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Abstract—The buzz-word big-data (application) refers to the
large-scale distributed applications that work on unprecedentedly
large data sets. Google’s MapReduce framework and Apache’s
Hadoop, its open-source implementation, are the defacto software
system for big-data applications. An observation regarding these
applications is that they generate a large amount of intermediate
data, and these abundant information is thrown away after the
processing finish. Motivated by this observation, we propose a
data-aware cache framework for big-data applications, which is
called Dache. In Dache, tasks submit their intermediate results
to the cache manager. A task, before initiating its execution,
queries the cache manager for potential matched processing
results, which could accelerate its execution or even completely
saves the execution. A novel cache description scheme and a cache
request and reply protocol are designed. We implement Dache
by extending the relevant components of the Hadoop project.
Testbed experiment results demonstrate that Dache significantly
improves the completion time of MapReduce jobs and saves a
significant chunk of CPU execution time.

Index Terms—Big-data, MapReduce, Hadoop, distributed file
system, cache management.

I. INTRODUCTION

MapReduce [5], and its open-source implementation

Hadoop [4], are a software framework for large-scale dis-

tributed computing on large amounts of data. Applications

specify the computation in terms of a map and a reduce

function working on partitioned data items. The MapReduce

framework schedules computation across a cluster of ma-

chines.

MapReduce provides a standardized framework for im-

plementing large-scale distributed computation on unprece-

dentedly large-scale data set. However, there is a limitation

of the system, i.e., the inefficiency in incremental process-

ing. Incremental processing refers to the applications that

incrementally grow the input data and continuously apply

computations on the input in order to generate output. There

are potential duplicate computations being performed in this

process. However, MapReduce does not have the mechanism

to identify such duplicate computations. Motivated by this

observation, we propose Dache, a data-aware cache system

for Big-data applications using the MapReduce framework.

Dache aims at extending the MapReduce framework and

provisioning a cache layer for efficiently identifying and

accessing cache items in a MapReduce job. The following

technical challenges need to be addressed before implement-

ing this proposal: 1) Cache description scheme. Data-aware
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Fig. 1. High level description of the architecture of Dache.

caching requires each data object to be indexed by its content.

In the context of Big-data applications, this means that the

cache description scheme needs to describe the application

framework and the data contents. Although most big-data

applications run on standardized platforms, their individual

tasks perform completely different operations and generate

different intermediate results. 2) Cache request and reply

protocol. The size of the aggregated intermediate data can be

very large. Usually the programs are moved to data nodes in

order to avoid network communications. The protocol should

be able to collate cache items with the worker processes

potentially that need the data, so that the transmission delay

and overhead are minimized.

In this paper, we present a novel cache description scheme.

This scheme identifies the source input from which a cache

item is obtained, and the operations applied on the input.

In the reduce phase, we devise a mechanism to take into

consideration the partition operations applied on the output

in the map phase. We also present a method for reducers

to utilize the cached results in the map phase to accelerate

their execution. We implement Dache in the Hadoop project

by extending the relevant components. Our implementation

follows a non-intrusive approach, so it only requires minimum

changes to the application code.

II. CACHE DESCRIPTION

A. Map Phase Cache Description Scheme

Cache refers to the intermediate data that is produced by

worker nodes/processes during the execution of a MapReduce



block file split

offset
size
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task. A piece of cached data is stored in a distributed file

system (DFS). The content of a cache item is described by

its original data and the operations that obtained it from the

original data item. Cache descriptions can also be recursive to

describe sequential processing on the same data set.

Formally, a cache item is described by a 2-tuple:

{Origin,Operation}. Origin is the name of a file in the DFS.

Operation is a linear list of available operations performed on

the Origin file. For example, in the word count application,

each mapper node/process emits a list of {word, count}
tuples that record the count of each word in the file that

the mapper processes. Dache stores this list to a file. This

file becomes a cache item. Given an original input data

file, word list 08012012.txt, the cache item is described by

{word list 08012012.txt, item count}. Here, item refers to

white-space-separated character strings. Note that the new line

character is also considered as one of the white spaces, so

item precisely captures the word in a text file and item count

directly corresponds to the word count operation performed

on the data file.

The exact format of the cache description of different

applications varies according to their specific semantics. This

could be designed and implemented by application developers

who are responsible for implementing their MapReduce tasks.

In our prototype, we present several supported operations:

• Item Count. This operation collects the counts of all

records in the input.

• Sort. This operation sorts the records of the file.

• Selection. This operation selects an item that meets a

given criterion.

