
Local Monitoring and Maintenance for Operational
Wireless Sensor Networks

Md Zakirul Alam Bhuiyan†‡, Guojun Wang†∗, Jiannong Cao‡, and Jie Wu§
†School of Information Science and Engineering, Central South University, Changsha, Hunan, P. R. China, 410083

‡Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
§Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

∗Corresponding author: csgjwang@mail.csu.edu.cn

Abstract—One of the key mechanisms underlying a wireless
sensor network (WSN) is to monitor the network itself. Many ex-
isting approaches perform centralized analysis and maintenance
based on a large amount of status reports collected from the
WSN, while others use add-on protocols/modules that not only
require extra management cost but also interrupt the normal
operations of targeted WSN applications. Unlike existing work,
we propose LoMoM, a new approach of Local Monitoring and
Maintenance for a WSN, which combines monitoring operations
for the WSN with the operations of a mobile event monitoring,
in a manner that is both energy- and latency-efficient. LoMoM
includes a two-part monitoring architecture: a WSN and a 3G
network. Our main interest is in the WSN-part, where we address
two important issues: monitoring probable anomalies/faults of
the nodes, and the link failures. To achieve the event monitoring
efficiently, LoMoM conducts a prompt local maintenance when
such a fault occurs. Fault and event detection status reports are
observed by a remote monitoring center using the 3G network.
Comprehensive evaluations via both simulations and real-world
experiments are conducted to validate the effectiveness of LoMoM.

Keywords-Wireless sensor networks; network monitoring;
monitoring architecture; local maintenance; event monitoring

I. INTRODUCTION

Wireless sensor networks (WSNs) have been employed in a
wide range of applications, such as environmental monitoring,
structural health monitoring military operations, and event
detection [1], [2], [3]. In an event detection application, when
a detecting sensor node becomes faulty, or the status report is
dropped due to various reasons, e.g., link (and route) failures,
the application performance can be greatly affected. Thus,
monitoring these faults and detecting them with a low latency
and low energy cost are of great significance.

Some existing monitoring approaches use add-on modules
[4], [5], [6], while some other approaches propose debugging
or evaluation tools, and need extra hardware for node monitor-
ing [7], [8], which may not be efficient for online debugging.
Besides, many approaches to diagnosing WSNs are generally
centralized, also known as sink-based [4], [9], [7], [10], [8].
Moreover, those approaches are not feasible in practice for a
large scale resource-constrained WSN, due to the following
shortages. First, they require a large number of active nodes
for the monitoring function. Second, the monitoring function is
carried out separately, which should be, arguably, performed
in conjunction with the normal operation of an application.
Third, monitoring link behaviors are not seriously focused.
Fourth, it is commonly assumed to deploy a PC close to the
sink; it is, however, infeasible in practice [8].

 Mobile EventEngaged NodeCoordinator Node

Sink

e = 5c = 2

C1

P1 C2

3G

 Network
Internet

Lower Part Upper Part

{ Monitoring
 Center (MC)

a =10

Fig. 1. The two-part monitoring architecture for WSNs, where the sensor
nodes around a mobile event are monitored locally.

In response to the limitations above, in this paper we pro-
pose LoMoM. This is a novel approach to Local Monitoring and
Maintenance for a WSN that performs monitoring operations
for the WSN, together with the operations of a mobile event
monitoring application. During the event monitoring, if there
are any possible faults in the WSN, they are detected and
repaired online in such a way that requires low energy cost
and latency in the WSN. To achieve this, we design a two-part
monitoring architecture (refer to Fig. 1) that includes two net-
work infrastructures: a lower part (sensor nodes, coordinator
nodes, and a sink) and an upper part (the sink, a 3G network,
the Internet, and a monitoring center (MC)).

Our main interest is in the lower part, i.e., in the WSN.
We consider a planar WSN graph embedded in the plane.
The monitoring is built on decomposition of the plane. Such
decomposition consists of non-overlapping polygonal-shaped
forms (simply called polygons). An event is assumed to be
surrounded by the perimeter of ith polygon Pi. In Fig. 1, the
event lying inside P1 can be detected as it goes across an
edge (or a communication link), e.g., <C1, C2>. At the time
of an edge crossing, the two nodes become coordinators and
take the monitoring responsibilities. All the links and nodes
associated with Pi are required to be monitored, meaning that
the monitoring is carried out with the mobility of the event.

The problem includes two sub-problems. i) node self-
monitoring—which enables each node to check for anoma-
lies/faults in its own behaviors (i.e., diagnosing itself), to
calculate a fault detection probability through an embedded
algorithm, and to transmit it to the coordinators. ii) Link
monitoring—which enables each node to probe for 1-hop
neighbors and check the links to them, and to transmit a
report to the coordinators along with the perceived behavior
of the links. Besides, the coordinators have a chain of links
between all the nodes in Pi. A link monitoring algorithm is

used to detect the scope of link failures. We apply Markov
chain techniques in both self-monitoring and link monitoring
algorithms. The sink is the final recipient of status reports, and
informs the MC, who may decide to take action in response to
the perceived faults. However, we enable the nodes to provide
local maintenance to tolerate the faults. The MC can be located
anywhere, it can even be a mobile device. To achieve this, a
communication module is utilized for the upper part [11]. It
is integrated into the sink, and connects the sink to the 3G
network. The novel contributions of this paper are four-fold:

• We study the problem of local monitoring and mainte-
nance for a WSN, and design a monitoring architecture
in such a way that jointly offers monitoring for the WSN
and one of its mobile event applications.

• We present an edge intersection algorithm to calculate
the event detection probability that helps to select the
coordinator nodes to lead the monitoring.

• We propose two monitoring algorithms, namely, node
self-monitoring and link failure monitoring.

