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Abstract—In this paper, the performance of network coding-
based gossip algorithms—i.e. algebraic gossip algorithms—is
analyzed on random geometric graphs under static and mobile
environments. The lower bounds for the convergence time of
algebraic gossip algorithms are derived based on the conductance,
and these bounds are O(n logn log ε−1 − logn log ε−1) with
node mobility and O

(
(n3/2−n1/2) log ε−1

log1/2 n

)
without node mobility.

Theoretical results show that algebraic gossip algorithms with
node mobility converge O

(
n1/2

log3/2 n

)
more quickly than without

node mobility, and O(logn) more quickly than a gossip algorithm
with node mobility but without network coding. Finally, we assess
and compare the convergence time of various gossip algorithms,
with both mobility and network coding. As corroborated by
extensive numerical experimentation, integrated network coding
with mobility can significantly improve the convergence time of
information dissemination in dynamic environments.

Index Terms—Network Coding, Algebraic Gossip, Mobility,
Conductance, Random Geometric Graph.

I. INTRODUCTION

With the increasing demand for sharing distributed in-
formation on large-scale communication networks, efficient
information dissemination in large dynamic networks has
emerged as an important research field. A random gossip
algorithm is a simple and efficient algorithm for disseminating
information over a wide range of distributed applications with
the advantage of scalability, robustness, and effectiveness [1].

Because network coding has many advantages in terms
of improving the network performance [2], Deb et al. de-
veloped an algebraic gossip algorithm by integrating gossip
with network coding, rather than a naive store-and-forward
mechanism, in order to rapidly disseminate all of the messages
among all nodes [3]. The further generalized result was
developed for an arbitrary graph in [4]. The performance of a
uniform algebraic gossip algorithm was analyzed in [5] based
on Projection Analysis method. Vasudevan et al. derived the
uniform bound of the convergence time of algebraic gossip
for an arbitrary graph, with an expected stopping time of
O(nlog2n) rounds, where n denotes the number of nodes

in the network [6]. A novel analytical approach to analyze
the algebraic gossip algorithm based on Queuing Theory was
proposed, which the convergence time in any graph for all-to-
all communications was bounded by O(n∆) rounds [7].

Node mobility offers many opportunities for improving cer-
tain aspects of a network’s performance, such as its capacity.
Sarwate et al. showed that node mobility could further reduce
the convergence time for disseminating the information from
randomized gossip [8]. [9] analyzed the influence of different
mobility models on random gossip algorithms for single-
message dissemination. A simple two-stage dissemination
strategy that alternates between message flooding and random
gossip was proposed for mobile ad-hoc networks in [10],
and the convergence time of their algorithm was analyzed
under velocity-constrained mobility models. Their proposed
algorithm can approach the optimal bound within O(log n)
rounds in terms of the convergence time, provided that the
velocity is at least v = log n/k, where k is the number of
users intending to share a unique message with others.

The above results show that both network coding and
node mobility can reduce convergence time. However, it is
still unclear whether integrating network coding with node
mobility will further improve the convergence time of gossip
algorithms. Wang et al. conducted a theoretical analysis on the
performance of multi-message algebraic gossip algorithms on
random geometric graphs (RGG) [11].

In this paper, we analyze the effect of network coding
and mobility on gossip algorithms on random geometric
graphs. We assume that the nodes move in a decentralized
and distributed manner. During every timeslot, each node
communicates with a neighbouring node that is randomly
chosen by an exchange algorithm. Regardless of whether
network coding and node mobility are considered, we analyze
four gossip algorithms: the Mobile Algebraic Gossip (MAG)
algorithm, the Static Algebraic Gossip (SAG) algorithm, the
Mobile Gossip (MG) algorithm, and the Static Gossip (SG)
algorithm. Based on the concept of k-conductance and mo-



bile k-conductance in graph theory, we uniformly derive the
bounds for the convergence time of these gossip algorithms
in random geometric graphs, which is a basic and important
topology for representing mobile networks. Our results show
that when both network coding and node mobility are jointly
utilized, the bounds for the convergence time can be improved
by a magnitude of O( n1/2

log3/2 n
) compared to when only network

coding is used, and by a magnitude of O(log n) compared to
when only node mobility is considered. The extensive numer-
ical results confirm the theoretical results, which means that
integrating network coding with node mobility in information
dissemination improves the performance significantly.

