
133IEEE Network • November/December 2021 0890-8044/21/$25.00 © 2021 IEEE

Abstract
The increasing demands of computing capa-

bilities make it expensive to operate a large-scale
cloud cluster. A good scheduling algorithm should
be able to reduce the average job completion
time (JCT), which is the time duration between a
job’s arrival and its termination. However, when
considering the precedence constraint of stages
in each job, and when jobs arrive online, design-
ing a scheduler to minimize the average JCT is
challenging. Counterintuitively, we find that insert-
ing idle time before some jobs might reduce the
JCT, which is ignored by many schedulers. The
state-of-the-art scheduler, which uses reinforce-
ment learning (RL) techniques to solve schedul-
ing problems, does not consider deliberate idle
time. We integrate our observations to the RL
agent and let the agent learn the best length of
idle time. We carefully design the features used
in RL. The shape of each job DAG is captured
by the critical path length and the average width,
and the detailed precedence constraints in each
job DAG are extracted by graph neural networks.
The experiment results on both synthetic and real-
world datasets show that inserting the deliberate
idle time could reduce the average JCT. Also, the
results illustrate the significant contribution made
by our proposed features.

Introduction
With the development of cloud computing, improv-
ing the efficiency of cloud clusters has become
critical for cluster operators. The large demands
of computing capabilities make it expensive to
operate a large-scale cloud cluster such as Amazon
Web Services and Google Cloud. For example,
Alibaba’s data clusters need to process more than
70 million transactions per second during peak
hours. If we could improve the job processing
efficiency of such large-scale data clusters, even
by a small percentage, the operator could save
a large amount of cost. The job processing effi-
ciency of a cloud cluster heavily depends on the
job scheduler, which decides the job processing
sequence and the number of machines allocated
to each job. Improving the scheduling algorithm
has become the main concern.

A good scheduling algorithm should be able
to reduce the average job completion time (JCT)
[1, 2]. The completion time, or processing time,
for each job is defined as the duration between
the job’s arrival and its completion. The average
JCT is the total completion time divided by the
number of jobs that have been processed. In this

article, we consider a set of online arriving jobs.
Each job is made of multiple stages, and these
stages have precedence constraints (i.e., some
stages cannot start unless the precedent stages
are finished). The dependence relation among
stages within a job is given by a directed acyclic
graph (DAG). These jobs need to be scheduled
on cloud clusters consisting of identical machines.
The homogeneous setting means that a job
could be processed by any machine in the clus-
ter. Each machine’s ability is limited and can only
process one stage in a job at a time. In addition,
we assume that each stage is non-preemptive,
which means that when a stage starts being pro-
cessed by a machine, it cannot be preempted.
Our objective is to build an online job scheduler
that could minimize the average job completion
time for cloud clusters.

However, designing such a scheduler is chal-
lenging. The precedence constraint of stages in
each job and the job’s online arrival bring challeng-
es for finding the optimal schedule. Recent research
shows that reinforcement learning (RL) is a pow-
erful tool for scheduling [3]. However, the existing
RL-based scheduler does not consider the addi-
tion of deliberate idle time. We find that inserting
deliberate idle time to some jobs could efficiently
reduce the average JCT. Therefore, we propose to
integrate this observation into an existing RL-based
scheduler. Also, we carefully investigate the features
that could be used in the RL. Namely, we note that
the shape of each job DAG could be captured by
the critical path length and the average width.

Inserting deliberate idle time might reduce
the average JCT when the variance of job length
is large. Figure 1 illustrates an example in which
inserting idle time could reduce the JCT efficient-
ly. Without inserting the idle time, as illustrated in
Fig. 1a, job 1 would be processed when it arrives.
Its completion time is 20 s. As for job 2, when
it arrives, it has to wait for job 1 to finish, which
leads to a waiting time of 18 s. Then it uses 4 s
to finish. The job completion time of job 2 is 22
s. The average JCT of job 1 and job 2 is 21 s. In
contrast, if we could insert the 2 s idle time slot to
job 1, which means we force job 1 to wait for 2 s,
job 2 could be processed first. Job 2’s completion
time becomes 4 s. The JCT of job 1 is 26 s. The
average JCT could be reduced to (4 s + 26 s)/2 =
15 s. This is much smaller than the 21 s average
JCT in the case when no idle time is inserted.

