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Abstract
The increasing demands of computing capa-

bilities make it expensive to operate a large-scale 
cloud cluster. A good scheduling algorithm should 
be able to reduce the average job completion 
time (JCT), which is the time duration between a 
job’s arrival and its termination. However, when 
considering the precedence constraint of stages 
in each job, and when jobs arrive online, design-
ing a scheduler to minimize the average JCT is 
challenging. Counterintuitively, we find that insert-
ing idle time before some jobs might reduce the 
JCT, which is ignored by many schedulers. The 
state-of-the-art scheduler, which uses reinforce-
ment learning (RL) techniques to solve schedul-
ing problems, does not consider deliberate idle 
time. We integrate our observations to the RL 
agent and let the agent learn the best length of 
idle time. We carefully design the features used 
in RL. The shape of each job DAG is captured 
by the critical path length and the average width, 
and the detailed precedence constraints in each 
job DAG are extracted by graph neural networks. 
The experiment results on both synthetic and real-
world datasets show that inserting the deliberate 
idle time could reduce the average JCT. Also, the 
results illustrate the significant contribution made 
by our proposed features. 

Introduction
With the development of cloud computing, improv-
ing the efficiency of cloud clusters has become 
critical for cluster operators. The large demands 
of computing capabilities make it expensive to 
operate a large-scale cloud cluster such as Amazon 
Web Services and Google Cloud. For example, 
Alibaba’s data clusters need to process more than 
70 million transactions per second during peak 
hours. If we could improve the job processing 
efficiency of such large-scale data clusters, even 
by a small percentage, the operator could save 
a large amount of cost. The job processing effi-
ciency of a cloud cluster heavily depends on the 
job scheduler, which decides the job processing 
sequence and the number of machines allocated 
to each job. Improving the scheduling algorithm 
has become the main concern.

A good scheduling algorithm should be able 
to reduce the average job completion time (JCT) 
[1, 2]. The completion time, or processing time, 
for each job is defined as the duration between 
the job’s arrival and its completion. The average 
JCT is the total completion time divided by the 
number of jobs that have been processed. In this 

article, we consider a set of online arriving jobs. 
Each job is made of multiple stages, and these 
stages have precedence constraints (i.e., some 
stages cannot start unless the precedent stages 
are finished). The dependence relation among 
stages within a job is given by a directed acyclic 
graph (DAG). These jobs need to be scheduled 
on cloud clusters consisting of identical machines. 
The homogeneous setting means that a job 
could be processed by any machine in the clus-
ter. Each machine’s ability is limited and can only 
process one stage in a job at a time. In addition, 
we assume that each stage is non-preemptive, 
which means that when a stage starts being pro-
cessed by a machine, it cannot be preempted. 
Our objective is to build an online job scheduler 
that could minimize the average job completion 
time for cloud clusters. 

However, designing such a scheduler is chal-
lenging. The precedence constraint of stages in 
each job and the job’s online arrival bring challeng-
es for finding the optimal schedule. Recent research 
shows that reinforcement learning (RL) is a pow-
erful tool for scheduling [3]. However, the existing 
RL-based scheduler does not consider the addi-
tion of deliberate idle time. We find that inserting 
deliberate idle time to some jobs could efficiently 
reduce the average JCT. Therefore, we propose to 
integrate this observation into an existing RL-based 
scheduler. Also, we carefully investigate the features 
that could be used in the RL. Namely, we note that 
the shape of each job DAG could be captured by 
the critical path length and the average width. 

Inserting deliberate idle time might reduce 
the average JCT when the variance of job length 
is large. Figure 1 illustrates an example in which 
inserting idle time could reduce the JCT efficient-
ly. Without inserting the idle time, as illustrated in 
Fig. 1a, job 1 would be processed when it arrives. 
Its completion time is 20 s. As for job 2, when 
it arrives, it has to wait for job 1 to finish, which 
leads to a waiting time of 18 s. Then it uses 4 s 
to finish. The job completion time of job 2 is 22 
s. The average JCT of job 1 and job 2 is 21 s. In 
contrast, if we could insert the 2 s idle time slot to 
job 1, which means we force job 1 to wait for 2 s, 
job 2 could be processed first. Job 2’s completion 
time becomes 4 s. The JCT of job 1 is 26 s. The 
average JCT could be reduced to (4 s + 26 s)/2 = 
15 s. This is much smaller than the 21 s average 
JCT in the case when no idle time is inserted. 