The remainder of the paper is organized as follows. In
Section II, we introduce the network model, algorithm, and
protocols. Our main theoretical results and the essential proofs
are provided in Section III, as well as the simulation results
and a detailed analysis of other algorithms. Finally, conclu-
sions are drawn in Section V.

II. MODEL AND PROTOCOL

A. Network Model

Consider a random geometric graph consisting of n nodes,
denoted by the set of V = {1, 2, . . . , n} [12]. The n nodes
are distributed independently and uniformly at random in the
l-dimensional space Rl. Two nodes (u, v) are connected if and
only if the distance between them is less than or equal to a
threshold r, i.e. d(u, v) ≤ r, where r is the threshold for this
transmission radius. The probability of connection between the
nodes clearly depends on their Euclidean distance.

Each message is represented by a r-dimensional vector with
elements from the finite field Fq of size q. All the additions and
the multiplications in the following description are assumed
to be over Fq . We divide the time into timeslots. Initially, at
timeslot t = 0, each node has only one message indexed by
the elements in the set M = {m1,m2, . . . ,mn}, and node i
stores the message mi, i = 1, 2, · · · , n.

We assume that each node in the network intends to
disseminate its message to all other nodes in the network.
In gossip algorithms, a round is defined as the length of time
during which nodes exchange their messages with each other.
Assume that the overall time is divided into a number of
rounds, and one round is divided into n consecutive timeslots.
In a timeslot, only one node can be scheduled to spread its
message to one of its neighbouring nodes, which is selected
randomly and independently with a probability of p = 1/d,
where d denotes the node’s degree.

Three types of gossip algorithms (viz. Push, Pull, and
Exchange) are defined as follows:
• Push: A message is transmitted from a transmitting

node (the caller) A to a receiving node (the callee) B.
The communication process is therefore initiated by the
transmitting node A.

• Pull: A message is transmitted from Node B to Node A.
The communication process is therefore initiated by the
Node B.

• Exchange: A message is transmitted from Node A to
Node B and, at the same time, another message is
transmitted from Node B to Node A.

At timeslot t, the adjacency matrix A(t) of an RGG is
defined as follows: Auv(t) = 1, for u 6= v, if nodes u and
v are neighbours; otherwise Auv(t) = 0. Let Nu(t) = {v ∈
{1, 2, . . . , n} : Auv(t) 6= 0} to denote the set of neighbouring
nodes of node u, and du(t) = |Nu(t)| to denote the degree
of node u, i.e. the number of its neighbouring nodes. The
definition for the transitional probability matrix of the nodes
is given by [13]:

Puv =


1
2 if v = u
1
2d if v ∈ Nu

0 otherwise
(1)

where Nu is the set of nodes neighbouring u. When node v
neighbours node u, Equation (1) ensures that the neighbours
are selected randomly and uniformly.

B. Mobile Algebraic Gossip Algorithm

A mobile algebraic gossip algorithm was proposed in [11],
and its information-dissemination process is described in Al-
gorithm 1. Here, Ei(t) represents the positional information
for node i at timeslot t, and Pij(t) denotes the transitional
probability between nodes i and j at timeslot t. Moreover,
Ai(t) is the random linear network-coded coefficient matrix
used by node i in timeslot t, and S(t) denotes the set of
messages that node i has at timeslot t.

Algorithm 1 Mobile Algebraic Gossip Algorithm
1: Suppose that during the t-th timeslot, node i is assigned

to disseminate its message, its location Ei(t), its encoded
coefficient matrix Ai(t), and its message set S(t).