Designing a heuristic scheduling algorithm is
challenging. We investigate the learning-based
approach in which the scheduling policies are
trained from the actual workload history. In par-

Improving Learning-Based DAG Scheduling by Inserting Deliberate Idle Slots
Yubin Duan and Jie Wu

This research was supported
in part by NSF grants CNS
2128378, CNS 2107014, CNS
1824440, CNS 1828363, CNS
1757533, CNS 1629746, and

CNS 1651947.

INTERPLAY BETWEEN MACHINE LEARNING AND
NETWORKING SYSTEMS

Digital Object Identifier:
10.1109/MNET.001.2100231The authors are with Temple University.

DUAN_LAYOUT.indd 133DUAN_LAYOUT.indd 133 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021134

ticular, we propose to integrate our observations
into the RL agent, including inserting idle time
slots. An advantage of learning-based schedulers is
that they can adaptively adjust scheduling policies
for different types of workload. However, con-
cerns of learning-based schedulers arise in their
interpretability, especially for RL. It is also chal-
lenging for a learning-based scheduler to provide
a performance guarantee for the worst cases. We
attempt to increase the interpretability of RL mod-
els using a perturbation-based approach. Specif-
ically, besides training an RL agent based on our
model, we also trained RL agents in which our
proposed features are removed. Then we illustrate
the contribution of our features by comparing the
performance of these RL agents. The compari-
son shows that the features we design could help
improve the performance of the RL agent.

In this work, we propose to minimize the aver-
age JCT of online DAG jobs in cloud clusters. We
fi nd that inserting deliberate idle time can reduce
the average JCT. As it is challenging to build such
scheduling because of the precedence constraint in
general DAGs and the online arrival, we investigate
the RL approach, which learns the length of idle
time in its experience. Experiments on both synthet-
ic and real-world datasets show that inserting delib-
erate idle time could reduce the average JCT; our
features improve the effi ciency of the scheduler.

PrElIMInArIEs
The job scheduling problem with the objective to
minimize the average completion time is usually
NP-hard. Scheduling for online arrival jobs is chal-
lenging [4]. Reference [5] has shown that there is
no online algorithm that could achieve a bounded
competitive ration. Besides the online arrival prop-
erty, the precedence constraint in each job makes
the scheduling more challenging.

The job scheduling problem has been inves-
tigated by many researchers [6, 7]. Theoretical
analysis, such as [7], usually focuses on simple
cases. Reference [7] gives the state-of-the-art the-
oretical result for minimizing the average com-

pletion time or the average fl ow time. However,
they only consider the simple case where each
stage has one sequential task. We consider a
more general case where each stage could have
sequential and/or parallel tasks. Optimally sched-
uling arbitrary structured DAGs on more than
two machines is intractable [4]. Therefore, many
researchers start looking for heuristics for practi-
cal scenarios. Reference [6] considers heteroge-
neous DAGs, which is more practical in real-world
cluster traces, and proposes a heuristic for job
scheduling and resource packing. They identify
troublesome jobs in scheduling and packing, and
propose to fi rst deal with these troublesome jobs.
Reference [8] discusses stage delay scheduling
with the objective of minimizing the makespan.
They did not consider adjusting the job process-
ing order by inserting deliberate idle time.

Noticing that fi nding optimal schedules in poly-
nomial time for general structured DAGs is intrac-
table, an RL-based heuristic has been applied
for scheduling [3]. Reference [3] introduces an
RL-based DAG scheduler. Instead of using off -the-
shelf RL techniques, they propose a batch training
approach to deal with the online arrival of jobs.
The existing RL-based scheduler would process a
stage once an executor becomes available. How-
ever, our observation shows that inserting idle
time for some stages would improve the perfor-
mance of schedulers in terms of the average JCT.