Designing a heuristic scheduling algorithm is 
challenging. We investigate the learning-based 
approach in which the scheduling policies are 
trained from the actual workload history. In par-

Improving Learning-Based DAG Scheduling by Inserting Deliberate Idle Slots
Yubin Duan and Jie Wu

This research was supported 
in part by NSF grants CNS 
2128378,  CNS 2107014, CNS 
1824440, CNS 1828363, CNS 
1757533, CNS 1629746, and 

CNS 1651947.

INTERPLAY BETWEEN MACHINE LEARNING AND 
NETWORKING SYSTEMS

Digital Object Identifier:
10.1109/MNET.001.2100231The authors are with Temple University.

DUAN_LAYOUT.indd   133DUAN_LAYOUT.indd   133 1/7/22   3:55 PM1/7/22   3:55 PMAuthorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:14:04 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2021134

ticular, we propose to integrate our observations 
into the RL agent, including inserting idle time 
slots. An advantage of learning-based schedulers is 
that they can adaptively adjust scheduling policies 
for different types of workload. However, con-
cerns of learning-based schedulers arise in their 
interpretability, especially for RL. It is also chal-
lenging for a learning-based scheduler to provide 
a performance guarantee for the worst cases. We 
attempt to increase the interpretability of RL mod-
els using a perturbation-based approach. Specif-
ically, besides training an RL agent based on our 
model, we also trained RL agents in which our 
proposed features are removed. Then we illustrate 
the contribution of our features by comparing the 
performance of these RL agents. The compari-
son shows that the features we design could help 
improve the performance of the RL agent. 

In this work, we propose to minimize the aver-
age JCT of online DAG jobs in cloud clusters. We 
fi nd that inserting deliberate idle time can reduce 
the average JCT. As it is challenging to build such 
scheduling because of the precedence constraint in 
general DAGs and the online arrival, we investigate 
the RL approach, which learns the length of idle 
time in its experience. Experiments on both synthet-
ic and real-world datasets show that inserting delib-
erate idle time could reduce the average JCT; our 
features improve the effi  ciency of the scheduler. 

PrElIMInArIEs
The job scheduling problem with the objective to 
minimize the average completion time is usually 
NP-hard. Scheduling for online arrival jobs is chal-
lenging [4]. Reference [5] has shown that there is 
no online algorithm that could achieve a bounded 
competitive ration. Besides the online arrival prop-
erty, the precedence constraint in each job makes 
the scheduling more challenging. 

The job scheduling problem has been inves-
tigated by many researchers [6, 7]. Theoretical 
analysis, such as [7], usually focuses on simple 
cases. Reference [7] gives the state-of-the-art the-
oretical result for minimizing the average com-

pletion time or the average fl ow time. However, 
they only consider the simple case where each 
stage has one sequential task. We consider a 
more general case where each stage could have 
sequential and/or parallel tasks. Optimally sched-
uling arbitrary structured DAGs on more than 
two machines is intractable [4]. Therefore, many 
researchers start looking for heuristics for practi-
cal scenarios. Reference [6] considers heteroge-
neous DAGs, which is more practical in real-world 
cluster traces, and proposes a heuristic for job 
scheduling and resource packing. They identify 
troublesome jobs in scheduling and packing, and 
propose to fi rst deal with these troublesome jobs. 
Reference [8] discusses stage delay scheduling 
with the objective of minimizing the makespan. 
They did not consider adjusting the job process-
ing order by inserting deliberate idle time.

Noticing that fi nding optimal schedules in poly-
nomial time for general structured DAGs is intrac-
table, an RL-based heuristic has been applied 
for scheduling [3]. Reference [3] introduces an 
RL-based DAG scheduler. Instead of using off -the-
shelf RL techniques, they propose a batch training 
approach to deal with the online arrival of jobs. 
The existing RL-based scheduler would process a 
stage once an executor becomes available. How-
ever, our observation shows that inserting idle 
time for some stages would improve the perfor-
mance of schedulers in terms of the average JCT.

