Computation Offloading Scheduling for Deep Neural Network Inference in Mobile Computing

Yubin Duan and Jie Wu
Dept. of Computer and Information Sciences
Temple University, USA

Outline

- 1. Introduction
- 2. Model
- 3. Tree-structure DNN Scheduling
 - Path-wise scheduling
 - Layer-wise scheduling
- 4. Scheduling for DAG-Style DNNs
- 5. Experiment
- 6. Conclusions

1. Introduction

- DNN inference in mobile applications
 - Image classification
 - Object detection
- QoS measurement
 - Inference latency

CAT, DOG, DUCK

- Cooperative DNN inference
 - Computation offloading

Motivation

- Offloading pipeline
 - May have multiple offloading subtasks

- Scheduling problem
 - Computation and communication priorities

2. Model

Two-stage offloading pipeline

- Comp.: process DNN layers from input to cut-points
- Comm.: upload intermediate results to cloud servers
- Cloud processing time is negligible

Problem Formulation

Minimize inference latency for a given DNN

$$\min_{\sigma} \quad \tau = t_{|S|} - t_0$$

Recursive calculation of the completion time

$$t_i = \max\{t_0 + \sum_{k=1}^{i} f(x_i), t_{i-1}\} + g(x_i), \forall x_i \in \sigma$$

- Constraints
 - Precedence constraint

$$i \le j, \forall x_i \prec x_j, \forall x_j \in \sigma$$

Permutation constraint

$$\bigcup_{x_i \in \sigma} x_i = S, |\sigma| = |S|$$

Schedule

$$\sigma = [x_0, x_1, \dots, x_8]$$

A permutation of $\{v_0, \dots, v_8\}$

DNN Structures after Partition

- Tree-structure
 - Multi-path tree

General tree

DAG

3. Tree-structure DNN Scheduling

- Scheduling granularities
 - Path-wise scheduling
 - Can be optimally solve by applying Johnson's rule

- Layer-wise scheduling
 - Extend Johnson's rule for the optimal solution

Path-wise Scheduling

- Optimal scheduling with Johnson's rule
 - Each path is a task with two operations
 - Split tasks into comm./comp.-domination groups
 - \circ H = {1, 2, 3}, increasing order of comp.
 - \circ L = {4, 5, 6}, decreasing order of comm.

Can extend to any structures with conversion

DAG Conversion

- Apply path-wise scheduling on arbitrary DNNs
 - Breadth-first search on graph
 - Duplicate each internal nodes
 - Avoid re-processing duplicated layers in inference

Layer-wise Scheduling

- For arbitrary tree-structure DNNs
 - Johnson's rule + conversion is suboptimal
 - Challenge: precedence constraints
- Recursively merge schedules of subtrees
 - Schedule of a subtree:
 - list covering all its node
 - At internal nodes:
 - Merge lists of children nodes
 - Group it with head of the merged list
 - Johnson's rule for comparisons

Layer-wise Scheduling

Property

Theorem 1: The schedule generated by the recursive merging approach is optimal for tree-structure DAGs.

- Proof
 - Sketch: mathematical induction
 - Merging and grouping will not lose optimal schedule
 - o Insights:
 - Merging preserve the precedence constraints
 - For nodes without precedence constraints, Johnson's rule finds their optimal schedule

4. Scheduling for DAG-Style DNNs

- More complex precedence constraints
 - DAG scheduling is NP-hard
 - Inspired by topological sort
 - Iteratively sort nodes with no successors with Johnson's rule
 - Scheduled nodes are removed from the DAG

5. Experiment

- Prototype implemented with PyTorch
 - gRPC is used for offloading
 - PyTorch Profiler is used to measure comp. time
- DNNs used in evaluation
 - Alex-Parallel^[1]: multi-path tree
 - o GoogleNet^[2]: tree
 - Multi-Stream Network^[3]: tree
 - RandWire^[4]: DAG

[1].K. He et. al., "Deep residual learning for image recognition," in IEEE CVPR, 2016, pp. 770-778

[2].C. Szegedy et. al., "Going deeper with convolutions," in IEEE CVPR, 2015, pp. 1-9.

[3].Y.-W. Chao, et. al., "Learning to detect human-object interactions," in IEEE WACV, 2018, pp. 381-389.

[4].S. Xie, et. al., "Exploring randomly wired neural networks for image recognition," in IEEE ICCV, 2019, pp. 1284-1293.

Experiment Results

Scheduling overhead

6. Conclusion

- Proposed an offloading pipeline
 - Hide comm. time behind comp.
- Optimal path-wise scheduling
 - Intend for trees with multi-paths
 - Can apply to arbitrary DNNs with conversion
- Optimal layer-wise scheduling
 - Can apply to arbitrary tree-structure DNNs
 - Recursively merge schedule lists
- Evaluation on a prototype system

Questions

yubin.duan@temple.edu