC on NOWs to become more and more
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Decomposition Mapping Communication Synchronization Languages

1. implicit implicit implicit implicit Haskel

2. explicit implicit implicit implicit Concurrent Prolog, Multilisp

3. explicit explicit implicit implicit BSP, LogP

4. explicit explicit explicit implicit Emerald, Concurrent Smalltalk

5. explicit explicit explicit explicit Java; PVM, MPI; Ada

Table 1: Models for parallel computations

attractive as time goes on. This gives a new impulse to the �eld of parallel computing. A model of parallel computa-

tion is an abstract machine, providing a set of primitives to the programming level above. It is designed to separate

software development concerns from e�ective parallel execution concerns. According to the abstraction they provide,

models for parallel computing can be classi�ed in �ve categories [3], see Table 1, based on the ways decomposition,

mapping, communication, and synchronization are done. Table 1 also shows some representative language/libraries

for each model. Decomposition of a program into threads (column 1 of Table 1) and mapping of threads to processors

(column 2 of Table 1) are known to be computationally expensive. Communication requires placing two ends of the

communication in the correct threads and at the correct place. Synchronization requires the understanding of the

global state of the computation, which is immense for practical purposes. Java [4], an object-oriented language, has

become popular because of its platform independence and safety. Java is a shared memory thread-based language with

built-in monitors and binary semaphores as a means of synchronization at the object and class level. However, Java

is �rmly �xed at the lowest level of the parallel computing model hierarchy. Several projects use Java as a language

for HPC on NOWs and clusters [5, 6, 7, 8, 9, 10]. Invariably their aim is to hide one or more of the characteristics of

the language, see Table 1, that make it ill-suited for parallel programming.

The aims of this research work are to develop a Java runtime system for eÆcient scheduling of multithreaded Java

applications on NOWs and to improve the lottery-based work stealing algorithm introduced in [10] for small number

of participant workstations. This is achieved by implementing both the lottery-based work stealing algorithm and a

centralized work scheduling algorithm. A centralized algorithm is chosen because it exibits far less communication

overhead during scheduling than the lottery-based work stealing algorithm does. The centralized algorithm directs

participant workstations to a single controller workstation to collect work. The lottery-based work stealing algorithm

requires participant workstations to query each other to solicit work. This practice can often result in ineÆciencies

where a workstation wanting work contacts another workstation without available work, requiring the process to be

repeated until work is located.

The remainder of the paper is structured as follows. In Section 2 we review the lottery-based work stealing model

[10] and outline a centralized scheduler. In Section 3 we describe the architecture and the implementation of the Java

runtime system used to carry out the experiments. Then, in Section 4 we present experimental results about the

performance of the runtime system employing the work work scheduling algorithms described in Section 2. In the �nal

section we conclude.

2 Work scheduling models

In our work we use the programming model developed by Robert Blumofe at MIT [11]. This model requires that

decisions about the breaking up of available work into threads be made explicit while relieving the software developer

of the rami�cations of such decisions: mapping of threads to processors is done automatically and the distributed or

the centralized scheduler; communication is done implicitly through shared variables; and synchronization is achieved

through continuation passing style [15]. We use Java as an implementation language. In writing a parallel application

in Java, a programmer expresses parallelism by coding instructions in a partial execution order by structuring the

code into totally ordered sequences called threads. The programmer need not specify the processor in the system that

executes a particular thread nor exactly when each thread should be executed. These scheduling decisions are made

by the run-time systems scheduler. The proposed model allows Java to enjoy the bene�ts of being a member of the

family of languages in the second category in Table 1. In Section 2.1 we describe the lottery-based work stealing

programming model as well as its victim selection algorithm. In Section 2.2 we present a centralized thread scheduler.
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2.1 The Lottery-based work stealing model

In the lottery-based work stealing algorithm, idle workstations actively search out work to do rather than wait for

work to be assigned. In the lottery game, each workstation is equipped with a set of tickets and the number of tickets

is proportional to the age of the oldest thread in the ready pool of threads of the workstation. A winning ticket is

drawn at random and the workstation with the winning ticket becomes the victim from which the idle workstation

steals work. The proposed selection procedure serves two purposes: First, lowers communication costs by stealing

large amounts of work, with the logic behind being that old-aged computations are likely to spawn more work than

relatively young computations. Second, biases the search to obtain favourable results while at the same time avoid

system bottleneck.