• Transform. This operation transforms each item in the

input file into a different item.

• Classification. This operation splits input items into mul-

tiple groups, which is a deterministic processing that

can be repeatedly applied on the same input to produce

exactly same results.

B. Reduce Phase Cache Description Scheme

The input for the reduce phase is also a list of key-value

pairs, where the value could be a list of values. Much like the

scheme used for the map phase cache description, the original

input and the applied operations are required. The original

input is obtained by storing the intermediate results of the

map phase in the DFS. The applied operations are identified

by unique IDs that are specified by the user. The cached

results, unlike those generated in the Map phase, cannot be

directly used as the final output. This is because, in incremental

processing, intermediate results generated in the Map phase are

likely mixed in the shuffling phase, which causes a mismatch
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Fig. 3. The input stream to a reducer is obtained by sorting and then shuffling
multiple output files of mappers.

between the original input of the cache items and the newly

generated input.

A remedy is to apply a finer description of the original

input of the cache items in the reduce phase. The descrip-

tion should include the original data files generated in the

Map phase. For example, two data files, “file1.data” and

“file2.data”, are shuffled to produce two input files, “in-

put1.data” and “input2.data”, for two reducers. “input1.data”

and “input2.data” should include “file1.data” and “file2.data”

as its shuffling source. As a result, new intermediate data files

of the Map phase are generated during incremental processing;

the shuffling input will be identified in a similar way. The

reducers can identify new inputs from the shuffling sources

by shuffling the newly-generated intermediate result from the

Map phase to form the final results. For example, assume that

“input3.data” is a newly generated results from Map phase;

the shuffling results “file1.data” and “file2.data” include a

new shuffling source, “input3.data”. A reducer can identify

the input “file1.data” as the result of shuffling “input1.data”,

“input2.data”, and “input3.data”. The final results of shuffling

the output of “input1.data” and “input2.data” are obtained by

querying the cache manager. The added shuffling output of

“input3.data” is then added to get the new results.

The input given to the reducers is not cached exactly. Only

a part of the input is identical to the input of the cache items.

The rest is from the output of the incremental processing phase

of the mappers. If a reducer could combine the cached partial

results with the results obtained from the new inputs and sub-

stantially reduce the overall computation time, reducers should

cache partial results. Actually, this property is determined by

the operations executed by the reducers. Fortunately, almost

all real-world applications have this property.

III. PROTOCOL

A. Relationship Between Job Types and Cache Organization

The partial results generated in the map and reduce phases

can be utilized in different scenarios. There are two types

of cache items: the map cache and the reduce cache. They

have different complexities when it comes to sharing under

different scenarios. Cache items in the map phase are easy

to share because the operations applied are generally well-

formed. When processing each file split, the cache manager

reports the previous file splitting scheme used in its cache item.

The new MapReduce job needs to split the files according

to the same splitting scheme in order to utilize the cache

items. However, If the new MapReduce job uses a different
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file splitting scheme, the map results cannot be used directly,

unless the operations applied in the map phase are context free.

By context free, we mean that the operation only generates

results based on the input records, which does not consider

the file split scheme. This is generally true.

When considering cache sharing in the reduce phase, we

identify two general situations. The first is when the reducers

complete different jobs than the cached reduce cache items

of the previous MapReduce jobs. In this case, after the

mappers submit the results obtained from the cache items,

the MapReduce framework uses the partitioner provided by

the new MapReduce job to feed input to the reducers. The

saved computation is obtained by removing the processing in

the Map phase. Usually, new content is appended at the end of

the input files, which requires additional mappers to process.

However, this does not require additional processes other than

those introduced above.

The second situation is when the reducers can actually take

advantage of the previously-cached reduce cache items as

illustrated in Fig. 4. Using the description scheme discussed in

Section II, the reducers determine how the output of the map

phase is shuffled. The cache manager automatically identifies

the best-matched cache item to feed each reducer, which is

the one with the maximum overlap in the original input file

in the Map phase.

B. Cache Item Submission

Mapper and reducer nodes/processes record cache items into

their local storage space. When there operations are completed,

the cache items are forwarded to the cache manager, which

acts like a broker in the publish/subscribe paradigm [6]. The

cache manager records the description and the file name of

the cache item in the DFS. The cache item should be put on

the same machine as the worker process that generates it. This

requirement improves data locality. The cache manager main-

tains a copy of the mapping between the cache descriptions

and the file names of the cache items in its main memory to

accelerate queries. It also flushes the mapping file into the disk

periodically to avoid permanently losing data.