Improving the interpretability of machine
learning techniques has attracted more attention
recently. Reference [9] summarizes the tech-
niques to interpret machine learning models.
Those techniques are grouped into two catego-
ries: intrinsic and post hoc interpretability. Intrinsic
interpretability refers to self-explanatory models
such as decision tree models and attention mod-
els. Post hoc interpretability needs to use another
model to explain an existing model.

ModEls

ProblEM ForMulAtIon
Assume we have k identical executors and n jobs.
Let J denote the set of jobs, and J = {j1, j2, …, jn}.
Each job ji consists of multiple stages with depen-
dency relationships. The arrival time of job ji is ai,
and its fi nish time is bi. Then the completion time
of a job is ci = bi – ai. Note that the completion
time includes both waiting time and the process-
ing time of the job. We focus on the online arrival
of jobs. Formally, the arrival time ai of each job ji
is a stochastic variable, and its value is unknown
to the scheduler before ji’s arrival. However, we
assume job DAGs are well annotated; that is,
the precedence relations and stage lengths are
immediately known by the scheduler when a job
arrives. At any time, each executor can process
only one job stage. Once a job stage is assigned
to an executor, it must be processed without pre-
emption until the stage terminates.

We use a DAG to model the stage dependen-
cy relationships for each job. Specifi cally, we use
Si to denote the set of stages in job ji. Si = {si1,
si2, …, sim}, where m is the number of stages in
job ji. Each stage sij has a length lij representing its
processing time on one executor. Allocating more
executors to a stage could reduce its processing
time. However, the speedup is nonlinear. There

FIGURE 1. Job scheduling in cloud clusters.

Online jobs

Schedules

Job 1Job 2

Cluster

inserted idle waiting processing

Scheduler

(a)

(b)

Job 2
arrives

Job 1
arrives

0s 2s 6s 20s 24s 26s

DUAN_LAYOUT.indd 134DUAN_LAYOUT.indd 134 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021 135

are precedence constraints for stages in Si. The
partial order six  siy means that stage siy cannot
be processed unless stage six has fi nished. A DAG
is used to represent the partial orders of stages in
a job, where directed edges in the DAG show the
precedence relationship between stages.

We aim to minimize the average JCT. Specif-
ically, the average JCT is defi ned as Sji  J ci/|J|,
where S jiJ ci is the overall job completion time
and |J| is the size of the job set. The job termi-
nates only if all stages in the job are processed.
Scheduling offline DAGs with general structures
on an arbitrary number of executors is NP-com-
plete [10]. Since any offline instance could be
reduced to an online instance, online scheduling
is also NP-complete.

We follow the list scheduling approach: a DAG
is flattened into an ordered list consisting of all
stages. For job ji, the scheduler needs to choose
a processing order Oi from feasible topology sorts
of stages in ji. In addition, for each stage sij  Si 
ji, the scheduler needs to decide the number of
executors pij assigned to it and the length of the
deliberate idle time dij inserted before it.

dYnAMIc VIEW on stocHAstIc scHEdulInG
Inserting the deliberate idle time cannot bring any
benefit for the offline scheduling, but might be
useful in the online scenario. In the off line sched-
uling, the scheduler could avoid the case in which
a shorter job waits for a longer job to finish by
simple greedy heuristics, such as short-job-first
scheduling. These heuristics cannot be applied in
online scheduling since the numbers and lengths
of unprocessed jobs are stochastic. If the sched-
uler assigns all executors to arrived jobs, a newly
arrived job has to wait even if it is extremely small.
This introduces an unreasonably long waiting time
for those relatively small jobs. Inserting deliberate
idle time could help the scheduler avoid this case
by letting the scheduler keep a small number of
available executors for future jobs. It could reduce
the average JCT, especially when the scheduler
can predict the size of future jobs in the rough.

