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1. Introduction

DNN inference in mobile apphca’rlons
Image classification ‘
Object detection

QoS measurement
Inference latency

CAT, DOG, DUCK

Cooperative DNN inference
Computation of floading ﬁ offloading .




Motivation

Offloading pipeline
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Scheduling problem

Computation and communication priorities



2. Model

Two-stage offloading pipeline

cut-rbi Inference Latency
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Comp.: process DNN layers from input to cut-points
Comm.: upload intermediate results to cloud servers
Cloud processing time is negligible



Problem Formulation

Objective

Minimize inference latency for a given DNN

min 7 =t|g — to
g

Recursive calculation of the completion time

t; = max{tg —l—Zi:lf(:z:i), ti—1 Hg(xi),Vri€o
Constraints

Precedence constraint

1 < 3, Vr; <z5,Vr; €0

Permutation constraint J L Schedule
Us,co i = S, |o| = |S] o = [x0, X1, ..., Xg]

A permutation of {vy, ..., vg}



DNN Structures after Partition

Tree-structure
Multi-path tree
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3. Tree-structure DNN Scheduling

Scheduling granularities

Path-wise scheduling
Can be optimally solve by applying Johnson's rule
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Layer-wise scheduling
Extend Johnson's rule for the optimal solution
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Path-wise Scheduling

Optimal scheduling with Johnson's rule
Each path is a task with two operations
Split tasks into comm./comp.-domination groups
H={1, 2, 3}, increasing order of comp.
L = {4, 5, 6}, decreasing order of comm.

Can extend to any structures with conversion



DAG Conversion

Apply path-wise scheduling on arbitrary DNNs
Breadth-first search on graph
Duplicate each internal nodes
Avoid re-processing duplicated layers in inference



Layer-wise Scheduling

For arbitrary tree-structure DNNs
Johnson's rule + conversion is suboptimal

Challenge: precedence constraints

Recursively merge schedules of subtrees
Schedule of a subtree:
list covering all its node vy

At internal nodes: Ao
Merge lists of children nodes
Group it with head of the merged list (v,)

Johnson's rule for comparisons



Layer-wise Scheduling

Property

Theorem 1: The schedule generated by the recursive
merging approach is optimal for free-structure DAGs.

Proof

Sketch : mathematical induction

Merging and grouping will not lose optimal schedule
Insights:

Merging preserve the precedence constraints

For nodes without precedence constraints, Johnson's rule
finds their optimal schedule



4. Scheduling for DAG-Style DNNs

More complex precedence constraints

DAG scheduling is NP-hard

Inspired by ftopological sort
Tteratively sort nodes with no successors with Johnson's rule
Scheduled nodes are removed from the DAG
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5. Experiment

Prototype implemented with PyTorch
gRPC is used for offloading
PyTorch Profiler is used to measure comp. time

DNNs used in evaluation
Alex-Parallell!): multi-path tree
GoogleNetl?l: tree
Multi-Stream NetworkBl tree
RandWirel*l: DAG
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Experiment Results

Latency on different network environment
(CO: Cloud Only LO: Local Only PO Partition- Only)
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6. Conclusion

Proposed an of floading pipeline

Hide comm. time behind comp.
Optimal path-wise scheduling

Intend for trees with multi-paths

Can apply to arbitrary DNNs with conversion
Optimal layer-wise scheduling

Can apply to arbitrary tree-structure DNNs

Recursively merge schedule lists

Evaluation on a prototype system
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