• We evaluate LoMoM via rigorous simulations and also
a proof-of-concept system. Evaluation results, compared
with state-of-the-art approaches [5], [6], [12], show that
LoMoM greatly minimizes the propagation of false alarms
and latency, and maximizes the WSN lifetime.

The rest of this paper is organized as follows. Section II
provides related work. We formulate our problem in Section
III. Section IV designs the monitoring architecture. The mon-
itoring algorithms are presented in Section V. Local main-
tenance is discussed in Section VI. Sections VII evaluates
LoMoM through simulations and a proof-of-concept system
implementation. Finally, Section VIII concludes this paper.

II. RELATED WORK

In most applications of WSNs, the WSNs create complexi-
ties of their own. They are vulnerable to faults, due to a wide
range of reasons, e.g., hardware or software component faults,
energy depletion, link failures, etc. A WSN system is required
to monitor itself. Existing work focus on different aspects of
monitoring [4], [6], [9], [7], [10], [8], [13], but there still
remain challenges in local monitoring and maintenance.

Looking into most closely related approaches, the under-
lying ideas of Sympathy [4], Memento [5], and DiMo [6]
are that sensors periodically report their status to the sink,
such as residual energy, node failures, neighbor list, and the
like. Memento controls node failures in the network, which is
ensured by the use of observer or detector nodes to inform the
sink when a failure is detected. The sink analyzes and makes
all the decisions about node failures, and reconfigures the
network. Another approach, PD (post-deployment debugging)
is data-centric [8], and tries to pinpoint the root-causes of
network performance problems.

Although above approaches are innovative, they have some
serious drawbacks: (i) there may be no node failures in
many cases, while the link failure detection is not distinctly
considered; (ii) the monitoring is performed separately, rather
than considered with the WSN application functions; (iii) each

node directly communicates to the sink, which may be reliable;
however, frequent report loss brings communication overhead;
(iv) they support only centralized tolerance as faults occur.

An aggregation assisted monitoring scheme (or monitoring
based on hop-by-hop aggregation is proposed in [12] to
monitor sensor status, such as residual energy, which presents
a poller-pollee structure (PP for short). The work tackles link
failures only, and studies the problem of minimizing energy
cost in monitoring as a poller-pollee assignment problem,
and uses hop-by-hop aggregation. Since all of the nodes
are monitored simultaneously, hop-by-hop aggregation may
induce energy cost and latency in every hop.

Above observations have motivated us to develop LoMoM,
where coordinators make local decisions on faults, and provide
local maintenance. Basically, the nodes do not wait for the
remote sink’s decisions for monitoring, maintenance, and event
detection. The WSN is treated as a distributed system, where,
in contrast to existing work, it makes the monitoring a fully
distributed process. As such, this can be considered a major
step towards optimized operations in WSNs.

III. PROBLEM FORMULATION

A. Preliminaries
We consider a WSN as the nodes embedded in a region

in the plane, and an associated communication graph G =
(E,L). Here, E(G) is the set of vertices/nodes and L(G) is the
set of edges/links. The communication links are bidirectional.
A mobile entity, such as an enemy vehicle, an intruder, or a
mobile device user is randomly moving in the plane.

We generate the subgraph G′ that consists of one or more
polygons. When the event lies inside the i-th polygon Pi or
approaches Pi in the d-th time interval Td(d = 1, 2, ...), the
event is detected by the nodes of Pi. This means that Ei of
engaged nodes and Li of links of Pi, and associated nodes
and links to Pi are monitored by the coordinators (which are
the nodes that are selected as the event is about to cross an
edge li,j ∈ Li between them).

Whenever a fault is perceived in a node, the sink has the
final status about it through the coordinators. The sink uses
a filter to reduce the redundant information received from the
network, as to extract the precise final status. The status reports
(combined with the event detection status) are sent to a server,
which is equipped with the monitoring center (MC). Thus, the
latency of detection notification for an actual fault is calculated
as follows: (i) lower part latency—the elapsed time for a node
in the WSN to decide whether a fault has occurred or not, and
the time for the sink to successfully store into the buffer that
the status report has been received; (ii) upper part latency—
the elapsed time for the sink to successfully receive that the
fault has occurred in the WSN, and the time for the MC to
store into the server that the final status is received.
B. Fault Model

In LoMoM, we focus on a set of faults in WSNs that may
occur during event detection and monitoring:

• Node failure: A node can fail due to power depletion,
especially, when it frequently uses its maximum power

level. A node might also fail by any kind of faults in
local resources, such as memory, CPU.

• Malfunctioning/application flaws—some programs may
fail to run, due to software errors or hardware malfunc-
tion, but they are still capable of routing information.

• Link failure: A permanent link failure may occur, for
numerous reasons, e.g., environmental influence.

C. Fault Detection Model
We monitor the above faults in two situations, S1 and S2.
S1. We trace the faulty reasons by characterizing their

fault patterns. Generally, a node usually has different modes
of operation (e.g., active, waking, and sleeping) [14]. For
simplicity, a fault is mainly estimated on the node’s active
mode. The active mode may further consist of several process
states. We divide the active mode into three consecutive
process states (see Fig. 3 for an example). We assume that
each process state consists of a lot of components. Some
software components produce output interacting with small,
different hardware components on the sensor board. This node
can be monitored by the monitoring of its component’s run-
time behaviors (e.g.,“1” for a successful run). The process
state automation is modeled as a DMC (discrete time semi-
Markov chain). By means of DMC, a node estimates the fault
detection probability denoted by β.

Definition 3.1 [Node status]. An engaged node vi ∈ Ei is
said to be failing if at least a process state of vi is altered
and the node transmits inconsistent values. In such a case, the
fault detection probability is less than expected, e.g., ≤ 0.5.

S2: An engaged node itself may fail before a report
transmission. The node may transmit the report, but there
is an incident of consecutive report loss. Unfortunately, a
coordinator may also make a false detection, when it does
not receive the sensor fault detection probability from a node.