To deal with the online scheduling problem,
we use an RL framework, as shown in Fig. 2, to
dynamically update job schedules. The RL agent
would observe the number of available executors
and the remaining job set as its input state and
generate the job schedule (Oi, pij, dij) as actions.
Recall that the list scheduling assigns a priority
for each job stage and selects a stage to execute
based on priority. The dynamic list scheduling
means that the priority pij of a job stage could
be adjusted only if the stage has not been pro-
cessed. Furthermore, our scheduler also dynami-
cally adjusts the Oi and dij when determining pij.
The values of (Oi, pij, dij) are determined by an
RL agent. We consider building our scheduler
based on RL for two major reasons. One is that
the workloads in data center clusters can be pre-
dicted. Existing research, such as [11, 12], have
shown several machine learning techniques for
workload prediction. This shows that there are
some patterns in cluster workloads that can be
learned and used by RL agents. The other rea-
son is that RL techniques are usually used to solve
sequential decision making problems, which fits
the list scheduling approach. Starting from a ran-
dom policy, the RL agent would explore possible

actions and improve its policy using the reward
values of environmental feedback. Also, the
RL agent could dynamically adjust the schedul-
ing when a new job arrives or some executors
become available.

IdlE-AWArE Job scHEdulEr
For dynamic list scheduling, we need to determine
the frequency of updating the schedule for existing
jobs. It is critical to select an appropriate location
for idle time insertion. Should it be inserted before
each job (job-level insertion) or before each stage
(stage-level insertion)? All of those factors should
be considered when designing an RL agent for
scheduling. We fi rst investigate the impact of those
factors, including the relationship between the
speedup of each job and the number of executors
assigned, the frequency of updating the scheduling
list, and the comparison between job-level inser-
tion and stage-level insertion. Then we introduce
our RL-based job scheduler. Finally, we investigate
the detailed structures of the RL agent.

The speedup of the execution of a job positive-
ly correlates with the number of executors assigned
to it, while it is nonlinear and difficult to model.
Amdahl’s law [13] gives a formula for the theo-
retical speedup. Specifi cally, a program is divided
into a serial part and a parallel part. The execution
time of the serial part is fi xed, and that of the par-
allel part is inversely proportional to the number
of executors. However, it is hard to determine the
percentage of the serial part for each job. Also,
this percentage varies for different types of jobs.
Therefore, instead of formulating the speedup, we
use machine learning techniques to fi nd the proper
number of executors for diff erent types of jobs.

In the dynamic list scheduling approach, sched-
ules can be updated during the processing of these
jobs. Instead of setting a fi xed interval between two
updates, we choose to trigger the update based on
certain events. Specifi cally, we propose to update
the schedules when i) a new job DAG arrives, ii)
a job is finished and the executors assigned to it
become available, or iii) the deliberate idle slot
reaches its end. Updating the schedules besides
the occurrence of those events is not very help-
ful since we consider the non-preemptive sched-
uling. The executors assigned to a job cannot be
retrieved until the job is finished. Therefore, we
choose to update the schedules at trigger events.

To improve the performance of scheduling, we
also need to carefully determine the granularity of
the idle time insertion. Inserting idle time before
each job (job-level insertion) reduces the searching
space, but also might miss the optimal solutions. It

FIGURE 2. Reinforcement learning structure.

DUAN_LAYOUT.indd 135DUAN_LAYOUT.indd 135 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021136

is not necessary to insert idle time at each stage
when a DAG arrives since some stages cannot be
executed until their predecessors are all finished.
In this article, we propose to mix these two inser-
tion methods. Specifically, we repeatedly apply
job-level insertion on remaining job DAGs, where
the remaining job DAGs consist of all stages that
have not been processed. When a stage is com-
pleted or a new job DAG arrives, we re-evaluate
the length of idle time for remaining job DAGs. To
avoid the starvation of jobs (e.g. always insert an
idle slot before the same stage), we restrict each
stage to only being delayed at most once. The
scheduler would maintain a table to record wheth-
er a stage has been delayed or not.

The scheduler needs to assign a priority to all
stages in each job, and selects a stage to execute
based on the priority when there are available
executors. There are multiple heuristics to deter-
mine the priority of each stage, such as based on
the critical path or based on the node degrees
[14]. However, none of these heuristics works
perfectly for general DAG scheduling with an
arbitrary number of executors. Each heuristic is
designed to label a special DAG structure, and
cannot adaptively adjust the stage priority during
processing. We rely on the RL approach to find a
proper policy to label the stage priority for gen-
eral structured DAGs. The RL agent could learn
the proper number of executors and the length
of idle slots for each job based on its experience.