Improving the interpretability of machine 
learning techniques has attracted more attention 
recently. Reference [9] summarizes the tech-
niques to interpret machine learning models. 
Those techniques are grouped into two catego-
ries: intrinsic and post hoc interpretability. Intrinsic 
interpretability refers to self-explanatory models 
such as decision tree models and attention mod-
els. Post hoc interpretability needs to use another 
model to explain an existing model. 

ModEls

ProblEM ForMulAtIon
Assume we have k identical executors and n jobs. 
Let J denote the set of jobs, and J = {j1, j2, …, jn}. 
Each job ji consists of multiple stages with depen-
dency relationships. The arrival time of job ji is ai, 
and its fi nish time is bi. Then the completion time 
of a job is ci = bi – ai. Note that the completion 
time includes both waiting time and the process-
ing time of the job. We focus on the online arrival 
of jobs. Formally, the arrival time ai of each job ji
is a stochastic variable, and its value is unknown 
to the scheduler before ji’s arrival. However, we 
assume job DAGs are well annotated; that is, 
the precedence relations and stage lengths are 
immediately known by the scheduler when a job 
arrives. At any time, each executor can process 
only one job stage. Once a job stage is assigned 
to an executor, it must be processed without pre-
emption until the stage terminates. 

We use a DAG to model the stage dependen-
cy relationships for each job. Specifi cally, we use 
Si to denote the set of stages in job ji. Si = {si1, 
si2, …, sim}, where m is the number of stages in 
job ji. Each stage sij has a length lij representing its 
processing time on one executor. Allocating more 
executors to a stage could reduce its processing 
time. However, the speedup is nonlinear. There 

FIGURE 1. Job scheduling in cloud clusters.
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are precedence constraints for stages in Si. The 
partial order six  siy means that stage siy cannot 
be processed unless stage six has fi nished. A DAG 
is used to represent the partial orders of stages in 
a job, where directed edges in the DAG show the 
precedence relationship between stages. 

We aim to minimize the average JCT. Specif-
ically, the average JCT is defi ned as Sji  J ci/|J|, 
where S jiJ ci is the overall job completion time 
and |J| is the size of the job set. The job termi-
nates only if all stages in the job are processed. 
Scheduling offline DAGs with general structures 
on an arbitrary number of executors is NP-com-
plete [10]. Since any offline instance could be 
reduced to an online instance, online scheduling 
is also NP-complete. 

We follow the list scheduling approach: a DAG 
is flattened into an ordered list consisting of all 
stages. For job ji, the scheduler needs to choose 
a processing order Oi from feasible topology sorts 
of stages in ji. In addition, for each stage sij  Si 
ji, the scheduler needs to decide the number of 
executors pij assigned to it and the length of the 
deliberate idle time dij inserted before it. 

dYnAMIc VIEW on stocHAstIc scHEdulInG
Inserting the deliberate idle time cannot bring any 
benefit for the offline scheduling, but might be 
useful in the online scenario. In the off line sched-
uling, the scheduler could avoid the case in which 
a shorter job waits for a longer job to finish by 
simple greedy heuristics, such as short-job-first 
scheduling. These heuristics cannot be applied in 
online scheduling since the numbers and lengths 
of unprocessed jobs are stochastic. If the sched-
uler assigns all executors to arrived jobs, a newly 
arrived job has to wait even if it is extremely small. 
This introduces an unreasonably long waiting time 
for those relatively small jobs. Inserting deliberate 
idle time could help the scheduler avoid this case 
by letting the scheduler keep a small number of 
available executors for future jobs. It could reduce 
the average JCT, especially when the scheduler 
can predict the size of future jobs in the rough.

