Computation Offloading Scheduling for Deep
Neural Network Inference in Mobile Computing

Yubin Duan and Jie Wu

Dept. of Computer and Information Sciences
Temple University, USA

IWQoS 2021

Outline

Introduction
Model

Tree-structure DNN Scheduling

Path-wise scheduling

Layer-wise scheduling
Scheduling for DAG-Style DNNs
Experiment

Conclusions

1. Introduction

DNN inference in mobile apphca’rlons
Image classification ‘
Object detection

QoS measurement
Inference latency

CAT, DOG, DUCK

Cooperative DNN inference
Computation of floading ﬁ offloading .

Motivation

Offloading pipeline

e e) <
i Modile | Cut-Phints\
i i S| 1 T 1 1 <] [Z]
! [Conv || Conv |[MaxPool|- oV > c| |5
| conv ! (N (<) IN[e)IN([S) el
!|: [Conv][Conv][Conv ! SO NSTIECI=1E3
! ! =] o |©
i | Concat | ! I W — —
_ - -
o| |o|lle| 1||e]| || |8 Sl 1=
IREN I ER IEREIRHMARRERE
'8—)'8—»'8 1 -8_)-8_)é_)|-|—_)% -':-;
= IS E] IS IS] |2 3l |©
SR U |t o G L A) il
PN N
HREEHINRERE
(>é—>8—>8, &_)—)%—)S
= I nl| [©
e} 28 | N 1 e
Process on Mobile Devices Partition Offload to Cloud

Scheduling problem

Computation and communication priorities

2. Model

Two-stage offloading pipeline

cut-rbi Inference Latency

=
>
-
¥
\ 4

Comp. Comm.

Comp. Comm.

Comp. Comm.

[
1 1 1

Workload in Tensor Size -
Comp. Path & Bandwidth

| FVC | |Moziule —>{ MaxPool|

[Conv | [Module |

Comp.: process DNN layers from input to cut-points
Comm.: upload intermediate results to cloud servers
Cloud processing time is negligible

Problem Formulation

Objective

Minimize inference latency for a given DNN

min 7 =t|g — to
g

Recursive calculation of the completion time

t; = max{tg —l—Zi:lf(:z:i), ti—1 Hg(xi),Vri€o
Constraints

Precedence constraint

1 < 3, Vr; <z5,Vr; €0

Permutation constraint J L Schedule
Us,co i = S, |o| = |S] o = [x0, X1, ..., Xg]

A permutation of {vy, ..., vg}

DNN Structures after Partition

Tree-structure
Multi-path tree

= (v,

4

General tree

LooP Love
DAG
oo Lo

3. Tree-structure DNN Scheduling

Scheduling granularities

Path-wise scheduling
Can be optimally solve by applying Johnson's rule

~

Input
11x11
\ﬂ Conv)

11x11 Max 5x5 Max
—> —> —>
j Conv Pooling Conv Pooling |)
~
Max N 5x5 Max
Pooling Conv Pooling
J,

Layer-wise scheduling
Extend Johnson's rule for the optimal solution

1x1
Conv
L 2
1x3
Conv
v

3x1
Conv

Concat

3x1 1x3
Conv | | Conv

Avg
Pooling
1x1
Conv 1x1
Conv

1x1
Conv

Path

Path

Layer

Path-wise Scheduling

Optimal scheduling with Johnson's rule
Each path is a task with two operations
Split tasks into comm./comp.-domination groups
H={1, 2, 3}, increasing order of comp.
L = {4, 5, 6}, decreasing order of comm.

Can extend to any structures with conversion

DAG Conversion

Apply path-wise scheduling on arbitrary DNNs
Breadth-first search on graph
Duplicate each internal nodes
Avoid re-processing duplicated layers in inference

Layer-wise Scheduling

For arbitrary tree-structure DNNs
Johnson's rule + conversion is suboptimal

Challenge: precedence constraints

Recursively merge schedules of subtrees
Schedule of a subtree:
list covering all its node vy

At internal nodes: Ao
Merge lists of children nodes
Group it with head of the merged list (v,)

Johnson's rule for comparisons

Layer-wise Scheduling

Property

Theorem 1: The schedule generated by the recursive
merging approach is optimal for free-structure DAGs.

Proof

Sketch : mathematical induction

Merging and grouping will not lose optimal schedule
Insights:

Merging preserve the precedence constraints

For nodes without precedence constraints, Johnson's rule
finds their optimal schedule

4. Scheduling for DAG-Style DNNs

More complex precedence constraints

DAG scheduling is NP-hard

Inspired by ftopological sort
Tteratively sort nodes with no successors with Johnson's rule
Scheduled nodes are removed from the DAG

=)
G\

v —s)

J L Schedule

0 = Vg, V1, V3, Vg, Vo]

5. Experiment

Prototype implemented with PyTorch
gRPC is used for offloading
PyTorch Profiler is used to measure comp. time

DNNs used in evaluation
Alex-Parallell!): multi-path tree
GoogleNetl?l: tree
Multi-Stream NetworkBl tree
RandWirel*l: DAG

[1].K. He eft. al., "Deep residual learning for image recognition,” in IEEE CVPR, 2016, pp. 770-778

[2].C. Szegedy et. al., "Going deeper with convolutions,” in TEEE CVPR, 2015, pp. 1-9.

[31.Y.-W. Chao, et. al., "Learning to detect human-object interactions,” in IEEE WACV, 2018, pp. 381-389.

[4].S. Xie, et. al., "Exploring randomly wired neural networks for image recognition,” in TEEE ICCV, 2019, pp. 1284-1293.

Experiment Results

Latency on different network environment
(CO: Cloud Only LO: Local Only PO Partition- Only)

8000

= l:lCO

S [Lo —
"2.6000 -.EEZIPO

] I OPss |

C
g
8 4000
3
C
® 2000 f
(4]
C
mm | [FH

Inf

im (Wl

o

Alex-Parallel GooglLeNet Multi-Stream RandWire

36
Scheduling overhead

— 0.03
%)

S
= 0.025 -

o
© o
o —
= o

Scheduling Overhead

ko
1 ®1s500f

e WM e

3000

=

E 2500

EED@

>
© 2000 |l OPSS

(0]
21000 f

Alex-Parallel GooglLeNet Multi-Stream RandWire

46

2 002+t

0.005

= -

Alex-Parallel GooglLeNet Multi-Stream RandWire

3000

=z

1 E 2500 -

3
22000

k)
1 ® 1500 |
[0]
2 1000
[0

5}
£ 500|

o

I:ICO
o

[—=Ya\

oSS | |

1 ﬁ%l(ﬁh 7 mm |

Alex-Parallel GoogLeNet Multi-Stream RandWire

Wi-Fi

6. Conclusion

Proposed an of floading pipeline

Hide comm. time behind comp.
Optimal path-wise scheduling

Intend for trees with multi-paths

Can apply to arbitrary DNNs with conversion
Optimal layer-wise scheduling

Can apply to arbitrary tree-structure DNNs

Recursively merge schedule lists

Evaluation on a prototype system

Questions

&

<

yubin.duan@temple.edu