At each trigger event, the RL agent uses the
number of available executors, the annotated
job DAG set (including flags indicating wheth-
er stages have been delayed), and the numbers
of executors currently assigned to each job as
the state. It would generate an action that con-
sists of the next job stage to be executed (sij), the
maximum number of executors to be assigned to

the selected job (pi), and the length of the delib-
erate idle slot to be inserted (dij). Based on the
action, the scheduler would set a timer for stage
sij with length dij, and label sij as a delayed stage.
When the timer is up, the scheduler would assign
available executors to the selected stage sij such
that the total number of executors assigned to ji
becomes pi. If the number of available executors
is not large enough, the scheduler would assign
all available executors to ji.

Note that the RL agent limits the maximum
number of executors assigned to the job, ji,
instead of the stage, sij. Furthermore, to meet the
requirement of the non-preemptive scheduling,
the value of pi is non-decreasing.

We use the accumulated JCT as the reward
parameter. Assume two adjacent actions are gen-
erated at times tk and tk+1, and the number of jobs
during [tk, tk+1) is uk. The reward is –(tk+1 – tk)uk.
Maximizing the reward is equivalent to minimizing
the overall JCT SjiJ ci or the average JCT SjiJ ci/|J|.

The structure of the RL agent is adapted from
[3]. The policy network of the RL agent is shown
in Fig. 3. The features for training contain two
parts. The first part is the features embedded by
the graph convolutional neural network, and the
second is the feature we manually selected.

The sizes (numbers of stages and stage lengths)
of job DAGs vary, which brings challenges for
encoding the DAGs. We need to encode the
DAG with different sizes into a vector with a fixed
size. Reference [3] proposed to overcome the
challenge by using a graph neural network (GNN).
The GNN could encode the job DAGs into a set
of fixed-length vectors. There are three types of
vectors: per-node embedding vectors, pre-job
embedding vectors, and global embedding vec-
tors. The per-node embedding vectors are used to
determine the priority of each stage. The per-job

FIGURE 3. The policy network structure.

Per-node

Global

Per-job

DUAN_LAYOUT.indd 136DUAN_LAYOUT.indd 136 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021 137

embedding vectors are the job-level encoding of
DAG and are used to determine the priority of
each stage, the parallelism of each job, and the
idle time length. The global embedding vectors
accumulate the encoding for multiple DAGs and
are mainly used to determine the idle time length.

In addition to using the GNN, we propose
to add some manually selected features to the
feature vector. The manually selected features
include the critical path length and the average
width of a job, as shown in Fig. 3. The double
lines in the fi gure indicate the critical path of the
job, which is the longest path from the root to a
leaf stage. The path length is the total duration of
the stages that belong to the path. The length of
the critical path shows the lower bound of the job
processing time no matter how many executors
are allocated to the job. The average width is the
summation of the stage lengths divided by the
critical path length. The average width of the job
shown in Fig. 3 is 27/15 = 1.8. This value gives a
clue for determining the proper number of exec-
utors that should be assigned to a job. By adding
those features, we hope to manually force the RL
algorithm to notice useful factors in scheduling.
The manually selected features are easy to com-
pute when the job DAG arrives. The length of the
critical path and the average width are calculat-
ed by one round of traversal on the input DAG.
During traversal, a variable is used to maintain the
accumulated length of each stage, and another
variable is used to record the depth of traversal.
After the traversal, the length of the critical path is
determined by the maximum depth. The average
width could be determined by dividing the sum-
mation of stage lengths by the critical path length.
Assembling the vector of manually selected fea-
tures along with the feature vectors generated by
the GNN, we get the feature space that could be
used to train the policy network.