Definition 3.2 [Link Status] A link is said to be failing
if (i) the link to/from a node fails, (ii) a node itself fails (i.e.,
all of its related links then definitely fail, and status is not
transmitted) or the node is unreachable (the coordinators or
the sink does not receive the status in a given time bound).

Link failures in Definition 3.2 may occur from time to time,
they can be either transient or permanent. A node can make a
report about a link status by monitoring its associated links of
Pi as a CMC (continuous time Markov chain), and calculate
a link failure probability denoted by α. The false alarm rate
denoted by Fc(h, Td) is then calculated in this situation as a
performance metric, where c is the number of coordinators,
h is the number of hops between the node (which detect the
fault) and the destination node, and Td is the time interval.
D. Energy Cost Model and Lifetime (T)

A practical parameter to evaluate WSN performance, when
studying the energy cost, is the lifetime (T) [15], [16]. We
consider that a node usually supports different-modes radio
interface, e.g., active, waking, and inactive [14]. We think that,
the amount of energy cost required for report transmission is
the key characteristic for evaluating the performance of a WSN
monitoring approach.

Let R be the maximum communication range of a sensor
i and ωsend and ωrcev be the energy cost for sending and
receiving data, respectively. The energy cost (ωi) of a sensor
i depends on the communication distance between any two
sensors i and j, a routing model, and the amount of traffic.
We adopt the most widely used transmission model [15]:

ωsend(R) = a1R
σ + b1 (1)

which can also be normalized as ωsend(R) = Rσ + b2. Here,
σ is an exponent parameter that is between 2 and 6, and b2 (or
b1) is a small constant comparing with Rσ , and ωrecv(R) = b2
[15]. Thus, the energy cost of sensor i is computed as:

ωi =
∑
∀rij

λrij · ωsend(R) +
∑
∀rij

λrij · ωrecv(R) + ωrest (2)

where rij is the path from a source sensor i to the destination
sensor j, λrij is the amount of traffic that travel along path rij
within one round of monitoring, and ωrest is the rest of the
energy cost of i in other operations, including event sensing,
computing, and monitoring operations. We can find ωm as the
maximum energy cost on i-th node in the WSN, i.e., ωm =
max

i=1,2,...,N
ωi. We define the system lifetime T to be the total

round of monitoring data collection (including monitoring for
the WSN and the mobile event) before any of the sensor nodes
in the WSN runs out of its energy [17]:

T = ωr/ωm (3)
where ωr is the residual energy on i-th sensor.

E. The Problem Definition
Given a WSN G = (E,L), an external sink, an MC, and a

mobile event of interest, find Ei and Li that are required to be
monitored from the nodes that detect the event as it approaches
to a region of the WSN, find Ci from Ei that monitors Ei and
Li, such that Ci gathers monitoring status and reports to the
sink, and the sink then reports to the MC. Our objective is to
minimize Fc(h, Td) and detection latency, and to maximize T.

IV. MONITORING ARCHITECTURE

In this section, we describe the monitoring architecture. Our
main focus is on the lower (WSN)-part of the architecture.
However, we briefly describe the upper part in Section VIII.

Planar graph, e.g., Voronoi diagram and related neighbor-
hood graph (RNG), are mostly used in the network domain.
Our monitoring is built on such graphs. Particularly, we apply
RNG for our purpose [18], [19], [20]. A connected network
subgraph G′ ⊆ G is drawn without crossing edges [18], [19],
is not unidirectional and disconnected. Our focus is to monitor
nodes and edges from around i-th polygon Pi of G′ to nodes
and edges around jth polygon Pj as an event goes across the
common edge between Pi and Pj [21], [22], [3].

Definition 4.1 [In- and Out-adjacent Neighbors]. The
neighbors next to a specific node, which are directly connected,
are called adjacent neighbors. There are two types of them:
(i) the adjacent neighbors inside a polygon, where the event
is moving, is called in-adjacent neighbors; (ii) the adjacent
neighbors, which are outside of a polygon, are called out-
adjacent neighbors.

In the case of an event traversal problem through polygons,
we see an example of the planar graph in Fig. 2. Let Ei be

v3

P2

P11

P9v2

v21
v20 v19

v4

v1 v6

v5P1

P8

P7

P4

P3 v7
v8

v11
v19

v17

v16

v25v26v27
v28

v29

v30

v18

(a)out-adjacent
node

Z/2

-z

z

-Z/2

X

Y

vjvi

(b)

Fig. 2. Planarization techniques: a planar graph decomposed by polygons,
showing the connected nodes and the edges between them that are associated
to P2; (a) event detection in a rectangular spot; (b) the entry of an event into
Pi; both Pi and its edge intersection leaves a trail of edges.

the set of nodes in a polygon, i.e., v1, v2, ..., vp, where p ≥ 3.
P1 is a hexagon, P2 is a pentagon, and P7 is a tetragon. Each
node in the plane has its neighboring nodes information after
deployment. For example, node v5 is connected to these nodes:
(i) neighbors v6, v1, v3, and v4 in P2; (ii) in-adjacent neighbors
v4 and v6, and out-adjacent neighbors v7 and v11; (iii) nodes
in P7, P4, P3, and P2, i.e., v5 stores information about 4
polygons that are adjacent to it in G. Thus, a node corresponds
to a number of polygons, depending on the polygon size.

The size of a polygon is defined by the number of nodes
and edges around the polygon. Given a planar graph G, the
average size of a polygon is given by:

P̄ ≤ 2e/(e− l + 2) (4)
where e and l are the numbers of nodes and edges of Pi,
respectively. This can be achieved by the relationship between
nodes, edges, and polygons as:

Pn + e− l = 2 (5)
where Pn is the number of polygons corresponding to a
node, according to Euler’s formula [23]. This implies that our
approach has cells for a planar graph, with as many edges as
possible. We derive a bound for P̄ in terms of e and l rather
than l and Pn. It is expected because it is simple to count e
and l in a graph, and it is not very obvious how to count Pn.