2: Node i moves to the next location Ei(t+1) according to a
mobility model at the (t+1)-th timeslot. It then randomly
chooses one of its neighbours j ∈ N(i) and computes the
transitional probability Pij(t + 1). Finally, it updates its
transitional probability from Pij(t) to Pij(t + 1).

3: Node i generates random coded coefficients in a finite field
G(p). Here, p is a prime number that is used to encode all
of the node’s own messages into a coded message, before
sending it to node j. Meanwhile, node j finishes its coding
operation and sends its coded message to node i.

4: Node i updates its encoded coefficient matrix Ai(t + 1)
and its message set S(t + 1) in the same way as node j.

5: Steps 1–4 are repeated.

C. Performance Criteria

We are interested in discovering the expected time (i.e. the
number of rounds) required for all of the nodes to receive (i.e.
decode) all the messages, and also the time required to receive
all the messages with high probability. Thus, we can define
the performance criteria as follows:

Definition 1 [11]: The global convergence time is defined
as



TEX,RLC
global,mobile(n, ε)

= sup inf{t : Pr(dimAi(t) 6= n) < ε,∀i ∈ V } (2)

which represents the time required for all of the nodes in the
network to receive all the messages with high probability 1−ε,
where 0 < ε < 1.

Definition 2 [13]: the k-conductance of a graph G is defined
as

Φ(G) = min
S⊆V,|S|≤k

∑
i∈S,j∈S̄ aij

|S|
(3)

where S is a subset of V , S̄ is the complementation of S,
|S| is the cardinality of the set S, and aij is an entry for the
adjacency matrix of G.

In graph theory, the conductance of a graph G = G(V,E)
measures the connectivity of the graph. In [11], the definition
for the conductance of a graph is generalized for mobile
k-conductance, which is clearly formulated as k messages
disseminating in a mobile ad-hoc network.

Definition 3 [11]: At timeslot t, the mobile conductance of
a graph G is defined as

Φk(P (t), E(t))

= min
S′(t)⊂V,|S′(t)|≤k

{
Pij(n, r)

|S′(t)|
EP (E(t+1)|E(t))(NS′(t + 1))

}
(4)

where P (t) = [Pij(t)] is the transition matrix, Pij(t) is the
probability of transition from node i to node j, E(t) is the
positional vector for all nodes, and Pij(n, r) is the non-zero
item for the stationary distribution of P (t).

III. ANALYSING ALGEBRAIC GOSSIP
ALGORITHMS IN MOBILE AD-HOC NETWORKS

Here, we consider algebraic gossip algorithms based on
random linear network coding (RLNC) [14], which denote
that upon receiving the messages from all other nodes, each
node encodes the received message of other nodes with
coefficients randomly selected from a finite field Fq before
sending them. Let Su(t) be the set of all the RLNC-coded
messages from node u at the timeslot t. If xi

u(t) ∈ Su(t),
where i = 1, 2, · · · , |Su(t)|, then xi

u(t) ∈ F r
q is descripted as

follows:xi
u(t)|xi

u(t) =

n∑
j=1

aij(t)mj , aij(t) ∈ Fq

 . (5)

Then the random encoded message from node u to node v is
given by:

yuv(t) =

|Su(t)|∑
i=1

bi(t)x
i
u(t) =

n∑
j=1

|Su(t)|∑
i=1

aij(t)bi(t)

 ·mj

(6)
where bi(t) ∈ Fq is the coded coefficient using RLNC before
transmission, and

∑|Su(t)|
i=1 aij(t)bi(t) denotes a new coded

vector. Let the matrix Au(t) = [aij(t)], and let i ∈ Su(t)
and j = 1, 2, · · · , n. Then, Au(t) represents the matrix for
the coded coefficient vectors of node u at timeslot t.