2.2 The centralized work scheduling model

In the centralized work scheduling model a single workstation acts as a task distributor. All participant workstations

know the transport address of this centralized node and when they become idle they direct their job requests to it.

The centralized node maintains a bag of tasks sorted by age and originating from the overloaded workstations.

3 Architecture and implementation of the Java runtime system

A parallel Java program consists of one or more classes and objects with one or more threads of control. Threads are

nonsuspendable. The runtime system manipulates and schedules the threads. A Java program generates parallelism

at runtime by instantiating a runnable object or a subclass of class Thread and executing its run method. After this

the parent and the child may execute concurrently (asynchronous method invocation). After spawning one or more

children threads, the parent thread does not wait for its children to return. Instead, the parent thread additionally

spawns a successor thread to wait for the results from the children. Thus, a thread may wait to begin executing, but

once it begins execution there is no suspending it [15]. Sending a result to a suspended thread is done via the sendArg

method. The Java runtime system implements these primitives using two types of classes: closures and continuations.

Closures are classes employed by the runtime system to keep track of and schedule the execution of spawned

threads. The runtime system associates one closure object with each spawned thread. The absence of templates in

Java does not allow to hide the existence of closures from the software developer without an additional preprocessing

step. A closure consists of the class name of a runnable object, a slot for each of the speci�ed arguments in the object's

constructor, and a join counter indicating the number of missing arguments that need to be supplied before the object

is ready to be instantiated and its run method executed in a separate thread. If the closure has received all of its

arguments, then it is ready; otherwise, it is waiting. To run a ready closure, the runtime system uses re
ection API

to �nd out the object constructor having the same number and type of arguments as speci�ed in the closure and then

invokes it. When the run method of the instantiated object dies, the closure is deleted (freed).

A Continuation is a reference to an empty argument slot of a closure. An executing thread sends a value to a

waiting thread by placing the value into an argument slot of the waiting thread's (runnable object's) closure. The

executing thread uses the sendArg method of a Continuation object for this purpose. The empty slot of the waiting

closure is speci�ed by the argument passed as a parameter to the constructor of the Continuation object.

At runtime, each processor maintains four pools of closures: ready pool, waiting pool, and assigned pool. The

ready pool is a deque (double-ended queue) which contains all of the ready closures. Whenever a closure is created,

if its join counter is 0, then it is placed on the head of the ready deque; otherwise, it is added to the waiting pool.

Whenever a sendArg is invoked, the join counter is decremented, and if the join counter reaches 0, then the closure is

removed from the waiting pool and placed at the head of the ready deque. When a thread �nishes, the next closure

is chosen from the head of the ready deque and instantiated (its thread executed.)

In the lottery work stealing framework, a pop on an empty ready pool triggers a steal request being sent to a victim

worker. The victim worker is chosen using the algorith described in Section 2.1. When the steal request arrives at the

victim worker, if its ready deque is not empty, the task at the tail of the deque is removed and sent to the requesting

worker. The thief may then begin work on the stolen closure. If the victim has no ready closures, it informs the thief

who then tries to steal from another processor until a ready closure is found or program execution completes.

In the centralized work scheduling model, the request is sent to the centralized node. Then the centralized node

responds with the oldest computation in its bag of tasks.