Wherever the event goes across an edge li,j between two
nodes vi and vj , it can be detected. Suppose that the event is
moving from P7 to P2 and is detected by v4 and v5 (black
nodes in Fig. 2(a)). They are selected as the coordinators due
to the edge intersection probability as the event goes across
l4,5. The coordinators wake up other nodes in P2 in advance.
They become engaged nodes before the event moves to P2. Let
a and c denote the number of connected nodes corresponding
to Pi and the coordinators, respectively. In Fig. 2(b), a = 12
(i.e., the number of out-adjacent neighbors =7 and e = 5). The
5 engaged nodes include 2 coordinators (i.e., c = 2).

One of the advantages of using coordinators in Pi is that one
can minimize the number of nodes for an event monitoring,
i.e., minimizing the number of nodes to be monitored. For
example, v5 has 4 adjacent polygons with 11 neighboring
nodes, and node v4 has 4 adjacent polygons with 12 neigh-
boring nodes. However, edge l4,5 between v4 and v5 has
only 2 polygons with 7 nodes. Thus, the number of nodes
is minimal. However, the coordinators (v4 and v5) only need
to monitor 5 nodes (v4,v5,v6,v1, and v3), including themselves

in P2. Each engaged node (e.g., v6) can also monitor their out-
adjacent neighbors, e.g., v26. v4 and v5 maintain a chain of
links (v5→v6, v6→v1, v1 → v3, v3→v4, v4→v5, and vice
versa). Intuitively, if one wishes, more nodes (e.g., all of the
out-adjacent neighbors) can be allowed to detect an event so
as to get a better monitoring for that event.

A. Edge Intersection Probability

In this subsection, we briefly describe the algorithm to find
out the edge, li,j , between node vi and node vj so as to select
vi and vj as the new coordinators. The edge li,j is also the
common edge between Pi and Pj .

A node calculates a probabilistic value that, in turn, shows
the performance of the event detection. Suppose that an event
is currently moving through Pi. The event must go across any
li,j of Pi. Every node of Pi is able to compute the probabilistic
value. However, we need to find vi and vj , which are with the
maximum value. Every two nodes in Pi compute a rectangular
detection spot according to the length Z of li,j . Consider that
Pi is mapped over the X-axis, as shown in Fig. 2(b). Let z and
A be the width and area of the rectangular spot, respectively.
Z is directly proportional to 2z and Z

2 ≤ rs, where rs is the
sensor sensing range. The event moves from (−z) to (z).

To find an approximate location X(xp, yp) of the event, the
intensity function of vi is defined by a sensing model [24] as:

I(vi, p) =
1

[d(vi, p)]
K
, K > 1 (6)

where the intensity I(vi, p) derived at node vi of Pi is related
to the approximate distance d(vi, p). The exponent K in (6)
affects the degree of attenuation of the measured intensity in
dependence of the distance. Let X(xp, yp) be the approximate
location coordinate of the event point p over li,j and Ip be the
edge intersection probability from any node vi to p, such that
node vi has the following edge intersection probability:

1

A

Z/2∫
−Z/2

I(vi, p)dx

z∫
−z

dy (7)

In order to detect any mobile event at some point X(xp, yp)
inside polygon Pi, a node vi should meet three conditions:

• The event must be inside Pi, or close to Pi, if Pi is in
the outer boundary of the network region.

• vi must be in the active mode when the event goes
through ll,j along in the sensing range (rs) of vi.

• At least one of the in-adjacent neighbors of vi in Pi

should be in the active mode at the same time that has the
similar value of the intensity function obtained by (6).

The edge intersection probability of the closest node vi to the
event point p completely relies on Z and the intersection of
the sensing ranges of the two nodes.

V. LOCAL MONITORING

A. Node Self-Monitoring Algorithm

The first fundamental task in local monitoring is to observe
the node’s own faults, i.e., study the S1. We consider a decision
problem of how each node probes its own faults autonomously

ReceiveMSG()
getEvent = = true
SaveEventIntoTable()
getTimer()
CheckCondition()

ProcessMSG(AllEventMSG)
ProcessEventActivities()
SinkMSG()
getTime()
CheckCondition()

getTimer()
CheckCondition() (a)

(b)

(task
 is finished) (Start Processing)

getTimer()
(for a task
processing

 delay)

P

W

I

1 2 n
,...,

Coordinator

Engaged
 node

i-th engaged node’s
process states{

Fig. 3. (a) Some event detection tasks in the three process states, including
the CheckCondition() function; (b) a finite set of processes of such a state as
long as an event exists.

by monitoring its components. We address the problem as a
semi-Markov decision process [25] and estimate the node fault
detection probability (β). This is embedded into the node’s
processing core, so as to compute the probability.

In the algorithm, we define a set of necessary process
states of nodes. Each such process state runs at time ti and
is involved in executing many tiny software or hardware
components at discrete times ti(1), ti(2), and so on. If there
is any fault at a specific component at some time (such as
ti(2)), this fault status can be known before the process state
changes to another state. To detect a fault in advance, such a
component is monitored individually. As discussed earlier, an
application programmer can easily distinguish which behavior
of a program, a script, or a hardware component belongs
to which state, and is given a predicate (e.g., “1” for each
successful run, “0” otherwise).

We show that each node is modeled by an embedded dis-
crete time semi-Markov chain (DMC) for monitoring process
states. A DMC is defined by a set of states and transition
probabilities between the states. A semi-Markov decision
process is one that changes states in accordance with a Markov
chain, but takes a discrete time between changes. We focus on
the node’s active mode operations in a discrete-time manner.