A worker node/process contacts the cache manager each

time before it begins processing an input data file. The worker

process sends the file name and the operations that it plans

to apply to the file to the cache manager. The cache manager

receives this message and compares it with the stored mapping

data. If there is a exact match to a cache item, i.e., its origin is

the same as the file name of the request and its operations are

the same as the proposed operations that will be performed

on the data file, then the manager will send back a reply

containing the tentative description of the cache item to the

worker process.

The worker process receives the tentative description and

fetches the cache item. For further processing, the worker

needs to send the file to the next-stage worker processes. The

mapper needs to inform the cache manager that it already

processed the input file splits for this job. The cache manager

then reports these results to the next phase reducers. If the

reducers do not utilize the cache service, the output in the

map phase could be directly shuffled to form the input for the

reducers. Otherwise, a more complicated process is executed

to obtain the required cache items, which will be explained in

Section III-D.

If the proposed operations are different from the cache items

in the manager’s records, there are situations where the origin

of the cache item is the same as the requested file, and the

operations of the cache item is a strict subset of the proposed

operations. The concept of a strict super set refers to the

fact that the item is obtained by applying some additional

operations on the subset item. For example, an item count

operation is a strict subset operation of an item count followed

by a selection operation. This fact means that if we have

a cache item for the first operation, we could just add the

selection operation, which guarantees the correctness of the

operation.

C. Lifetime Management of Cache Item

The cache manager needs to determine how much time a

cache item can be kept in the DFS. Holding a cache item for

an indefinite amount of time will waste storage space when

there is no other MapReduce task utilizing the intermediate

results of the cache item. There are two types of policies for

determining the lifetime of a cache item, as listed below. The

cache manager also can promote a cache item to a permanent

file and store it in the DFS, which happens when the cache

item is used as the final result of a MapReduce task. In this

case, the lifetime of the cache item is no longer managed

by the cache manager. The cache manager still maintains the

mapping between cache descriptions and the actual storage

location.

1) Fixed Storage Quota: Dache allocates a fixed amount of

storage space for storing cache items. Old cache items need to

be evicted when there is not enough storage space for storing

new cache items. The eviction policy of old cache items can

be modeled as a classic cache replacement problem [2]. In

our preliminary implementation, the least recent used (LRU)

is employed. The cost of allocating a fixed storage quota could

be determined by a pricing model that captures the monetary

expense of using that amount of storage space. Such pricing

models are available in a public Cloud service. We discuss

more details about the model in Section III-C2.



2) Optimal Utility: Increasing the storage space of cache

items will likely hit a plateau due to the diminishing return

effect. A utility-based measurement can be used to determine

the optimal space used for storing cache items in order to

trade off between the benefits and the costs. This scheme

estimates the saved computation time, ts, by caching a cache

item for a given amount of time, ta. These two variables are

used to derive the monetary gain and cost. The net profit,

i.e., the difference of subtracting cost from gain, should be

made positive. To accomplish this, an accurate pricing model

of computational resources is required. Although conventional

computing infrastructures do not offer such a model, Cloud

computing does. Monetary values of computational resources

are well captured in existing Cloud computing services, i.e.,

Amazon AWS [1] and Google Compute Engine [3].

Expenset s = Pstorage × Scache × t s (1)

Savet s = Pcomputation ×Rduplicate × t s (2)

The equations 1 and 2 show how to compute the expense

of storing cache and the corresponding saved expense in com-

putation. The details of computing the variables introduced

above are as follows. The gain of storing a cache item for

ts amount of time is calculated by accumulating the charged

expenses of all the saved computation tasks in ts. The number

of the same task that is submitted by the user in ts is

approximated by an exponential distribution. The mean of this

exponential distribution is obtained by sampling in history. A

newly-generated cache item requires a bootstrap time to do

the sampling. The cost is directly computed from the charge

expense of storing the item for ta amount of time. The optimal

lifetime of a cache item is the maximum ta, such that the profit

is positive. The overall benefits of this scheme are that the user

will not be charged more and at the same time the computation

time is reduced, which in turn reduces the response time and

increases the user satisfaction.

D. Cache Request and Reply

1) Map Cache: There are several complications that are

caused by the actual designs of the Hadoop MapReduce frame-

work. The first is, when do mappers issue cache requests?

