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Abstract—Mobile crowdsensing is a new paradigm in which a
group of mobile users exploit their smart devices to cooperatively
perform a large-scale sensing job over urban environments. In
this paper, we focus on the Deadline-sensitive User Recruitment
(DUR) problem for probabilistically collaborative mobile crowd-
sensing. Unlike previous works, mobile users in this problem
perform sensing tasks with probabilities, and multiple users
might be recruited to cooperatively perform a common task,
ensuring that the expected completion time is no larger than a
deadline. Owing to such a probabilistic collaboration, DUR can
be formalized as a non-trivial set cover problem with non-linear
programming constraints and an optimization objective of real
function. We first prove that the DUR problem is NP-hard. Then,
we propose a greedy DUR algorithm, called gDUR, to solve this
problem. Next, we prove that the gDUR algorithm can achieve
a logarithmic approximation ratio. Furthermore, we extend the
problem to a more complex case where sensing duration is taken
into consideration, and we propose a sensing-duration-aware
user recruitment algorithm, called dDUR. Finally, we validate
the performance of the proposed algorithms through extensive
simulations, based on a real mobile social network trace and a
synthetic trace.

Index Terms—Crowdsensing, mobile social network, proba-
bilistic collaboration, user recruitment

I. INTRODUCTION

In recent years, there has been an explosive proliferation
of smartphones. These smartphones have generally been e-
quipped with multi-core processors, gigabytes of memory,
and diverse sensors, so that they can be seen as powerful
mobile sensors. Thanks to this, a new sensing paradigm, called
mobile crowdsensing, is proposed [4]. Roughly speaking,
mobile crowdsensing refers to a group of mobile users being
coordinated to perform a large-scale sensing job over urban
environments through their smartphones. Since mobile crowd-
sensing can perform sensing jobs that individual users cannot
cope with, it has stimulated many applications, such as urban
WiFi characterization, traffic information mapping, wireless
indoor localization, and so on, attracting much attention [3],
[5], [12], [18], [25].

By far, there has been much research on mobile crowd-
sensing, including platform design, user recruitment or task
allocation algorithms, incentive mechanisms, and so on [1],
[2], [6]–[8], [10], [14], [15], [19], [21]–[24]. Among them,
user recruitment or task allocation is one of the most important
topics [2], [6], [7], [10], [15], [21], [24]. In this paper, we focus
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Fig. 1. An example of mobile crowdsensing with probabilistic collaboration:
three mobile users move around in an urban area, each of which passes by
some points of interest (subject to its mobility) and collects sensing data every
day with some probabilities, until the data is collected successfully.

on the Deadline-sensitive User Recruitment (DUR) problem
for probabilistically collaborative mobile crowdsensing. More
specifically, a requester wants to collect some sensing data
from many points of interest (PoIs) in an urban area, just like
[2], [6], [7], [10]. Then, it publishes a crowdsensing request to
some mobile users via mobile social networks. These mobile
users move around in the urban area every day. Each user
might pass by (i.e., cover) some PoIs frequently, so that it
can collect the related sensing data with some probabilities, as
shown in Fig. 1. If a mobile user participates in crowdsensing,
it will charge a cost from the requester as the reward. The
crowdsensing job is expected to be accomplished before a
given deadline. Our main concern is determining which users
should be recruited, so that the requester can minimize the
total cost, while ensuring that the expected completion time
of the crowdsensing is no larger than the given deadline.

Our DUR problem for probabilistically collaborative mobile
crowdsensing in this paper differs from existing user recruit-
ment problems. Existing works mainly focus on deterministic
mobile crowdsensing, in which the trajectory of each user is
known and deterministic (e.g., [7], [10], [15]), or each user
will determine a route (e.g., [2], [6]) for performing sensing
tasks; when the trajectory or route covers a PoI, the user
can successfully perform its sensing tasks alone, without any
cooperation among users. In contrast, our problem is based on
the observation that mobile users in real traces do not always
move along a fixed path, showing the characteristic of non-
deterministic mobility [10], [13], [21]. That is to say, it is
probabilistic that mobile users perform sensing tasks. Hence,
multiple users need be recruited to cooperatively perform a
common task, in order to improve the probability of success.
Due to this probabilistic collaboration, our problem can be



formalized as a non-trivial set cover problem with non-linear
programming constraints and an optimization objective of real
function. The methodology in existing works [2], [6], [7], [10],
[15] cannot deal with such a problem [11].