Therefore, we divide the active mode into three consecutive
process states: Preprocessing (P) is the initial state that waits
or prepares for new tasks; Working (W) state that mainly
processes the tasks; Idle (I) is the idle period of time during
processing a task (as in Fig. 3(a) and 3(b)). When a process
commences at time t1, it is in the P state. We estimate the
probability at each process state transition. Since the algorithm
is embedded into a node to be executed in each discrete time,
there is no need of any neighbor or the sink’s interaction in
the algorithm execution.

The ability to make such an independent decision saves
a large amount of energy, because synchronization requires
transmission among nodes in Pi or to the sink. Starting
from a process in Λ of a certain state, when each node
changes its state, β is calculated by executing a function
CheckCondition(β) through the above procedures. Note that
the tasks (e.g., as listed in Fig. 3(a)) for event detection run in
parallel with CheckCondition(β). We measure the frequencies
obtained by each process state execution of a node, and
normalize these frequencies, so that the sum of the frequencies
is 1. However, the frequency has a variance. The normalized

0.95

0.90

0.900.96

0.04

0.06 0.04
0

0.2
0.4
0.6
0.8

1

0 30 60 90 120 150 180 210 240 270 300

P W I

[]P []W []I

(a)

F
re

q
u

en
cy

Step(b)

Fig. 4. (a) The outgoing probability (β) for the three states of an active
nodes; (b) pmf samples obtained from a real experiment.

frequencies are the point estimate of the probabilities. See
Fig. 4 for the process state transition values that depict a
probability, as well as the pmf samples obtained from our real
experiment with 20 Imote2 sensors. Since an active state of a
node is a DMC, the status of the node is known by β = (Λ, Q).

Each coordinator aggregates received status reports. If
β <0.5, a node is faulty. It possibly fails if β becomes lower as
time goes on. β =0 indicates that a node fails. If a node fails,
its in-adjacent neighbors in Pi do not receive the message. As
a result, it can also report “0” to the coordinators by default.
When a node detects its own faulty behavior, it may fail at a
later time. By that time, the sink is made aware in advance
about the faulty behaviors, as β becomes lower with time.

B. Link Monitoring Algorithm

The second fundamental task is to monitor link failures.
Although S1 hints at a future failure, it is still not sufficient
for monitoring S2. A coordinator or the sink can make a
decision on a link considering S2. Monitoring the link behavior
is ignored in most existing work [4], [5], [6], [9], [7], [8], [13].

In order to calculate link failure detection probability, we
apply the CMC (Continuous-time Markov Chain) technique.
We consider that each link is a part of a chain between two
nodes. Each coordinator has the start and the end of the chain
of links. Each node individually monitors the links to its 1-
hop neighbors, including the out-adjacent neighbors. The chain
can be longer when a node uses multi-hop communication
(especially, in case of a large polygon) and be in a continuous
time, rather than discrete time. However, different from the
DMC technique, there is no internal component tracking in
the CMC. Each state (or node vi) can talk to another state
(node v2) at some time. When v1 can successfully talk, we
say that there is a connection between the two nodes, and the
link between them is available at the time.

A state is assumed as a node and state to state means a link
li,j or <vi, vj> between nodes vi and vj . A link status between
vi and vj is known by the transition. If there is a single link
between vi and vj , failure of the single link will result in a
false alarm, e.g., vi sends a message to its 1-hop neighbor vj .
All the links on the route between vi and vj are checked by
the CMC. We count how many hops are used on the route.

We assign a transition status for each chain. Let λ and µ
be the transitions between node vi to vj , and node vj to vi,
respectively. We assign statuses as follows. (i) For a single
hop communication, “1” is for a direct successful chain from
vi to vj and “1” is for vj to vi, otherwise, it is “0” for both
directions. (ii) For a two-hop communication, “11” is for a
successful chain from vi to vj ; otherwise, it is “01” or “10”

for a broken link, i.e., there is an alternative chain available;
(iii) “00” implies a link failure.

Let t be the time for reporting from an engaged node to
a coordinator in Td, and the sink needs to get a fault status.
Thus, we have coordinators and engaged nodes (e ≥ c ≥ 1).
Let h be the number of hops from an engaged node to a
coordinator. Without loss of generality, we find the false alarm
rate Fc(h, Td), and we take Td/t as an integer.

In LoMoM, each node hits its neighbors and checks its link
to the nodes in Pi and to the out-adjacent neighbors. In order
to hit a link through a CMC, the detection probability denoted
by α is set to calculate Fc(h, Td) for a link status given by:

α = µ(λ+ µ)−1 (8)
We observe the link status between nodes in two cases.

Case 1: When an engaged node in Pi is monitored by a
single coordinator (c = 1) and there is a single-hop (h = 1)
from the coordinator to the engaged node or the sink. Let s(t0)
denote the link state at t0, P [s(t + t0) = 1|s(t0) = 1] is the
transition probability. Hence, F1(h, Td) is computed by:

F1(h, Td) = F1(h, t)(P [s(t+ t0) = 1|s(t0) = 1])(Td/t)−1

= F1(h, t)
[
P [s(t+t0)=1,s(t0)=1]

P [s(t0)=1]

](Td/t)−1

= F1(h, t)
[
F1(h,2t)
F1(h,t)

](Td/t)−1

(9)
where F1(h, t) = 1− α(t)h

Case 2: When the size of Pi is large, each node of Pi is
monitored by two or more coordinators (c ≥ 2) and there is
a multi-hop (h ≥ 2) from a coordinator to the engaged node
or the sink. Hence, Fc(h, Td) is computed by:

Fc(h, Td) = (1− α(t)h)Td/t (10)

VI. DISCUSSION OF LOCAL MAINTENANCE

A. Basic Fault Monitoring and Tolerance
Normally, the monitoring is carried out in the case of c = 2

in Pi. However, the monitoring is also carried out in the case
of c ≥ 2 in Pi, when the size of Pi is large (e.g., e > 6), due to
(i) a highly dense or sparse network, (ii) some regions that are
denser than others relying on the WSN deployment, and (iii)
application environments. We also verify the case that if all of
a sudden, c = 1 at some point of time, i.e., in the incidence of
a coordinator failure detection. This is an extreme situation in
LoMoM. At the moment when c = 1, another coordinator can
detect it, can take up the role of the failed coordinator, and
tolerate this situation by connecting an in-adjacent neighbor.