To deal with the online scheduling problem, 
we use an RL framework, as shown in Fig. 2, to 
dynamically update job schedules. The RL agent 
would observe the number of available executors 
and the remaining job set as its input state and 
generate the job schedule (Oi, pij, dij) as actions. 
Recall that the list scheduling assigns a priority 
for each job stage and selects a stage to execute 
based on priority. The dynamic list scheduling 
means that the priority pij of a job stage could 
be adjusted only if the stage has not been pro-
cessed. Furthermore, our scheduler also dynami-
cally adjusts the Oi and dij when determining pij. 
The values of (Oi, pij, dij) are determined by an 
RL agent. We consider building our scheduler 
based on RL for two major reasons. One is that 
the workloads in data center clusters can be pre-
dicted. Existing research, such as [11, 12], have 
shown several machine learning techniques for 
workload prediction. This shows that there are 
some patterns in cluster workloads that can be 
learned and used by RL agents. The other rea-
son is that RL techniques are usually used to solve 
sequential decision making problems, which fits 
the list scheduling approach. Starting from a ran-
dom policy, the RL agent would explore possible 

actions and improve its policy using the reward 
values of environmental feedback. Also, the 
RL agent could dynamically adjust the schedul-
ing when a new job arrives or some executors 
become available. 

IdlE-AWArE Job scHEdulEr
For dynamic list scheduling, we need to determine 
the frequency of updating the schedule for existing 
jobs. It is critical to select an appropriate location 
for idle time insertion. Should it be inserted before 
each job (job-level insertion) or before each stage 
(stage-level insertion)? All of those factors should 
be considered when designing an RL agent for 
scheduling. We fi rst investigate the impact of those 
factors, including the relationship between the 
speedup of each job and the number of executors 
assigned, the frequency of updating the scheduling 
list, and the comparison between job-level inser-
tion and stage-level insertion. Then we introduce 
our RL-based job scheduler. Finally, we investigate 
the detailed structures of the RL agent. 

The speedup of the execution of a job positive-
ly correlates with the number of executors assigned 
to it, while it is nonlinear and difficult to model. 
Amdahl’s law [13] gives a formula for the theo-
retical speedup. Specifi cally, a program is divided 
into a serial part and a parallel part. The execution 
time of the serial part is fi xed, and that of the par-
allel part is inversely proportional to the number 
of executors. However, it is hard to determine the 
percentage of the serial part for each job. Also, 
this percentage varies for different types of jobs. 
Therefore, instead of formulating the speedup, we 
use machine learning techniques to fi nd the proper 
number of executors for diff erent types of jobs. 

In the dynamic list scheduling approach, sched-
ules can be updated during the processing of these 
jobs. Instead of setting a fi xed interval between two 
updates, we choose to trigger the update based on 
certain events. Specifi cally, we propose to update 
the schedules when i) a new job DAG arrives, ii) 
a job is finished and the executors assigned to it 
become available, or iii) the deliberate idle slot 
reaches its end. Updating the schedules besides 
the occurrence of those events is not very help-
ful since we consider the non-preemptive sched-
uling. The executors assigned to a job cannot be 
retrieved until the job is finished. Therefore, we 
choose to update the schedules at trigger events.

To improve the performance of scheduling, we 
also need to carefully determine the granularity of 
the idle time insertion. Inserting idle time before 
each job (job-level insertion) reduces the searching 
space, but also might miss the optimal solutions. It 

FIGURE 2. Reinforcement learning structure.
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is not necessary to insert idle time at each stage 
when a DAG arrives since some stages cannot be 
executed until their predecessors are all finished. 
In this article, we propose to mix these two inser-
tion methods. Specifically, we repeatedly apply 
job-level insertion on remaining job DAGs, where 
the remaining job DAGs consist of all stages that 
have not been processed. When a stage is com-
pleted or a new job DAG arrives, we re-evaluate 
the length of idle time for remaining job DAGs. To 
avoid the starvation of jobs (e.g. always insert an 
idle slot before the same stage), we restrict each 
stage to only being delayed at most once. The 
scheduler would maintain a table to record wheth-
er a stage has been delayed or not.

The scheduler needs to assign a priority to all 
stages in each job, and selects a stage to execute 
based on the priority when there are available 
executors. There are multiple heuristics to deter-
mine the priority of each stage, such as based on 
the critical path or based on the node degrees 
[14]. However, none of these heuristics works 
perfectly for general DAG scheduling with an 
arbitrary number of executors. Each heuristic is 
designed to label a special DAG structure, and 
cannot adaptively adjust the stage priority during 
processing. We rely on the RL approach to find a 
proper policy to label the stage priority for gen-
eral structured DAGs. The RL agent could learn 
the proper number of executors and the length 
of idle slots for each job based on its experience. 