The output layer of the policy network consists
of three types of neurons. The fi rst type contains
m neurons whose outputs represent the proba-
bility that the stage is selected. The second type
contains k neurons, where k is the total number of
executors in the cluster. Each neuron represents a
parallelism level. The output of each neuron rep-
resents the probability that the parallelism level is
selected. The third type of neuron is used to deter-
mine the length of idle slots for the selected stage.
Theoretically, the idle time di  , and the amount

of its possible values is infi nity. To reduce the size
of the action space, we discretize the possible val-
ues of di. For a stage with length lij, we divide lij
into g pieces. The length di must be r  lij/g, where
r = 0, 1, 2, , g. Therefore, the third type contains
g neurons, and each represents a possible value of
r. The output of each neuron is the probability that
the corresponding r is selected. The policy gradi-
ent algorithm [15] is used to train the RL agent.
The idea of the policy gradient is to perform gra-
dient descent on the policy network based on the
rewards observed during training.

EXPErIMEnt

EXPErIMEnt sEttInG
We test our scheduler on both synthetic and real-
world datasets. The synthetic dataset contains two
types of jobs, long-term and short-term. First, we
fi x the length of the long-term jobs at 50 s, and the
length of the short-term jobs at 10 s. We simulate
the Poisson process for job arrivals. Specifi cally, the
interarrival time of synthetic jobs obeys indepen-
dent and identically distributed (IID) exponential
distribution. The real-world dataset is extracted from
TPC-H1 queries. We randomly sample 103 jobs
input sizes varying from 1 GB to 100 GB. Besides
the synthetic and real-world datasets, we also use a
mixed dataset in the experiment. The mixed dataset
consists of jobs randomly sampled from the syn-
thetic and real-world datasets. The percentage of
synthetic data samples is controlled by   [0, 1]. 
= 1 means that all of the data in the mixed dataset
is synthetic data. In addition, to reduce the time
consumption of training, we use a simulator to cal-
culate the reward for the policy network.

EXPErIMEnt rEsults
We examine the importance of the manually select-
ed features: critical path length and average width.
We compare the performance of the RL agent
that has manually selected features with the agent
in which those features are removed. This experi-
ment is conducted on the synthetic dataset and the
mixed dataset ( = 0.5). Both RL agents are trained
in the same device and have the same length of
training time. The comparison result is shown in
Table 1. In Table 1, we also record the average JCT
of the scheduler that does not consider deliberate
idle insertion. From the table, we fi nd that remov-
ing the manually selected features would harm the 1 http://www.tpc.org/tpch/

FIGURE 4. The CDF of job completion time: a) workload = 60 percent; b) workload = 80 percent.

0 20 40 60 80 100
Job Completion Time

0.2

0.4

0.6

0.8

1
C

D
F

Default scheduler
RL (add features)
RL (replace features)

20 40 60 80 100 120
Job Completion Time

0

0.2

0.4

0.6

0.8

1

C
D

F

Default scheduler
RL (add features)
RL (replace features)

DUAN_LAYOUT.indd 137DUAN_LAYOUT.indd 137 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021138

performance of the RL agent. The average JCT
increases by about 13.8 percent on the synthetic
dataset and increases by about 8.4 percent on the
mixed dataset. The experiment results show that
the features we selected are useful and could help
to improve the performance of the RL agent.

We then take a closer look at the distribution of
JCT. Figure 4 shows the cumulative distribution of
JCT generated by a different scheduler. The default
scheduler refers to the first-in first-out (FIFO) sched-
uler. Adding features means our manually selected
features are added to the RL agent introduced in
[3]. Replacing features uses manually selected fea-
tures to randomly replace features used by the RL
agent [3] and keeps the total number of features
unchanged. In the CDF plot, a line on the left indi-
cates a better scheduling policy. Comparing Figs.
4a and 4b, we can see that a larger workload is
more likely to lead to a larger JCT. This is more
obvious for the scheduler without inserting idle
time. We can see that the difference between the
CDF plot of the scheduler with idle time and that
of the scheduler without idle time becomes larger
when the workload increases from 60 to 80 per-
cent. This shows that inserting deliberate idle time

is more important if the workload is heavier. The
number of overlaps between different jobs increas-
es with the workload. With more overlaps, the
number of cases also increases when the shorter
jobs need to wait for larger jobs.