An engaged node schedules a report to a coordinator in
every t. A coordinator gathers reports from each of its engaged
nodes at every ct, and forwards (in the case of a confirmed
fault) the report to the sink in every ct, ct ≤ Td. t varies from
microseconds to seconds, depending on the event movement
or on the WSN application requirements.

B. Discussion on Local Maintenance
Our approach is adaptive to network dynamics, and supports

local maintenance as a link, or if a node fault occurs. If one
or more nodes fail, or even if all of the engaged nodes in i-th
Pi fail, that does not significantly affect the correctness of the

v3

P2

P11

v2
v4

v1 v6

v5P1

P7

P4

P3 v7
v8

v11 v19

v17

v25v26v27
v28

v29

v30

(b)

v3

P2

P11

v2
v4

v1 v6

v5P1

P7

P4

P3 v7
v8

v11 v19

v17

v25v26v27
v28

v29

v30

(a)

Fig. 5. An example of the local maintenance: single link failure; (b) single
node failure.

performance of the mobile event application. Sensor fault and
removal, connectivity hole, obstacle, etc., can be tackled with
local operations, which does not require the sink’s mediation.

See Fig. 5 for examples. Suppose that there is a perma-
nent fault on a link li,j , e.g., l4,5 in Fig. 5(a). The current
coordinators (v17 and v11) can monitor this failure, and can
take actions on this failure. At least three options are available
for calculating edge intersection probability (i.e., detecting the
event further): (i) v5 connects v17 in P7; (ii) v5 connects v3 in
P2 if option (i) does not help, especially when the event moves
faster; or (iii) v5 communicates the neighbors in P7 and P2 to
merge P7 and P2 into one, i.e., the nodes v17, v11, v5, v6, v1,
v3, and v4 are involved in the event detection. Consider that
there may be a free space (or a hole) that can be the sensing
area of a single node (say, v5) failure (see Fig. 5(b)) as the
coordinators (v17 and v11) can monitor this failure. In this
respect, our approach still has the ability to track the event.
The surviving neighboring nodes, including v4 (which would
be a new coordinator if v5 was not failed), and in- and -out
adjacent neighbors are already in connection with each other.
They adjust the polygon P7 locally by creating links l7,6 and
l6,4. Thus, the event is detected further.

VII. PERFORMANCE EVALUATION

A. Simulation
1) Methodology and Simulation Scenarios: In this section,

we evaluate the benefits of LoMoM through extensive simula-
tions. We use the OMNeT++ simulation tool. Our objectives
in the simulations are on the following metrics:

• Study of the false alarm rate (Fc(h, Td)).
• Fault detection rate—the detection rate is defined by

the rate between the number of faults detected and the
number of all faults occurred in a WSN.

• Detection latency (the upper and lower parts latency).
• Network lifetime (T), where T is normalized to 1 (one).
We consider two scenarios, which are set in different sizes

and parameters. We think that the outcomes in the two sce-
narios may provide an insight into the performance of LoMoM
in different large-scale WSN settings. Scenario I and Scenario
II are comprised of 200 nodes and 800 nodes, respectively. In
all of the simulation runs, the nodes are randomly distributed
in 2D planar fields of 200m × 200m for Scenario I and 800m
× 800m for Scenario II, respectively.

All transmitted status reports in the WSN are recorded by
the sink. We enable the sink to use a filtering technique [26]
to filter the redundant information before sending to the MC.
Although the filtering is suggested only for event detection,

TABLE I
Fc(h, Td), h = 3 TO 5, DIFFERENT PPRS

PRR 80% 85% 90% 95% 98%

PP 0.061 0.041 0.0288 0.02 0.012
DiMo 0.113 0.091 0.071 0.05 –
Memento 0.151 0.122 0.107 0.071 –
LoMoM-C 0.043 0.029 0.019 0.011 0.007
LoMoM 0.025 0.017 0.009 0.006 0.004

(b)

60

65

70

75

80

85

90

95

100

25 50 75 100 125 150 175 200

D
et

ec
ti

o
n
 r

at
e

(%
)

Number of sensors

LoMoM LoMoM-C

PP DIMOMemonto

0

0.01

0.02

0.03

0.04

0.05

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.5

n = 25
n = 15
n = 5

n = 20
n =10
n = 3

β
(a)

(
,

)
c

d
F
h
T

(Sensor fault detection probability)

Fig. 6. (a) Fc(h, Td) vs. β; (b) the detection rate vs. N .

we implement it for both monitoring operations. When a node
receives a message, it generates a message with an 50-bytes
payload in Scenario I and an 80-bytes payload in Scenario II.
c ≤ 3, n ≤ 10, h ≤ 6, and e ≤ 6 in Scenario I, and c ≤ 5,
n ≤ 16, h ≤ 12, and e ≤ 8 in Scenario II. We model each
sensor with six discrete power levels in the interval {-10dBm,
0dBm}, as the Imote2’s power settings is tuned within the
IEEE 802.15.4. The amount of energy cost required by the
levels is between 11.2mA and 17.4mA.

At a fixed simulation time, we inject different types of faults
(up to 20% of the nodes) randomly into the WSN, and let the
nodes use our algorithms to generate detection reports. This
invalidates the sensing and radio capabilities of 10% (5%+5%)
of the nodes, and provides minimum power to 10% of the
nodes so that they fail during runtime. We compare these nodes
with the list of the nodes that have not been made faulty.