In this paper, we carefully design a utility function, based on
which we turn our DUR problem into a Minimum Submodular
Cover with Submodular Cost (MSC/SC) problem, and adopt
the greedy strategy to solve this problem. Furthermore, we
also extend the problem and the solution to a more complex
case. More specifically, the major contributions include:

1) We introduce a DUR problem for mobile crowdsensing
with probabilistic collaboration. Unlike existing works,
mobile users in this problem perform sensing tasks with
probabilities, and multiple users need to cooperatively
perform a common task, resulting in a non-trivial set
cover problem with non-linear programming constraints.

2) We prove the NP-hardness of the DUR problem. More-
over, we propose a utility function, and prove it to be
submodular. Owing to this utility function, we turn the
DUR problem into an MSC/SC problem to be solved by
using a greedy approximation algorithm, called gDUR.
In addition, we derive the logarithmic approximation
ratio of the gDUR algorithm.

3) We extend the DUR problem to the case, where sens-
ing duration is taken into consideration. To solve this
problem, we also propose a submodular utility function,
and based on which, we design a sensing-duration-aware
user recruitment algorithm, called dDUR. Moreover, we
analyze the corresponding approximation ratio.

4) We conduct extensive simulations on a real trace and a
synthetic trace to prove the significant performances of
the proposed algorithms.

The remainder of the paper is organized as follows. We first
review related works in Section II. Then, we introduce the
model, and the problem in Section III. The gDUR and dDUR
algorithms are proposed in Sections IV and V, respectively. In
Section VI, we evaluate the performances of our algorithms
through extensive simulations. We conclude the paper in
Section VII. Some complex proofs are moved to the Appendix.

II. RELATED WORKS

There has been much research on the user recruitment or
task allocation problem of mobile crowdsensing [2], [6], [7],
[10], [21], [24]. Most of these works focus on the deterministic
mobile crowdsensing. For example, M. Cheung et al. in [2]
formulate a movement-related task allocation problem as a task
selection game, and propose a distributed algorithm for each
user to select its task and determine its movement. Z. He et al.
in [7] propose a greedy approximation algorithm and a genetic
algorithm for the user recruitment problem of crowdsensing in
vehicular networks, where future trajectories of users are taken
into account. S. He et al. in [6] considered the task allocation
problem with the constraint of time budgets. In these works,
the trajectory of each user is known and deterministic (e.g.,
[7]), or each user will determine a route (e.g., [2], [6]) for
performing sensing tasks, and when the trajectory or route

covers a PoI, the user can successfully perform its sensing
tasks alone. There is no cooperation among users, different
from our probabilistically collaborative DUR problem.

Among the existing works, only [10] partially discussed a
special non-deterministic mobile crowdsensing. In this work,
M. Karaliopoulos et al. studied the problem of recruiting the
users whose paths can cover some PoIs with a minimum cost.
The authors first consider a deterministic mobility scenario,
where each user has a fixed path, and they formulate the
user recruitment problem as a trivial set cover problem with
a submodular objective function to be solved. Then, the
authors also discuss the non-deterministic scenario, in which
users’ paths might cover PoIs with some probabilities. In this
scenario, the authors let the additive sum of probabilities of
each PoI being covered by multiple paths be no less than 1. For
example, if a PoI is covered by two paths with the probabilities
p1 and p2, then they must be subject to p1+p2 ≥ 1. Since
the constraint based on the additive probability is a linear
programming constraint, the problem in [10] is still a trivial set
cover problem. In contrast, our problem is a probabilistic set
cover problem with non-linear programming constraints and
an optimization objective of real function. The methodology
in [10], which is only suitable for the set cover problems with
linear programming constraints, cannot deal with our problem,
according to the corresponding theories in [10], [11]. In the
following, we will design a novel utility function, based on
which we can turn it into an MSC/SC problem to be solved.

Additionally, Q. Zhao et al. in [24] and M. Xiao et al. in
[21] studied the task allocation issues by formulating them as
online scheduling problems, also different from our problem.

III. MODEL & PROBLEM

A. Model

We consider a mobile crowdsensing, in which a requester
wants to collect some sensing data from many PoIs in an urban
area. The crowdsensing job is assumed to have been divided
into many sensing tasks according to the PoIs, denoted by
S={s1, s2, · · · , sm}, where each task sj (1≤j≤m) is related
to a specific PoI. On the other hand, there are many mobile
social network users, moving around in the urban area every
day. Many real traces demonstrate that mobile social network
users will periodically visit some locations that they prefer
with probabilities [9], [16], [20]. For example, mobile users
might go to their offices, homes, shopping malls, or other
places every day. As a result, each user might periodically pass
by (i.e., cover) one or more specific PoIs with probabilities.
Therefore, these users can be recruited by the requester to
perform the corresponding sensing tasks. In this paper, we
only discuss the users who are willing to participate in the
crowdsensing, denoted by U={u1, ..., un}. The users who can
perform task sj are denoted as Uj , and the tasks that user
ui (1 ≤ i ≤ n) can deal with are denoted as Si. Moreover,
according to the users’ periodic mobile behaviors, time is
divided into many equal-length sensing cycles, denoted by τ .
For instance, a sensing cycle might be a day, or several hours,
etc. Then, the detailed crowdsensing is conducted as follows.
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Fig. 2. A probabilistically collaborative mobile crowdsensing can be simply
described by ⟨U ,S,P, C⟩, where U is the user set, S is the task set, P is
the set of probabilities of users’ performing tasks in each sensing cycle, and
C is the set of costs claimed by users.