We also investigate the performance of our
scheduler under different workloads. Specifical-
ly, the number of available workers in the clus-
ter is fixed, and we change the number of jobs
to simulate different workloads. The experiment
results are shown in Fig. 5a. In the figure, we use
the shortest-job-first algorithm as a baseline and
compare the RL-based scheduler with and without
inserting idle slots. From the figure, we find that
the RL-based schedulers can significantly reduce
the average JCT compared with shortest-job-first,
which is a heuristic approach. The improvement
is around 30 percent. In addition, we can observe
around a 3.0–5.6 percent reduction of the aver-
age JCT if the deliberate idle slot is considered.

Additionally, we focus on the trade-off between
the average JCT and makespan. Inserting deliberate
idle time might reduce the average JCT but also
might lead to a larger makespan. We show this
trade-off in Fig. 5b. The figure shows the comparison
over the makespan. Because we insert idle time for
jobs, the makespan becomes larger. The increase is
not large. However, considering that minimizing the
makespan is not our objective, the small increase
in the makespan does not affect the performance
of our scheduler. If we modify the reward function
of the RL agent, we would be able to reduce the
makespan of the overall jobs. However, it is not the
objective of our scheduler. In addition, compared to
shortest-job-first, the RL agent that considers insert-
ing deliberate idle slots can reduce the makespan
by around 17–21 percent. This is because the
RL-based scheduler can adaptively adjust the prior-
ity of different stages to improve the resource utiliza-
tion when minimizing the average JCT.

Figure 6 shows the average length of the
deliberate idle time on the synthetic dataset with
different random parameter values. In this set of
experiments, the longer job in the synthetic data
set no longer has a fixed length. Instead, we sam-
ple its length from a normal distribution N(m, s),
where m is the mean and s is the standard devia-
tion. With different m, the value of s is always set
to m/6. The length of the shorter job in the syn-
thetic dataset is kept at 10. l is the parameter of

FIGURE 5. Comparison under different number of jobs: a) comparison of average JCT; b) comparison of
makespan.

1 2 3 4 5 6
Number of jobs (x103)

40

60

80

100

120

140

Av
er

ag
e

JC
T

RL (w/o idle time)
RL (with idle time)
Shortest-job-first

1 2 3 4 5 6
Number of jobs (x103)

100

150

200

250

300

M
ak

es
pa

n

RL (w/o idle time)
RL (with idle time)
Shortest-job-first

TABLE 1. Average JCT over synthetic and mixed
dataset.

Average
JCT

Average JCT w/o
selected features

Average JCT
w/o idle time

Synthetic 46.3 52.7 53.5

Mixed 69.4 75.2 74.5

FIGURE 6. The inserted idle time on the synthetic dataset.

DUAN_LAYOUT.indd 138DUAN_LAYOUT.indd 138 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2021 139

the Poisson process, and it controls the job arrival
rate. From the figure, we can see that if the inter-
val between two adjacent jobs becomes smaller or
the average length difference between longer and
shorter jobs becomes smaller, the average length
of the inserted idle time is adaptively reduced. This
shows that the RL agent could adjust its policy on
different inputs. Compared to some fixed heuristic
rules such as shortest-job-first, the RL agent could
be applied to more general cases.

Conclusion
We focus on efficient scheduling for online arrival
jobs with general DAG structures. The objective
of our scheduler is to minimize the average job
completion time (JCT). We adapt a reinforcement
learning (RL) approach and integrate our obser-
vations that inserting deliberate idle time for rel-
atively large jobs could reduce the average JCT.
We follow a dynamic list scheduling approach to
carefully design features used to train the policy
network in the RL framework. The shape of each
job DAG is captured by the critical path length
and the average width, while the detailed prece-
dence constraints in each job DAG are extract-
ed by graph neural networks. We implement the
scheduler with the deliberate idle time on both
synthetic and real-world datasets. The experiment
results show the efficiency of the addition of delib-
erate idle time. In addition, our perturbation-based
method shows that the features, critical path
length, and average width proposed in the article
make large contributions to the RL agent. These
features should improve the performance of the
RL agent in terms of the average JCT.