At each trigger event, the RL agent uses the 
number of available executors, the annotated 
job DAG set (including flags indicating wheth-
er stages have been delayed), and the numbers 
of executors currently assigned to each job as 
the state. It would generate an action that con-
sists of the next job stage to be executed (sij), the 
maximum number of executors to be assigned to 

the selected job (pi), and the length of the delib-
erate idle slot to be inserted (dij). Based on the 
action, the scheduler would set a timer for stage 
sij with length dij, and label sij as a delayed stage. 
When the timer is up, the scheduler would assign 
available executors to the selected stage sij such 
that the total number of executors assigned to ji 
becomes pi. If the number of available executors 
is not large enough, the scheduler would assign 
all available executors to ji. 

Note that the RL agent limits the maximum 
number of executors assigned to the job, ji, 
instead of the stage, sij. Furthermore, to meet the 
requirement of the non-preemptive scheduling, 
the value of pi is non-decreasing. 

We use the accumulated JCT as the reward 
parameter. Assume two adjacent actions are gen-
erated at times tk and tk+1, and the number of jobs 
during [tk, tk+1) is uk. The reward is –(tk+1 – tk)uk. 
Maximizing the reward is equivalent to minimizing 
the overall JCT SjiJ ci or the average JCT SjiJ ci/|J|.

The structure of the RL agent is adapted from 
[3]. The policy network of the RL agent is shown 
in Fig. 3. The features for training contain two 
parts. The first part is the features embedded by 
the graph convolutional neural network, and the 
second is the feature we manually selected.

The sizes (numbers of stages and stage lengths) 
of job DAGs vary, which brings challenges for 
encoding the DAGs. We need to encode the 
DAG with different sizes into a vector with a fixed 
size. Reference [3] proposed to overcome the 
challenge by using a graph neural network (GNN). 
The GNN could encode the job DAGs into a set 
of fixed-length vectors. There are three types of 
vectors: per-node embedding vectors, pre-job 
embedding vectors, and global embedding vec-
tors. The per-node embedding vectors are used to 
determine the priority of each stage. The per-job 

FIGURE 3. The policy network structure.
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embedding vectors are the job-level encoding of 
DAG and are used to determine the priority of 
each stage, the parallelism of each job, and the 
idle time length. The global embedding vectors 
accumulate the encoding for multiple DAGs and 
are mainly used to determine the idle time length. 

In addition to using the GNN, we propose 
to add some manually selected features to the 
feature vector. The manually selected features 
include the critical path length and the average 
width of a job, as shown in Fig. 3. The double 
lines in the fi gure indicate the critical path of the 
job, which is the longest path from the root to a 
leaf stage. The path length is the total duration of 
the stages that belong to the path. The length of 
the critical path shows the lower bound of the job 
processing time no matter how many executors 
are allocated to the job. The average width is the 
summation of the stage lengths divided by the 
critical path length. The average width of the job 
shown in Fig. 3 is 27/15 = 1.8. This value gives a 
clue for determining the proper number of exec-
utors that should be assigned to a job. By adding 
those features, we hope to manually force the RL 
algorithm to notice useful factors in scheduling. 
The manually selected features are easy to com-
pute when the job DAG arrives. The length of the 
critical path and the average width are calculat-
ed by one round of traversal on the input DAG. 
During traversal, a variable is used to maintain the 
accumulated length of each stage, and another 
variable is used to record the depth of traversal. 
After the traversal, the length of the critical path is 
determined by the maximum depth. The average 
width could be determined by dividing the sum-
mation of stage lengths by the critical path length. 
Assembling the vector of manually selected fea-
tures along with the feature vectors generated by 
the GNN, we get the feature space that could be 
used to train the policy network.