First, the requester publishes all sensing tasks in S to the
users in U via mobile social networks. Then, each user ui can
determine the tasks that it can perform, i.e., Si. Meanwhile,
user ui can also determine the probability of performing every
task sj ∈ Si in each sensing cycle, called the processing
probability and denoted by pij . Actually, many mobile phones
provide the functionality to record the trajectories of users.
Through this functionality, ui can derive the frequency of
visiting the PoI related to task sj , which can be used to
estimate pij . For example, if ui has recorded its trajectories
of 5 sensing cycles, among which it has visited the PoI in 3
sensing cycles, it will set pij = 0.6. Here, if user ui visited
multiple times in a same sensing cycle, it will still be counted
as one time, since we only concern whether the user can
perform the task in this sensing cycle.

Second, after having derived each sensing probability pij ,
user ui will tell the requester which tasks it can deal with
and the related probabilities of performing these tasks via the
mobile social networks. At the same time, user ui will also
tell the requester that it will charge a cost from the requester
as the reward for participating in crowdsensing. We assume
that there is a negotiation between the requester and the user,
during which they can determine the cost, denoted by ci. In
fact, many mechanism can be used to produce the cost and
ensure the truthfulness, such as [19], [23]. In this paper, we
will not discuss the detailed negotiation mechanism.

Finally, according to the responses from the users in U ,
the requester makes the decision to recruit some users for
performing the sensing tasks in S. If a user ui is recruited by
the requester, it will perform each task in Si, when passing by
the corresponding PoI, until it is told that the task has been
completed by other users. In order to improve the probability
of success, multiple users might be recruited to perform a
common task. Once having completed a task, each user will
send the results back to the requester via the mobile social
networks.

Let P={pij |ui ∈ U , sj ∈ Si} and C = {ci|ui ∈ U}. Then,
we can simply use a four tuple ⟨U ,S,P, C⟩ to describe the
above mobile crowdsensing with probabilistic collaboration,
as shown in Fig. 2.

B. Problem

We focus on the DUR problem in the above mobile crowd-
sensing, i.e., which users in U should be recruited by the
requester to perform the tasks in S, so that it can minimize
the total cost, while ensuring that the expected completion

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
U ,S,
C,P

the sets of all users, tasks, costs, and probabilities of
users performing tasks.

ui, sj ,
ci, pi,j

the i-th user, the j-th task, the cost that user ui

charges from the requester, and the probability of user
ui performing task sj .

τ , T the sensing cycle, and the deadline.
Uj the set of users who can process task sj .
Si the set of tasks that user ui can deal with.
Φ the user recruitment solution, i.e., the set of users that

the requester recruits.
ρΦj the joint probability of task sj being processed suc-

cessfully by users in Φ at a sensing cycle (Eq. 1).
dij the average duration of user ui performing task sj in

a sensing cycle.
σΦ
j the total expected duration of task sj being sensed

by users in Φ at a sensing cycle (Eq. 7).

time of the crowdsensing is no larger than a given deadline
T . As multiple users might be recruited to perform a task,
the probability of a task being processed is actually a joint
probability, called joint processing probability. We use the
set Φ to denote a user recruitment solution, where ui ∈ Φ
indicates that user ui is recruited. Moreover, we denote the
joint processing probability of task sj in each sensing cycle
as ρΦj . Then, ρΦj can be calculated as follows:

ρΦj =1−
∏
ui∈Φ

(1− pij) (1)

Based on the joint processing probability of task sj in
each sensing cycle, we can get the corresponding expected
completion time, i.e., τ

ρΦ
j

. Further, the DUR problem can be
formalized as follows:

Minimize : C(Φ)=
∑

ui∈Φ ci (2)
Subject to : Φ⊆U (3)

τ
ρΦ
j
≤T , 1≤j≤m (4)

Here, Eq.4 indicates that the expected completion time of each
task is no larger than the given deadline T . In other words,
the joint processing probability of each task sj is no less than
τ
T , i.e., ρΦj =1−

∏
ui∈Φ(1−pij)≥ τ

T . It is this constraint that
makes our user recruitment become a set cover problem with
non-linear programming constraints, different from the trivial
set cover problems in existing works [2], [6], [7], [10], [15].