Extending the RL-based scheduler for other
objectives, such as minimizing makespan or pro-
viding fairness guarantees, would be interesting
future works. We can adjust the reward function
used by RL agents and change their preferences
when assigning priorities. A well-designed reward
function may be able to keep fairness while opti-
mizing the makespan or average JCT. In addition,
we can explore the performance of RL schedul-
ers in different cluster scales. Additional efforts
might be needed to train the RL agent for large-
scale clusters that have an extremely large number
of executors. Furthermore, how to improve the
interpretability of RL techniques remains an open
problem. In addition to adding manually selected

features, developing attention mechanisms is an
appealing approach for demystifying the decision
making process of deep RL models.

References
[1] A. D. Ferguson et al., “Jockey: Guaranteed Job Latency in

Data Parallel Clusters,” ACM EuroSys, 2012, pp. 99–112.
[2] J. Wu, Distributed System Design, CRC Press, 1998.
[3] H. Mao et al., “Learning Scheduling Algorithms for Data Pro-

cessing Clusters,” Proc. ACM SIG on Data Commun., 2019,
pp. 270–88.

[4] A. Marchetti-Spaccamela et al., “On the Complexity of Con-
ditional Dag Scheduling in Multiprocessor Systems,” 2020
IEEE Int’l. Parallel and Distributed Processing Symp., 2020,
pp. 1061–70.

[5] N. Garg and A. Kumar, “Minimizing Average Flow-Time:
Upper and Lower Bounds,” IEEE FOCS, 2007, pp. 603–13.

[6] R. Grandl et al. “GRAPHENE: Packing and Dependen-
cy-Aware Scheduling for Data-Parallel Clusters,” 12th USE-
NIX Symp. Operating Systems Design and Implementation,
2016, pp. 81–97.

[7] K. Agrawal et al., “Scheduling Parallel Dag Jobs Online to
Minimize Average Flow Time,” Proc. 27th Annual ACM-SI-
AM Symp. Discrete Algorithms, 2016, pp. 176–89.

[8] W. Shao et al., “Stage Delay Scheduling: Speeding Up Dag-
Style Data Analytics Jobs with Resource Interleaving,” ICPP,
2019, pp. 1–11.

[9] M. Du, N. Liu, and X. Hu, “Techniques for Interpretable
Machine Learning,” Commun. ACM, vol. 63, no. 1, 2019,
pp. 68–77.

[10] M. R. Garey and D. S. Johnson, Computers and Intractabili-
ty, Freeman San Francisco, vol. 174, 1979.

[11] S. Di, D. Kondo, and W. Cirne, “Host Load Prediction in a
Google Compute Cloud with a Bayesian Model,” Proc. IEEE
SC, 2012, pp. 1–11.

[12] M. Ghorbani et al., “Prediction and Control of Bursty Cloud
Workloads: A Fractal Framework,” Proc. 2014 Int’l. Conf.
Hardware/Software Codesign and System Synthesis, 2014,
pp. 1–9.

[13] T. G. Robertazzi and L. Shi, “Amdahl’s and Other Laws,”
Networking and Computation, Springer, 2020, pp. 139–49.

[14] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, 1999, pp. 406–71.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.

Biographies
Yubin Duan (yubin.duan@temple.edu) received his B.S. degree
in mathematics and physics from the University of Electronic
Science and Technology of China, Chengdu, in 2017. He is cur-
rently a Ph.D. student in the Department of Computer and Infor-
mation Sciences, Temple University, Philadelphia, Pennsylvania.
His current research focuses on distributed systems.

Jie Wu [F] (jiewu@temple.edu) is the director of the Center for
Networked Computing and Laura H. Carnell Professor at Tem-
ple University. His current research interests include mobile
computing and wireless networks, network security, and cloud
computing. He publishes in scholarly journals, conferences, and
books. He is a Fellow of the AAAS.

DUAN_LAYOUT.indd 139DUAN_LAYOUT.indd 139 1/7/22 3:55 PM1/7/22 3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.