The mobile k-conductance for the algebraic gossip al-
gorithm modelled on an RGG for mobile environments is
analyzed in [11] , which is depicted as follows:

Theorem 1: Let S′(t) ⊂ V and A(t) ⊂ ∪ni=1Ai(t). The
mobile k-conductance for the algebraic gossip algorithm in
the RGG is given by

Φk(P (t), E(t)) = O

(
n− k

n

)
, (7)

and its global convergence time is therefore given by

TEX,RLC
global,mobile(n, ε) = O(n log n log ε−1 − log n log ε−1) (8)

Proof: See [11].
Based on Theorem 1, we can derive the k-conductances and

the global convergence times for the mobile gossip algorithm,
which is presented as follows:

Corollary 1: The k-conductance for the mobile gossip
algorithm in the RGG is given by

Φk(P (t), E(t)) = O

(
n− k

k

)
, (9)

and its global convergence time is therefore given by

TEX
global,mobile(n, ε) = O

(
n log n log ε−1

)
. (10)

Without considering node mobility, we have the following
results.

Theorem 2: The k-conductance of the static algebraic gos-
sip algorithm in the RGG is given by

Φk(P ) = O

(√
n log n

k

)
(11)

and its global convergence time is therefore given by

TEX,RLC
global (n, ε) = O

(
(n3/2 − n1/2) log ε−1

log1/2 n

)
(12)

Proof: See Appendix A.
Based on Theorem 2, we can derive the k-conductances and

the global convergence times for the static gossip algorithm,
which is presented as follows:

Corollary 2: The k-conductance for the static gossip algo-
rithm in the RGG is given by

Φk(P ) = O

(√
n log n

k

)
, (13)

and its global convergence time is therefore given by

TEX
global(n, ε) = O

(
n3/2 log ε−1

log1/2 n

)
. (14)

All of the above results are summarized in Table I. From
Table I, we can conclude the following:
(1) Network coding fully utilizes the additivity of informa-

tion to reduce the time required for information dissem-
ination. Thus, network coding can directly improve the
convergence time of gossip algorithms, whether or not
node mobility is considered.



(2) Node mobility can create a chance encounter between
two nodes that are distant from each other, and this
is equivalent to enlarging the node-transmission range.
Thus, node mobility can reduce the convergence time for
gossip algorithms in terms of movement. Moreover, node
mobility has a much greater effect on the convergence
time for information dissemination than network coding.

(3) Given the above theorem, we can conclude that mobile
algebraic gossip algorithms that integrate node mobility
with network coding can accelerate the convergence of
information dissemination. Together, such an integration
results in a faster convergence time than either node
mobility or network coding alone. Specifically, gossip
algorithms with both network coding and node mo-
bility converge by the magnitude of O( n1/2

log3/2 n
) faster

than algorithms that do not consider node mobility,
and O(log n) faster than a gossip algorithm with node
mobility but without network coding.

All of the above results are verified with numerical simulations
in the following section.

IV. SIMULATIONS

In this section, we present our performance analysis of the
four gossip algorithms using numerical simulations. Initially,
each node was placed at a random position within the sim-
ulation area, and the number of nodes ranged from 100 to
200. The Random Waypoint (RWP) Model [15] was used to
formulate node mobility in the simulations. As the simulations
progressed, each node moved within the simulation area,
and paused momentarily at a certain location—during a so-
called pause time—before randomly choosing a new location
and moving there. Nodes moved at a velocity between Vmin

and Vmax meters per second, where Vmin and Vmax denote
the minimum velocity and maximum velocity of the node’s
movement, respectively. Each node continued in this way,
alternating between pausing and moving to a new location
throughout the duration of simulation. There is no pause time
for the destination nodes.

The maximum transmission radius for each node in the
RGG was set to O

(√
log n
n

)
to maintain node connectivity

[16]. That is, each node could only receive signals from nodes
within this transmission radius. We assumed that nodes do not
have knowledge of the other nodes’ states (e.g. the location,
whether they caller or callee, etc.).

To better present the results of these experiments, we
first simulated the distribution of the nodes’ location with
an RGG, as seen in Fig. 1. Obviously, it is considerably
difficult for some neighbouring nodes to maintain connectivity,
because that there are “holes” in the simulation area. This
will adversely affect the convergence time of the information-
dissemination process. Indeed, node mobility mitigates this
problem to some extent, and this is one of our main conclu-
sions.