In this paper, we assume that the DUR problem has at least a
feasible solution. That is to say, each task sj can be performed
before the deadline, i.e., ρUj = 1 −

∏
ui∈U (1 − pij) ≥ τ

T . If
there is no feasible solution for the problem, the requester can
have the problem be solvable by expanding the user set U
or prolonging the deadline T . Moreover, for simplicity, T is
assumed to be an integral multiple of τ ; otherwise, we can use
ρΦj ≥1/⌊T

τ ⌋ to replace τ
ρΦ
j
≤T in Eq.4, where ⌊T

τ ⌋ is the floor

of T
τ . The following sections will show that our algorithms can

still work well in this case.



Algorithm 1 The gDUR Algorithm
Require: U ,S,P, C, τ, T
Ensure: Φ

1: Φ=∅;
2: while f(Φ)< mτθ

T do
3: Select a user ui∈U\Φ to maximize f(Φ∪{ui})−f(Φ)

ci
;

4: Φ=Φ ∪ {ui};
5: return Φ;

In addition, we extend the DUR problem to a more practical
case. We leave the extended DUR problem to be discussed in
Section V, for the integrity of description. Here, we also list
the main notations in Table I.

IV. DEADLINE-SENSITIVE USER RECRUITMENT

In this section, we first analyze the complexity of the DUR
problem. Then, we propose the gDUR algorithm based on a
utility function, followed by an example. Finally, we prove the
correctness and approximation ratio of the algorithm.

A. Problem Hardness Analysis

Before the solution, we first prove that the DUR problem
is NP-hard, as shown in the following theorem.

Theorem 1: The DUR problem is NP-hard.
Proof: We consider a special case of the DUR problem:

given a probabilistically collaborative mobile crowdsensing
⟨U ,S,P, C⟩ and a deadline T , where P = {pij = p | 0 <
p ≤ 1, ui ∈ U , sj ∈ Si}, C = {ci = 1 | ui ∈ U}, and T = τ

p ,
determine a set Φ⊆U , such that the requester can minimize
C(Φ) =

∑
ui∈Φ ci = |Φ|, while the expected processing time

of each task is no larger than T . Actually, this special DUR
problem is to select the minimum number of users from U
who can process all tasks in S. When we replace each ui

in U by using Si (⊆ S), i.e., the set of tasks that ui can
process, this problem can be seen as a set cover problem, a
well known NP-hard problem: given a task set S, a collection
of subset {Si|1≤ i≤n}, find a minimum size of subcollection
of {Si|1≤ i≤n} that covers all tasks in S. That is to say, the
special DUR problem is NP-hard. Consequently, the general
DUR problem is also at least NP-hard. The theorem holds. �
B. The gDUR Algorithm

Since DUR is NP-hard, we propose a greedy algorithm to
solve it. The greedy criterion is that the user who has the
largest probability to process the most tasks with the least
cost will be recruited and added into the set Φ first, which is
based on the following utility function:

Definition 1: Utility function f(Φ) indicates the utility about
the total probability of the users in set Φ processing all tasks
in S before the deadline, defined as follows:

f(Φ)=θ
m∑
j=1

min{ρΦj ,
τ

T
}, (5)

where θ=max{θ1, θ2} is a constant related to the approxi-
mation factor of the gDUR algorithm, in which θ1=

T
∑n

i=1ci
mτ ,

and θ2=max{ ci|1≤i≤n
τ
T −ρΦ

j |1≤j≤m,ρΦ
j < τ

T ,Φ⊂U }.
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Fig. 3. Illustration of the gDUR algorithm.

By using this defined utility function, we can turn our
problem into an MSC/SC problem. We will demonstrate
this in the following subsections. Here, we only present the
gDUR algorithm based on this utility function, as shown in
Algorithm 1. The gDUR algorithm starts from an empty user
set Φ. In each round, it adds the user having the maximum
f(Φ∪{ui})−f(Φ)

ci
value into Φ. The algorithm terminates when

f(Φ)= mτθ
T . The computation overhead is dominated by Step

3, which is O(n2m).
In addition, there is a small trick in the gDUR algorithm.

Note that θ is a constant. It is only related to the approximation
factor, and will only be used in the theoretical analysis. Hence,
we can simply let θ=1 in the real implementation of gDUR,
since it will not change the comparison results in Steps 2 and
3, and also will not change the final result.