As described above, map cache items are identified by cache

descriptions, which are not directly corresponding to the files

in the HDFS file system. Therefore cache requests must be sent

out before the file splitting phase. The jobtracker, which is the

central controller that manages a MapReduce job, issues cache

requests to the cache manager. The cache manager replies a list

of cache descriptions. The jobtracker then splits the input file

on remaining file sections that have no corresponding results in

the cache items. That is, the jobtracker needs to use the same

file split scheme as the one used in the cache items in order to

actually utilize them. In this scenario, the new appended input

file should be split among the same number of mapper tasks,

so that it will not slow the entire MapReduce job down. Their

results are then combined together to form an aggregated Map

cache item. This could be done by a nested MapReduce job.
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2) Reduce Cache: The cache request process is more

complicated. The first step is to compare the requested cache

item with the cached items in the cache manager’s database.

As described in Section II-B, the cached results in the reduce

phase may not be directly used due to the incremental changes.

As a result, the cache manager needs to identify the overlaps of

the original input files of the requested cache and stored cache.

In our preliminary implementation, this is done by performing

a linear scan of the stored cache items to find the one with

the maximum overlap with the request. When comparing the

request and cache item, the cache manager first identify the

partitioner. The partitioner in the request and the cache item

have to be identical, i.e., they should use the same partitioning

algorithm and the same number of reducers. This requirement

is illustrated in Fig. 5. The overlapped part means that a part

of the processing in the reducer could be saved by obtaining

the cached results for that part of the input. The incremented

part, however, will need to be processed by the reducer itself.

The final results are generated by combining both parts. The

actual method of combining results is determined by the user.
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Fig. 7. The speedup of Dache over Hadoop and their completion time of
tera-sort program.
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IV. PERFORMANCE EVALUATION

A. Experiment Settings

Hadoop is running in pseudo-distributed mode on a server

that has an 8-core CPU, each core running at 3GHz, 16GB

memory, and a SATA disk. The number of mappers is 16

in all experiments, the reducers’ count varies. We use two

applications to benchmark the speedup of Dache over Hadoop

(the classic MapReduce model): word-count and tera-sort.

Word-count counts the number of unique words in large input

text files; tera-sort sorts key-value records based on the lexical

order of the key. More details are in Hadoop manual [4]. Word-

count is an IO-intensive application that requires loading and

storing a sizeable amount of data during the processing. On the

other hand, tera-sort uses more mixed word loads. It needs to

load and store all input data and needs a computation-intensive

sorting phase. The input of two applications are generated

randomly, and all are 10GB in size.

B. Results

Figs. 6 and 7 present the speedup and completion time

of two programs. The completion time and the speedup are

put together. Data is appended to the input file. The size of

the appended data varies and is represented as a percentage

number to the original input file size, which is 10GB. Tera-

sort is more CPU-bound compared to word-count, as a result

Dache can bypass computation tasks that take more time,

which achieves larger speedups. The speedup decreases with

the growing size of appended data, but Dache is able to

complete jobs faster than Hadoop in all situations. The map

phase of tera-sort does not perform much computation, which

also makes it easier for Dache to work.

Figs. 8 and 9 show the CPU utilization ratio of the two

programs. It is measured by averaging the CPU utilization

ratio of the processes of the MapReduce jobs over time.
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Tera-sort consumes more CPU cycles than word-count does,

which is determined by the CPU-bound nature of the sorting

procedure. From the figures, it is clear that Dache saves a

significant amount of CPU cycles, which is demonstrated

by the much lower CPU utilization ratio. These results are

consistent with Fig. 6 and 7. With a larger incremental size,

the CPU utilization ratio of Dache grows significantly, too.

This is because Dache needs to process the new data and

cannot utilize any cached results for bypassing computation

tasks. Figs. 6, 7, 8, and 9 collectively prove that Dache indeed

removes redundant tasks in incremental MapReduce jobs and

reduces job completion time.

Fig. 10 presents the size of all the cache items produced

by a fresh run of the two programs with different input data

sizes. In tera-sort, cache items should have the same size as

the original input data because sorting does not remove any

data from the input. The difference between the input data size

and the cache size is caused by the data compression. Note

also that the cache item in tera-sort is really the final output,

which means that the used space is free in the sense that no

extra cost is incurred in storing cache items. The word-count

results are more related to the input record distribution.

V. CONCLUSION

We present the design and evaluation of Dache, a data-aware

caching framework for MapReduce. Dache requires only a

slight modification in the input format and task management

of the MapReduce framework, and applications needs only

slight changes in order to utilize Dache. We implement Dache

in Hadoop. Testbed experiments show that it can eliminate all

the duplicate tasks in incremental MapReduce jobs and does

not require substantial changes to the application code.
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