In the following, we analyze the four gossip algorithms: the
mobile algebraic gossip (MAG) algorithm, the static algebraic
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Fig. 1. Node Distribution under a Random Geometric Graph

gossip (SAG) algorithm, the mobile gossip (MG) algorithm,
and the static gossip (SG) algorithm. Here, the SG algorithm
is a random gossip algorithm, which was analyzed in [1].

For ∀ε, 0 < ε < 1, we calculated the time required for
all nodes to receive all messages with probability of at least
1−ε—i.e. the global convergence time. The results are shown
in Fig. 2. In Fig. 2, the global convergence time increased
as the parameter 1− ε increased. Moreover, as the parameter
1−ε increased, the gain from network coding decreased in the
static and mobile networks. With high probability (hereafter
“W.H.P.”), 1− ε ≤ 0.7, suggesting that network coding offers
a considerable advantage in terms of the convergence time.
The global convergence time for the MAG algorithm was
slower than that of the SAG algorithm, demonstrating that
node mobility does not play a significant role in improving
convergence at a low probability. Thus, we can conclude that
node mobility is not always effective. Conversely, however,
W.H.P. 1 − ε ≥ 0.85. In this case, node mobility offers a
considerable improvement in terms of the convergence time,
regardless of whether network coding is used. Therefore, we
selected an appropriate value (1− ε = 0.9) for comparing the
convergence time between node mobility and network coding
in the following simulations.

We analyzed the relation between the global convergence
time and the number of nodes using various algorithms, as
seen in Fig. 3. As more nodes were added, there was more of
a difference between the convergence time of the MAG and
SAG algorithms, much as there was between the MG and SG
algorithms. This result confirms that node mobility is advan-
tageous. Moreover, with many nodes, the global convergence
time for MG was always faster than that of SG and SAG.
This suggests that we can fully utilize node mobility, which
increases chance encounters among nodes, without incurring
a delay from network encoding and decoding.

We analyzed the relation between the global convergence
time and the velocity of the nodes using various algorithms, as



TABLE I
PERFORMANCE COMPARISON OF GOSSIP ALGORITHMS MODELLED ON RANDOM GEOMETRIC GRAPHS

Static Gossip Static Algebraic Gossip Mobile Gossip Mobile Algebraic Gossip

k-Conductance O(
√
n logn
k

) O(
√
n logn
k

) O(n−k
k

) O(n−k
n

)

Conductance O( n5/2

log1/2 n
) O( n5/2

log1/2 n
) O(n2 logn) O(n2 logn)

Convergence Time O(n
3/2 log ε−1

log1/2 n
) O(

(n3/2−n1/2) log ε−1

log1/2 n
) O(n logn log ε−1) O((n− 1) logn log ε−1)
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Fig. 2. Relation between the Global Convergence Time and W.H.P. 1 − ε
using Various Algorithms and 150 Nodes
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Fig. 3. Relation between the Global Convergence Time and the Number of
Nodes with Various Algorithms

shown in Fig. 4. With a fixed number of nodes, network coding
improved the global convergence time. Meanwhile, node mo-
bility significantly reduced the global convergence time as the
maximum velocity increased. This confirms that node mobility
improves the performance of information dissemination.
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Fig. 4. Relation between the Global Convergence Time and the Maximum
Velocity in Various Algorithms

V. CONCLUSION

In this paper, we studied the role of mobility and network
coding on multi-message gossip in random geometric graphs,
and derived the bounds for the convergence time of several
different gossip algorithms. The results show that when both
network coding and node mobility are used, the bounds for
the convergence time can be improved by the magnitude of
O( n1/2

log3/2 n
) when only network coding is used, and by the

margin of O(log n) when only node mobility is considered.
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APPENDIX A
PROOF FOR THEOREM 2