C. Example

To better understand Algorithm 1, we use an example shown
in Fig. 3 to illustrate the user recruitment procedure. In the
example, τ=1 day, T =2 days, U , S, P and C are marked in
Fig. 3(a). According to Definition 1, θ=15, and mτθ

T =22.5.
Then, the algorithm is conducted as follows:

• First round: Φ=∅.
• Second round: Since Φ = ∅ and f(∅) = 0 < 22.5, we

first compute f({u1})−f(∅)
c1

= f({u1})
c1

=6.75. Likewise, we
have f({u2})−f(∅)

c2
= 4.5, and f({u3})−f(∅)

c3
= 6.75. Both

u1 and u3 can maximize f(Φ∪{ui})−f(Φ)
ci

. Without loss of
generality, we add u1 into Φ.

• Third round: Since Φ = {u1} this time and f({u1}) =
13.5 < 22.5, we continue the user recruitment proce-
dure by computing f({u1,u2})−f({u1})

c2
= 2. Moreover,

we have f({u1,u3})−f({u1})
c3

= 4.5. Since u3 maximizes
f(Φ∪{ui})−f(Φ)

ci
in this round, we add u3 into Φ. Now,

Φ={u1, u3} and f(Φ)=22.5. The algorithm terminates
and returns the recruited user set Φ={u1, u3}.

Fig. 3(b) shows the result Φ = {u1, u3} for this user
recruitment. It is easy to check that this result is a correct
solution. For this example, this solution is even optimal.
Moreover, when we let θ=1, we can get the same result.

D. Correctness

Before the correctness analysis, we first prove an important
property of the defined utility function.

Theorem 2: 1) f(∅)=0; 2) f(Φ) is an increasing function.
Proof: 1) If Φ= ∅, then ρΦj =0 for each sj ∈S , according

to Eq. 1. Thus, f(Φ=∅)=0, according to Definition 1.



2) Without loss of generality, we consider two user sets
Φ1 and Φ2, where Φ1 ⊆ Φ2. According to Eq. 1, we have
ρΦ1
j ≤ρΦ2

j for each sj ∈S . Then, min{ρΦ1
j , τ

T }≤min{ρΦ2
j , τ

T }.
Consequently, we have f(Φ1) = θ

∑m
j=1 min{ρΦ1

j , τ
T } ≤

θ
∑m

j=1 min{ρΦ2
j , τ

T }=f(Φ2). Therefore, f(Φ) is an increas-
ing function. �

Based on the monotone increasing property of the utility
function, we can derive the correctness of the gDUR algorithm
in the following theorem.

Theorem 3: Algorithm 1 is correct. That is, it will produce a
feasible solution of the DUR problem, as long as the problem
is solvable. More specifically, 1) Algorithm 1 will terminate
for sure; 2) f(Φ) = mτθ

T if and only if Φ is a user set who
can process each task in S with an expected completion time
no larger than the deadline T .

Proof: 1) For Algorithm 1, in each round of iteration, a user
will be added into the recruited user set Φ. In the worst case,
all users are recruited after n rounds of iteration. Then, we
have f(Φ)=f(U)= mτθ

T , and the algorithm will terminate.
2) ⇒: According to Definition 1, f(Φ) = mτθ

T only when
min{ρΦj , τ

T }= τ
T for ∀j∈ [1,m]. This means that ρΦj ≥ τ

T for
∀j∈ [1,m]. Thus, for the arbitrary task sj in S, the expected
completion time satisfies τ

ρΦ
j
≤T .

⇐: If Φ is a set of users who can process each task in S
with an expected completion time no larger than T , we have
ρΦj ≥ τ

T for ∀j ∈ [1,m]. Consequently, min{ρΦj , τ
T }= τ

T for
∀j∈[1,m]. Thus, f(Φ)=mτθ

T according to Definition 1. �
Note that f(U)=mτθ

T . Then, based on Theorem 3, we can
equivalently replace the constraint Eq.4 by using f(Φ)=f(U).
That is, we have:

Corollary 1: The DUR problem can be equivalently re-
formalized as:

Minimize{C(Φ)|f(Φ)=f(U),Φ⊆U}. (6)

E. Performance Analysis

To analyze the approximation ratio of the proposed gDUR
algorithm, we first show that our DUR problem can be catego-
rized as the MSC/SC problem. Actually, according to [17], a
problem can be seen as an MSC/SC problem, if: 1) the prob-
lem can be formalized as Eq. 6, i.e., Minimize{C(Φ)|f(Φ)=
f(U),Φ⊆U}; 2) f(Φ) is a polymatroid function on 2U , i.e.,
f(Φ) is submodular and increasing with f(Φ)=0; 3) C(Φ) is
also a polymatroid function on 2U . In the following, we first
prove the polymatroid property of f(Φ).

Theorem 4: f(Φ) is a submodular function. More specifi-
cally, for two arbitrary user sets Φ1 and Φ2, Φ1 ⊆ Φ2, and
∀uk ∈ U\Φ2, the submodular property holds, i.e., f(Φ1 ∪
{uk})− f(Φ1)≥f(Φ2 ∪ {uk})− f(Φ2).