The output layer of the policy network consists 
of three types of neurons. The fi rst type contains 
m neurons whose outputs represent the proba-
bility that the stage is selected. The second type 
contains k neurons, where k is the total number of 
executors in the cluster. Each neuron represents a 
parallelism level. The output of each neuron rep-
resents the probability that the parallelism level is 
selected. The third type of neuron is used to deter-
mine the length of idle slots for the selected stage. 
Theoretically, the idle time di  , and the amount 

of its possible values is infi nity. To reduce the size 
of the action space, we discretize the possible val-
ues of di. For a stage with length lij, we divide lij
into g pieces. The length di must be r  lij/g, where 
r = 0, 1, 2, , g. Therefore, the third type contains 
g neurons, and each represents a possible value of 
r. The output of each neuron is the probability that 
the corresponding r is selected. The policy gradi-
ent algorithm [15] is used to train the RL agent. 
The idea of the policy gradient is to perform gra-
dient descent on the policy network based on the 
rewards observed during training. 

EXPErIMEnt

EXPErIMEnt sEttInG
We test our scheduler on both synthetic and real-
world datasets. The synthetic dataset contains two 
types of jobs, long-term and short-term. First, we 
fi x the length of the long-term jobs at 50 s, and the 
length of the short-term jobs at 10 s. We simulate 
the Poisson process for job arrivals. Specifi cally, the 
interarrival time of synthetic jobs obeys indepen-
dent and identically distributed (IID) exponential 
distribution. The real-world dataset is extracted from 
TPC-H1 queries. We randomly sample 103 jobs 
input sizes varying from 1 GB to 100 GB. Besides 
the synthetic and real-world datasets, we also use a 
mixed dataset in the experiment. The mixed dataset 
consists of jobs randomly sampled from the syn-
thetic and real-world datasets. The percentage of 
synthetic data samples is controlled by   [0, 1]. 
= 1 means that all of the data in the mixed dataset 
is synthetic data. In addition, to reduce the time 
consumption of training, we use a simulator to cal-
culate the reward for the policy network. 

EXPErIMEnt rEsults
We examine the importance of the manually select-
ed features: critical path length and average width. 
We compare the performance of the RL agent 
that has manually selected features with the agent 
in which those features are removed. This experi-
ment is conducted on the synthetic dataset and the 
mixed dataset ( = 0.5). Both RL agents are trained 
in the same device and have the same length of 
training time. The comparison result is shown in 
Table 1. In Table 1, we also record the average JCT 
of the scheduler that does not consider deliberate 
idle insertion. From the table, we fi nd that remov-
ing the manually selected features would harm the 1 http://www.tpc.org/tpch/

FIGURE 4. The CDF of job completion time: a) workload = 60 percent; b) workload = 80 percent.
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performance of the RL agent. The average JCT 
increases by about 13.8 percent on the synthetic 
dataset and increases by about 8.4 percent on the 
mixed dataset. The experiment results show that 
the features we selected are useful and could help 
to improve the performance of the RL agent. 

We then take a closer look at the distribution of 
JCT. Figure 4 shows the cumulative distribution of 
JCT generated by a different scheduler. The default 
scheduler refers to the first-in first-out (FIFO) sched-
uler. Adding features means our manually selected 
features are added to the RL agent introduced in 
[3]. Replacing features uses manually selected fea-
tures to randomly replace features used by the RL 
agent [3] and keeps the total number of features 
unchanged. In the CDF plot, a line on the left indi-
cates a better scheduling policy. Comparing Figs. 
4a and 4b, we can see that a larger workload is 
more likely to lead to a larger JCT. This is more 
obvious for the scheduler without inserting idle 
time. We can see that the difference between the 
CDF plot of the scheduler with idle time and that 
of the scheduler without idle time becomes larger 
when the workload increases from 60 to 80 per-
cent. This shows that inserting deliberate idle time 

is more important if the workload is heavier. The 
number of overlaps between different jobs increas-
es with the workload. With more overlaps, the 
number of cases also increases when the shorter 
jobs need to wait for larger jobs. 

We also investigate the performance of our 
scheduler under different workloads. Specifical-
ly, the number of available workers in the clus-
ter is fixed, and we change the number of jobs 
to simulate different workloads. The experiment 
results are shown in Fig. 5a. In the figure, we use 
the shortest-job-first algorithm as a baseline and 
compare the RL-based scheduler with and without 
inserting idle slots. From the figure, we find that 
the RL-based schedulers can significantly reduce 
the average JCT compared with shortest-job-first, 
which is a heuristic approach. The improvement 
is around 30 percent. In addition, we can observe 
around a 3.0–5.6 percent reduction of the aver-
age JCT if the deliberate idle slot is considered. 