Let n nodes in a unit disk, and the movement of these nodes
is an independent memoryless Markov process. Let V denote
the set of all nodes, with the initial time t = 0. Moreover, we
have rank(Ai(t)) = 1, ∀i ∈ V , and let tk = inf{t : C(t) ≥
k}, where C(t) is the largest cardinality in B(t). Our goal is to
make rank(Ai(t)) = n, ∀i ∈ V . The global convergence time
is divided into k time periods [t1, t2), [t2, t3), . . . , [tk, tk+1).
According to [13], when node i exchanges messages with node
j, then we have the following inequality:

E(Iij(t)) + E(Iji(t)) ≥ P ′ij(t) + Pij(t). (15)

where Iij(t) be a characteristic function. The accumulative
rank ∆(t) =

∑n
i=1(rank(Ai(t)) − 1) satisfy the following

inequality for timeslot t ∈ [tk, tk+1):

∆(t + 1)−∆(t) ≥
∑
i∈V

∑
j∈V,j 6=i

(Iij + Iji) (16)

By adopting expectations on both sides of the above in-
equality and using the result in Equation (15), we have

E(∆(t + 1)−∆(t)) ≥
∑
i∈V

∑
j∈V,j 6=i

(E(Iij(t)) + E(Iji(t)))

≥
∑

i,j∈V,j 6=i,Ai(t),Aj(t)∈R(t)

P ′ij(t)

+
∑

i,j∈V,j 6=i,Ai(t),Aj(t)∈Ṽ

Pij(t)

=
∑

i,j∈V ,j 6=i,Ai(t),Aj(t)∈R(t)

P ′ij(t)

+
∑

i,j∈V ,j 6=i,Ai(t),Aj(t)∈R(t)

2P ′ij(t)

di(t)− 2

≥ (1 +
2

k − 2
) · n · Φk(p) (17)

Let g(t) = ∆(t+ 1)−∆(t)− (1 + 2
k−2 ) ·n ·Φk(p). Similar

with [4], we define Zk(t) =
∑t−1

i=tk
g(i)1{i<tk+1}. It is easy

to show that Zk(tk) = 0 and
E(Zk(t + 1)|Zk(t))

= E

(
t∑

i=tk

g(i)1{i<tk+1}|
t−1∑
i=tk

g(i)1{i<tk+1}

)

= Zk(t) + E

(
g(t)1{i<tk+1}|

t−1∑
i=tk

g(i)1{i<tk+1}

)
≥ Zk(t) (18)

which indicates that Zk(t) is a submartingale. Then, we have
E(Zk(t + 1)) ≥ E(Zk(t)) = 0, and
E
(∑tk+1−1

i=tk
(∆(i + 1)−∆(i))

)
≥ E

(
tk+1−1∑
i=tk

(1 +
2

k − 2
) · n · Φk(p)

)
,

which can be rewritten as
E(∆(tk+1)−∆(tk))

≥ (1 +
2

k − 2
) · n · Φk(P (t), E(t)) · E(tk+1 − tk) (19)

according to Lemma 5 in [4], Equation (17) is formulated as
follows:

E(tn) ≤ k − 2

k

n−1∑
k=2

E(∆(t + 1)−∆(t))

n · Φk(p)

+
E(∆(t + 1)−∆(t))

n · Φk(p)
|k=1

≤
n−1∑
k=1

2k

n · Φk(p)
−

n−1∑
k=2

4

n · Φk(p)

=
2

n
· Φ̂(p)− 4

n
·
n−1∑
k=2

1

Φk(p)
(20)

According to Markov’s inequality, Equation (15) implies
that

P

(
tn >

log ε−1

n

(
Φ̂(p)−

n−1∑
k=2

1

Φk(p)

))
< ε (21)

The global convergence time for the static algebraic gossip-
network model can therefore be expressed as follows:

TEX,RLC
global (n, ε) = O

(
Φ̂(p)−

∑n−1
k=2

1
Φk(p)

n
log ε−1

)
Then, the global convergence time for the static algebraic
gossip model is given by

TEX,RLC
global (n, ε) = O

(
(n

3
2 − n

1
2 ) log ε−1

log
1
2 n

)