Proof: See Appendix A. �
Now, we can get the polymatroid property of f(Φ).
Theorem 5: f(Φ) is a polymatroid function on 2U .
Proof: According to Theorems 2 and 4, f(Φ) is an increas-

ing, submodular function with f(∅)=0. Hence, we conclude
that f(Φ) is a polymatroid function on 2U . �

Furthermore, we have that C(Φ) is also polymatroid:

Theorem 6: C(Φ) is a modular function as well as a
polymatroid function on 2U .

Proof: C(Φ) is said to be modular if and only if, for two
arbitrary user sets Φ1 and Φ2, C(Φ) satisfies the equation:
C(Φ1)+C(Φ2) = C(Φ1∩Φ2)+C(Φ1∪Φ2). Since C(Φ)=∑

ui∈Φ ci, it is straightforward to verify that the equation
holds. Hence, C(Φ) is a modular function, which implies
the submodular property. Moreover, according to C(Φ) =∑

ui∈Φ ci, we have that C(Φ) is an increasing function with
f(∅)=0. Thus, C(Φ) is also a polymatroid function. �

According to Corollary 1 and Theorems 5, 6, we can
conclude that our DUR problem is an MSC/SC problem. For
MSC/SC problems, [17] has proposed a lemma, which can
be used to analyze the approximation performance of the
proposed gDUR algorithm.

Lemma 1:[17] Consider an MSC/SC problem: Minimize{
C(Φ)|f(Φ)=f(U),Φ⊆U}, in which f is a polymatroid real
function on 2U , and f(U) ≥ opt where opt is the cost of a
minimum submodular cover. For a greedy algorithm of this
problem, if the selected ui in each iteration always satisfies
f(Φ∪{ui})−f(Φ)

ci
≥1, then the greedy solution is a (1+ϱ ln f(U)

opt )-
approximation, where if C(Φ) is modular, then ϱ=1.

Before using Lemma 1 to analyze the approximation ratio
of the proposed gDUR algorithm, we first show that our utility
function f(Φ) meets the constraints in Lemma 1, as follows:

Theorem 7: Our utility function f satisfies: 1) f(U)≥opt,
where opt is the cost of the optimal solution of the DUR
problem; 2) in each iteration of Algorithm 1, the selected user
ui satisfies f(Φ∪{ui})−f(Φ)

ci
≥1.

Proof: See Appendix B. �
Based on the above analysis, we can give the approximation

ratio of the gDUR algorithm by the following theorem.
Theorem 8: The proposed gDUR algorithm can achieve a

(1+ln mτθ
opt T )-approximation solution, where opt is the cost of

the optimal solution for the DUR problem.
Proof: According to Lemma 1 and Theorem 7, gDUR can

achieve a (1+ϱ ln f(U)
opt )-approximation solution, where opt is

the cost of the optimal solution. According to Theorem 6 and
Lemma 1, we have ϱ = 1. Thus, the approximation ratio is
1+ϱ ln f(U)

opt =1+ln mτθ
opt T . The theorem holds. �

V. EXTENSION

In this section, we extend our problem and algorithm to a
more practical scenario, in which sensing duration is taken
into consideration. We first introduce the extended problem,
and then, propose the dDUR algorithm to solve this problem,
followed by the performance analysis.

A. The Extended Problem

Assume that when a mobile user ui in U passes by a PoI to
perform the related sensing task sj (∈S), there is an average
sensing duration dij (minutes or hours) in each sensing cycle,
only during which the user ui can collect the sensing data.
Then, the expected sensing duration of user ui performing
task sj is dijpijT /τ , where pijT /τ is actually the expected
number of sensing cycles for user ui performing task sj before



Algorithm 2 The dDUR Algorithm
Require: U ,S,P={pij |ui∈U , sj ∈S}, C, τ, T ,D
Ensure: Φ

1: Φ=∅;
2: while h(Φ)< mτθ

T + ϑ do
3: Select a user ui∈U\Φ to maximize h(Φ∪{ui})−h(Φ)

ci
;

4: Φ=Φ ∪ {ui};
5: return Φ;

the deadline. When multiple users in set Φ perform the task sj ,
the total expected duration of task sj is the sum of the expected
sensing duration of these users, called expected sensing time,
denoted by σΦ

j . That is,

σΦ
j =

∑
ui∈Φ∩Uj

dijpij
T
τ
. (7)

To ensure the quality of sensing data, we let the expected
sensing time of task sj be no less than a threshold D (≥0,
unit: minutes or hours). Then, we have the following extended
problem:

Minimize : C(Φ)=
∑

ui∈Φ ci (8)
Subject to : Φ⊆U (9)

σΦ
j ≥D, 1≤j≤m (10)
τ
ρΦ
j
≤T , 1≤j≤m (11)

B. The dDUR algorithm

We adopt the same strategy in the last section to solve
the problem. First, we define another utility function for the
constraint of sensing duration (i.e., Eq. 10):

Definition 2: Utility function g(Φ) indicates the utility of
sensing duration for the users in set Φ performing all tasks in
S, defined as follows:

g(Φ)=
ϑ

mD

m∑
j=1

min{σΦ
j ,D}, (12)

where ϑ=θ if D>0; ϑ=0 and g(Φ)=0, if D=0.
Taking both constraints (i.e., Eqs. 10 and 11) into consid-

eration, we combine the two utility functions as follows:
Definition 3: Combinational utility function h(Φ) is the

combination of utility functions f(Φ) and g(Φ). That is,

h(Φ)=f(Φ) + g(Φ) (13)

Based on the combinational utility function h(Φ), we
present the dDUR algorithm, as shown in Algorithm 2. The
dDUR algorithm also starts from an empty user set Φ. In each
round, it adds the user having the maximum h(Φ∪{ui})−h(Φ)

ci

value into Φ. The algorithm terminates when h(Φ)= mτθ
T +ϑ.

The computation overhead is still O(n2m).

C. Example

We use the example in Fig. 4 to illustrate the dDUR
algorithm. In the example, all dij’s are marked in Fig. 4(a),
and D=3, with units displayed in minutes. Other parameters
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Fig. 4. Illustration of the dDUR algorithm.

are the same as those in Fig. 3(a). In this example, θ=15, and
mτθ
T +ϑ=37.5. Then, the algorithm is conducted as follows:
• First round: Φ=∅ and h(∅)=0.
• Second round: We have h({u1})−h(∅)

c1
= h({u3})−h(∅)

c3
=

9.75, and h({u2})−h(∅)
c2

= 7.5. Both u1 and u3 can
maximize h(Φ∪{ui})−h(Φ)

ci
. Then, we add u1 into Φ.

• Third round: Due to Φ={u1} and h({u1})=19.5<37.5,
we continue the user recruitment procedure by computing
h({u1,u2})−h({u1})

c2
= 4.33 and h({u1,u3})−h({u1})

c3
= 7.33.

Since u3 maximizes h(Φ∪{ui})−h(Φ)
ci

in this round, we add
u3 into Φ.

• Fourth round: Now, Φ = {u1, u3} and h(Φ) = 34.17 <
37.5. Then, we add the last user u2 into Φ, to get that Φ=
{u1, u2, u3} and h(Φ)= 37.5. The algorithm terminates
and returns the recruited user set Φ={u1, u2, u3}.

Fig. 4(b) shows the result Φ = {u1, u2, u3} for this user
recruitment procedure. It is easy to check that this result is a
correct solution. Moreover, for this example, this solution is
the only feasible solution.

D. Performance Analysis

First, we prove the correctness of the dDUR algorithm.
Theorem 9: 1) h(Φ) is an increasing function with h(∅)=0;

2) h(Φ) = mτθ
T +ϑ if and only if Φ is a feasible solution of

the extended DUR problem.
Proof: 1) According to Eqs.7 and 12, g(∅)=0, and g(Φ) is

an increasing function. Hence, h(Φ) is an increasing function
with h(∅)=0, according to Theorem 2 and Definition 3.

2) Since f(Φ)≤ mτθ
T and g(Φ)≤ ϑ according Eqs. 5 and

12, we have h(Φ)= mτθ
T +ϑ if and only if f(Φ)= mτθ

T and
g(Φ)=ϑ, which means that Φ satisfies the constraints of Eqs.
11 and 10, respectively. Thus, h(Φ)= mτθ

T +ϑ if and only if
Φ is a feasible solution. �

Theorem 9 shows that when the dDUR algorithm ter-
minates, i.e., h(Φ) = mτθ

T + ϑ, it will produce a feasible
solution. This implies the correctness of dDUR. Moreover,
since h(U)= mτθ

T +ϑ, we can also re-formalize the extended
problem, like Corollary 1.

Corollary 2: The extended DUR problem can be equiva-
lently re-formalized as:

Minimize{C(Φ)|h(Φ)=h(U),Φ⊆U}. (14)
Now, we prove the polymatroid property of h(Φ). First, we

have the following theorem:
Theorem 10: g(Φ) is a submodular function. More specifi-

cally, for two arbitrary user sets Φ1 and Φ2, Φ1 ⊆ Φ2, and
∀uk ∈ U\Φ2, the submodular property holds, i.e., g(Φ1 ∪
{uk})− g(Φ1)≥g(Φ2 ∪ {uk})− g(Φ2).
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Fig. 5. Performance comparisons on the real trace: successful processing ratio & total cost vs. deadline (D=0, 4 minutes).
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Fig. 6. Performance comparisons on the synthetic trace: successful processing ratio & total cost vs. deadline (D=0, 4 minutes).