Comparison. We consider three prominent approaches,
namely, Memento [5], PP [12], and DiMo [6], which are pro-
posed for monitoring general WSNs. We also implement our
approach in a semi-centralized (or semi-distributed) manner,
called LoMoM-C, to see the performance of the approach in
both semi-centralized and distributed scenarios.

2) Simulation Results: We first evaluate Fc(h, Td) in the
five approaches under PRR (packet reception rate) between
80% and 99%, as shown in TABLE I. Then, we analyze
Fc(h, Td) with different values of β in Fig. 6(a). Among all
of the approaches, Memento clearly suffers from false alarms,
due to a higher amount of packet losses. However, it improves
this situation as PRR decreases, according to their technique
for recovery. DiMo uses a method that is not supported by
all the approaches, as it often allows multiple retransmissions
for the observers (i.e.,faults detectors) and redundant relays.
In LoMoM-C, the sink directly receives the monitoring status.
There is no local coordinator; the sink analyzes whether or
not there is a fault. LoMoM achieves more than 98% PRR and
more than 96% detection accuracy when h = 1.

Now, we illustrate the results of faults detection in Fig. 6(b)
under scenario I. We vary the network size from 25 nodes to
200 nodes. LoMoM successfully detects more than 98% of the

100 200 300 400 500 600 700 800

0.6

0.8

1

0.4

0.2

0

c =2 in LoMoM c =2 in PP

c =3 in LoMoM c =3 in PP
c =4 in LoMoM c =4 in PP

Number of detected faults

0

2

4

6

8

10

1 2 3 4 5
Number of sensors

S
y

st
em

 L
if

et
im

e
(T

)

L
at

en
cy

 i
n

 d
et

ec
ti

o
n

t

=
5

 s
ec

.
u

n
it

s

(a) (b)

Memento PP LoMoM

Fig. 7. (a) T vs. c; (b) latency between the fault occurrence and its detection.

A mobile event (a programmable
 remote control car) A WSN deployment in the campus

(a)

(b)

(e)

(c) (d) MC

Fig. 8. Outdoor WSN deployment: (a) the deployment site; (b) Google
map indicating the distance between the MC and the deployment site; (c) the
location of the MC.

faults in most situations, the detection rate keeps stable as e ≥
5, and the number of sensors increases while the detection rate
is slightly affected (from 3% to 4% on average) in LoMoM-C.
PP and DiMo achieve detection rates between 90% and 85%,
while Memento achieves more than 80% in a 55-node network.

Next, we examine T , as shown in Fig. 7(a). We can see that
LoMoM maximizes T much more significantly (about 40% to
60%) than does PP. Also, an interesting observation is that
sensor density does not affect T so much. Fig. 7(b) shows
that the detection latency is affected in both Memento and PP,
due to higher h, packet-loss, and reporting frequency, while
LoMoM takes less time. In LoMoM, if a coordinator fails or the
report is lost, the report from another coordinator is received
at the sink. Moreover, the latency is decreased by the reduced
number of acknowledgments.

B. Proof-of-Concept System Implementation
In this section, we describe the proof-of-concept system of

LoMoM, via field studies in the HongKong PolyU campus, as
shown Fig. 8. The experiments were conducted thrice over
three different days. It lasted about 8 hours in each day. A
programmable remote control car was employed as a mobile
event, as shown in Fig. 8(a). We implement the system on
top of the Intel Imote2, using TinyOS 2.0.1 [27]. We deploy
20 Imote2 plus 1 sink Imote2. We add some enhancement to
the sink Imote2 for the upper part of the architecture: it is
integrated by a type of communication module [11] that helps
transmitting monitoring data to the MC over a 3G network.

The MC (a laptop) contains the server that stores the
received reports. The distance between the locations of the MC
(placed in our lab) and the deployment site, as shown in Fig.
8, is around 750 meters. We inject 4 types of faults into four
sensors as follows. The communication fault (restarting radio)
and sensing faults (invalidating sensing module) are injected

0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5

β

(
,

)
c

d
F
h
T

(a) (b)

N1C N2S N3R N4D

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25

Time (minute)

α

N1C-Link1 N1C-Link1
N1C-Link1 N3R N4D

Fig. 9. (a) Fc(h, Td) vs. β; (b) achieved α (the link failure detection
probability) at different times.

every two minutes into two sensor nodes (denoted by N1C and
N2S) respectively. They are then mixed into the network. One
sensor (N3R) is set to restart for every minute. Another sensor
(N4D), preloaded with a local decision program, is set in a way
in which it makes false decisions every three decisions. We
mark the faulty nodes’ locations. The car is moved around
their vicinity of the locations. Each experiment is repeated
ten times. Each sensor is allowed to record the fault detection
packets (about β or α) in its buffer. We retrieve them later for
the purpose of analysis.

Fig. 9(a) shows the estimated Fc(h, Td) vs. β. The sensor
(N4D) shows abrupt changes at different times, since it pro-
vides wrong decisions on fault detection. Fig. 9(b) illustrates
the four curves showing the probability of the three links’
status associated with node N1C, and it also indicates the faults
in those links. We can see that LoMoM correctly captures the
periodical communication failures of N1C, It achieves more
than 97% detection rate, and around 96% accuracy in PRR.