Our runtime system consists of several processes, executing Java Virtual Machines (JVM), running on several

di�erent workstations. One process, called registry, runs a Java program responsible for keeping track of all the other

processors that cooperate on a given job. These other processes are called workers. Each worker registers with the
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# of processors Lottery-based work stealing Centralized work scheduling Improvement in %

1 | 37.2 |

2 | 40.5 |

3 | 29 |

4 42.25 32.75 �22.48

5 35.7 28.5 �20.28

6 47.5 48.6 +2.32

7 44 53.3 +17.44

8 63 71 +11.27

9 69.25 95.3 +27.33

Table 2: Comparison between the performance of the lottery-based work stealing algorithm and the centralized work

scheduling algorithm (Nqueen problem)

registry by sending it a message containing its own transport address. The registry responds by assigning each worker

a unique name. Workers periodically check in with the registry. Every 2 seconds each worker sends a message to the

registry containing the level of the closure at the tail of its ready deque. The level of a closure is equal to the height of

the root of the multithreaded spawn tree minus the height of the node of the closure in concern. In the lottery-based

framework, every 2 seconds the registry multicasts a list of the network addresses and ages of all registered workers.

4 Performance evaluation

One of the assumptions of this research work is that there is a great number of idle CPU cycles. A script was run for

two weeks collecting the average load across the workstations at 15 minute intervals. The results were combined to

produce an average load during a day. By rough approximation, the average load of the workstations is around 0.25,

indicating that about 75% of the CPU time of each workstation is wasted every day.

Given the two scheduling algorithms, it was possible to compare their performances for problem instances of

di�erent computational size and number of participant workstations. The performance of the two runtime systems was

evaluated using fibonacci (double recursive implementation) and nqueens. These applications generate a workload

suitable for evaluating the performance of the two scheduling algorithms. fibonacci is not computationally intensive

but spawns a large number of threads (in billions) which makes it appropriate for evaluating the synchronization of

the runtime systems. nqueens features behaviour typical of most search algorithms employing backtracking.

First, we present the serial slowdown incurred by the parallel scheduling overhead. The serial slowdown of an

application is measured as the ratio of the single-processor execution of the parallel code to the execution time of

the best serial implementation of the same algorithm. The serial slowdown stems from the extra overhead that the

scheduler incurs by wrapping threads in closures and re
ecting upon closures to �nd out threads' constructors.

Table 2 compares the performance of the lottery-based work stealing algorithm to the performance of the centralized

work stealing algorithm. Columns 2 and 3 display the wall clock time in seconds for the lottery-based work stealing

algorithm and the centralized algorithm, respectively, for di�erent number of processors involved.

Table 2 shows that the centralized algorithm outperforms the lottery-based algorithm for up to �ve workers. The

improvements in running times are not insigni�cant and for �ve processors it is approximately 20

5 Conclusion

We have compared the performance of two Java runtime systems for parallel execution of multithreaded Java appli-

cations on NOWs. The �rst runtime system incorporates a distributed lottery-based work scheduler, while the second

uses a simple centralized work scheduler. It was found that for a limited number of workstations the centralized work

scheduling algorithm is more eÆcient than the lottery-based work stealing algorithm.

The results show that it would be bene�cial to current research activity to adopt a composite work scheduling

algorithm. This composite algorithm could use the lottery-based work stealing algorithm to distribute computations

across large networks and a centralized algorithm to distribute computations within smaller networks. The motivation

for an interest in a limited number of workstations is prompted by two factors. Firstly, today's internetworks from

latency problems when internetworks become rather large. This points out that it may be more eÆcient to restrict



5

computations from di�erent organizations to their respective LANs rather than scatter the computations to faraway

workstations. Secondly, individual organizations with small networks will make considerable use of the distributed

processing paradigm before enough con�dence exists to extend the paradigm to larger internetworks like the Internet.

The major concerns here are: the individual workstation's security, the threat from eavesdropping, the con�dence in

the results received from an untrusted distant workstation, and the reliability and the fault-tolerance of the distributed

work scheduling algorithms.
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