Additionally, we focus on the trade-off between 
the average JCT and makespan. Inserting deliberate 
idle time might reduce the average JCT but also 
might lead to a larger makespan. We show this 
trade-off in Fig. 5b. The figure shows the comparison 
over the makespan. Because we insert idle time for 
jobs, the makespan becomes larger. The increase is 
not large. However, considering that minimizing the 
makespan is not our objective, the small increase 
in the makespan does not affect the performance 
of our scheduler. If we modify the reward function 
of the RL agent, we would be able to reduce the 
makespan of the overall jobs. However, it is not the 
objective of our scheduler. In addition, compared to 
shortest-job-first, the RL agent that considers insert-
ing deliberate idle slots can reduce the makespan 
by around 17–21 percent. This is because the 
RL-based scheduler can adaptively adjust the prior-
ity of different stages to improve the resource utiliza-
tion when minimizing the average JCT. 

Figure 6 shows the average length of the 
deliberate idle time on the synthetic dataset with 
different random parameter values. In this set of 
experiments, the longer job in the synthetic data 
set no longer has a fixed length. Instead, we sam-
ple its length from a normal distribution N(m, s), 
where m is the mean and s is the standard devia-
tion. With different m, the value of s is always set 
to m/6. The length of the shorter job in the syn-
thetic dataset is kept at 10. l is the parameter of 

FIGURE 5. Comparison under different number of jobs: a) comparison of average JCT; b) comparison of 
makespan.
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TABLE 1. Average JCT over synthetic and mixed 
dataset.

Average 
JCT

Average JCT w/o 
selected features

Average JCT 
w/o idle time

Synthetic 46.3 52.7 53.5

Mixed 69.4 75.2 74.5

FIGURE 6. The inserted idle time on the synthetic dataset.
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the Poisson process, and it controls the job arrival 
rate. From the figure, we can see that if the inter-
val between two adjacent jobs becomes smaller or 
the average length difference between longer and 
shorter jobs becomes smaller, the average length 
of the inserted idle time is adaptively reduced. This 
shows that the RL agent could adjust its policy on 
different inputs. Compared to some fixed heuristic 
rules such as shortest-job-first, the RL agent could 
be applied to more general cases.

Conclusion
We focus on efficient scheduling for online arrival 
jobs with general DAG structures. The objective 
of our scheduler is to minimize the average job 
completion time (JCT). We adapt a reinforcement 
learning (RL) approach and integrate our obser-
vations that inserting deliberate idle time for rel-
atively large jobs could reduce the average JCT. 
We follow a dynamic list scheduling approach to 
carefully design features used to train the policy 
network in the RL framework. The shape of each 
job DAG is captured by the critical path length 
and the average width, while the detailed prece-
dence constraints in each job DAG are extract-
ed by graph neural networks. We implement the 
scheduler with the deliberate idle time on both 
synthetic and real-world datasets. The experiment 
results show the efficiency of the addition of delib-
erate idle time. In addition, our perturbation-based 
method shows that the features, critical path 
length, and average width proposed in the article 
make large contributions to the RL agent. These 
features should improve the performance of the 
RL agent in terms of the average JCT.

Extending the RL-based scheduler for other 
objectives, such as minimizing makespan or pro-
viding fairness guarantees, would be interesting 
future works. We can adjust the reward function 
used by RL agents and change their preferences 
when assigning priorities. A well-designed reward 
function may be able to keep fairness while opti-
mizing the makespan or average JCT. In addition, 
we can explore the performance of RL schedul-
ers in different cluster scales. Additional efforts 
might be needed to train the RL agent for large-
scale clusters that have an extremely large number 
of executors. Furthermore, how to improve the 
interpretability of RL techniques remains an open 
problem. In addition to adding manually selected 

features, developing attention mechanisms is an 
appealing approach for demystifying the decision 
making process of deep RL models.
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