VIII. CONCLUSION AND FUTURE WORK

We proposed LoMoM, a comprehensive local monitoring
and maintenance approach for WSNs. Our novel contributions
in this approach include: (i) the monitoring architecture, where
the monitoring is performed online and from a remote place;
(ii) both the node self-monitoring and the link monitoring
techniques; (iii) the design of joint monitoring operations for
a WSN and its mobile event application, where the monitoring
for WSNs is carried out with the event mobility. Through
simulations and proof-of-concept experiments, our approach
shows the remote network monitoring facilities with energy-
and latency-efficiency. Particularly, it achieves more than 97%
detection rate and prolongs the system lifetime from 40%
to 70%, while it doubles the event detection probability,
compared to existing work. Investigating the performance of
event monitoring and analyzing the costs of local maintenance
by using polygons in WSNs will be our future work.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61272151 and
61272496, the International Science & Technology Coopera-
tion Program of China under Grant Number 2013DFB10070,
and the “Mobile Health” Ministry of Education - China Mobile
Joint Laboratory (MOE-DST No. [2012]311). This work is
also supported by HKRGC under GRF grant PolyU5106/11E

and HK PolyU Niche Area Fund 1-BB6C, and by NSF under
grants ECCS 1231461, ECCS 1128209, CNS 1138963, CNS
1065444, and CCF 1028167.

REFERENCES

[1] G. Wang, M. Z. A. Bhuiyan, J. Cao, and J. Wu, “Detecting
movements of a target using face tracking in wireless sensor net-
works,” IEEE Transactions on Parallel and Distributed Systems,
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.91 2013.

[2] M. Z. A. Bhuiyan, J. Cao, G. Wang, and X. Liu, “Energy-efficient and
fault-tolerant structural health monitoring in wireless sensor networks,”
in Proc. of IEEE SRDS, 2012, pp. 301–310.

[3] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J.Wu, “Energy and bandwidth-
efficient wireless sensor networks for monitoring high-frequency events,”
in Proc. of IEEE SECON, 2013.

[4] N. Ramanathan, K. Chang, R. Kapur, L. Girod, and E. Kohler, “Sym-
pathy for the sensor network debugger,” in Proc. of ACM SenSys, 2005.

[5] S. Rost and H. Balakrishnan, “Memento: A health monitoring system
for wireless sensor networks,” in Proc. of IEEE SECON, 2006.

[6] A. Meier, M. Motani, S. Hu, and K. Simon, “DiMo: Distributed node
monitoring in wireless sensor networks,” in Proc. of MSWiM, 2008.

[7] D. Yu, “DiF: A diagnosis framework for wireless sensor networks,” in
Proc. of IEEE INFOCOM, 2010.

[8] Z. Chen and K. G. Shin, “Post-deployment performance debugging in
wireless sensor networks,” in Proc. of IEEE RTSS, 2009.

[9] K. Romer and J. Ma, “PDA: Passive distributed assertions for sensor
networks,” in Proc. of ACM/IEEE IPSN, 2009.

[10] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong, “Passive diagnosis
for wireless sensor networks,” in Proc. of ACM SenSys, 2008.

[11] D. Pan, Y. Yuan, D. Wang, Y. Peng, and X. Peng, “Demo: A long-
range high-rate communication module for Imote2,” in Proc. of IEEE
INFOCOM, 2011.

[12] C. Liu and G. Cao, “Distributed monitoring and aggregation in wireless
sensor networks,” in Proc. of IEEE INFOCOM, 2010.

[13] K. Liu, Q. Ma, X. Zhao, and Y. Liu, “Self-diagnosis for large scale
wireless sensor networks,” in Proc. of IEEE INFOCOM, 2011.

[14] M. Z. A. Bhuiyan, G. Wang, and J. Wu, “Target tracking with monitor
and backup sensors in wireless sensor networks,” in Proc. of IEEE
ICCCN, 2009, pp. 1–6.

[15] S. Olariu and I. Stojmenovic, “Design guidelines for maximizing lifetime
and avoiding energy holes in sensor networks with uniform distribution
and uniform reporting,” in Proc. of IEEE INFOCOM, 2006.

[16] I. Dietrich and F. Dressle, “On the lifetime of wireless sensor networks,”
ACM Transactions on Sensor Networks, vol. 5, no. 1, pp. 1–39, . 2009.

[17] A. Sankar and Z. Liu, “Maximizing lifetime routing in wireless ad hoc
networks,” in Proc. of IEEE INFOCOM, 2004.

[18] B. Leong, S. Mitra, and B. Liskov, “Path vector face routing: Geographic
routing with local face information,” in Proc. of IEEE ICNP, 2005.

[19] J. Cartigny, F. Ingelrest, D. Simplot, and I. Stojmenovic, “Localized
LMST and RNG based minimum-energy broadcast protocols in Ad Hoc
networks,” Ad hoc Networks (Elsevier), vol. 3, no. 2, pp. 1–16, 2005.

[20] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Lazy cross-link
removal for geographic routing,” in Proc. of ACM SenSys, 2006.

[21] G. Wang, M. Z. A. Bhuiyan, and L. Zhang, “Two-level cooperative and
energy-efficient tracking algorithm in wireless sensor networks,” Wiley’s
Concurrency and Computation: Practice & Experience, vol. 22, no. 4,
pp. 518–537, 2010.

[22] M. Z. A. Bhuiyan, G. Wang, and J. Wu, “Polygon-based tracking
framework in surveillance wireless sensor networks,” in Proc. of IEEE
ICPADS, 2009, pp. 174–181.

[23] M. D. Berg, M. V. Kerveid, M. Overmars, and O. Schwarzkof, Compu-
tational Geometry: Algorithms and Applications. Heidelberg: Springer-
Verlag, 2008.

[24] M. Waelchli, M. Scheidegger, and T. Braun, “Intensity-based event
localization in wireless sensor networks,” in Proc. of IFIP WONS, 2006.

[25] S. M. Ross, Stochastic Processes. New York: Jonn Wiley and Sons
Inc., 1996.

[26] S. Lai, J. Cao, and X. Fan, “TED: Efficient type-based composite event
detection for wireless sensor networks,” in Proc. of IEEE DCOSS, 2011.

[27] http://docs.tinyos.net/index.php/Imote2.