Proof: See Appendix C. �
Based on Theorem 10, we can get that h(Φ) is a submodular

function, since the linear combination of two submodular
functions is still a submodular function. Furthermore, com-
bining this submodular property and Theorem 9, we can
straightforwardly have the polymatroid property of h(Φ):

Corollary 3: h(Φ) is a polymatroid function on 2U .
Based on the above analysis, we can give the approximation

ratio of the proposed dDUR algorithm as follows:
Theorem 11: The proposed dDUR algorithm can achieve a

(1+ln mτθ+T ϑ
opt T )-approximation solution, where opt is the cost

of the optimal solution for the extended DUR problem.
Proof: According to Theorem 6, Corollaries 2 and 3, the ex-

tended DUR problem is an MSC/SC problem. Moreover, since
h(U)= mτθ

T +ϑ> mτθ1
T =

∑n
i=1 ci≥opt, and h(Φ∪{ui})−h(Φ)

ci
=

(f(Φ∪{ui})−f(Φ))+(g(Φ∪{ui})−g(Φ))
ci

≥ f(Φ∪{ui})−f(Φ)
ci

≥ 1, we
have that the dDUR algorithm can achieve a (1+ϱ ln h(U)

opt )-
approximation solution, according to Lemma 1. According to
Theorem 6 and Lemma 1, we still have ϱ = 1. Thus, the
approximation ratio is 1+ϱ ln h(U)

opt =1+ln mτθ+T ϑ
opt T . �

VI. EVALUATION

We conduct extensive simulations to evaluate the perfor-
mances of the proposed algorithms. The compared algorithms,
the traces that we used, the simulation settings, and the results
are presented as follows.

A. Algorithms in Comparison

In order to evaluate our algorithms, we implement two other
user recruitment algorithms for comparison: MCUR (Mini-
mum Cost User Recruitment) and MCURP (MCUR with Prob-
abilistic mobility). As we discussed in Section II, our problem
is different from the existing works, previous user recruitment
algorithms cannot be directly applied in our problem. Hence,
MCUR and MCURP are designed, mainly based on the idea
of the most related algorithms in [7], [10]. Both of them start
from an empty user set Φ. In each round, MCUR adds the user
uk, who can maximize the incremental tasks with minimum

cost, i.e.,
|∪ui∈Φ∪{uk}Si|−|∪ui∈ΦSi|

ck
, into the user set Φ, until

all tasks are covered, i.e., ∪ui∈ΦSi=S. In contrast, MCURP
adds the user uk, who can maximize the effective increments
of the probabilities of tasks being processed with minimum
cost, i.e.,

∑m
j=1 min{

∑
ui∈Φ∪{uk} pij ,1}−

∑m
j=1 min{

∑
ui∈Φ pij ,1}

ck
,

into the user set Φ, until the additive sum probabilities of
all tasks being processed reach 1, i.e., min{

∑
ui∈Φ pij , 1}=1

for ∀sj ∈S .

B. The Traces Used and Settings

We adopt the widely-used Cambridge Haggle Trace Set
[13], which has also been used in [10], [21]. This trace set
includes a total of five traces of Bluetooth device connections
by people carrying mobile devices (iMotes) over a certain
number of days. Among the five traces, we use the trace,
generally called Infocom2006, in our simulations, since this
trace contains some fixed nodes. These can be seen exactly as
the PoIs in our model, and it can also provide adequate covers
to these fixed nodes. More specifically, the Infocom2006
trace contains 78 iMotes carried by Infocom 2006 conference
participants and 20 fixed nodes situated at various places in
the conference hotel, such as conference rooms, the bar, the
concierge, and so on.

In our simulations, the set of mobile nodes in the Info-
com2006 trace is mapped to the user set U , and the fixed nodes
are mapped to the PoIs as well as the task set S. Moreover,
we set the sensing cycle τ as an hour. Then, we extract parts
of the trace, and estimate each probability pij and duration
dij according to the trace. In addition, we generate the cost ci
for each mobile user, which is randomly selected from a cost
range [10, 30].

Since the scale of the real trace is very limited, we also
randomly generate some synthetic traces in order to make
our evaluation more convincing. More specifically, |U| is
selected from {100, 200, 300, 400} and |S| is selected from
{20, 40, 60, 80}. Each sensing duration dij is randomly select-
ed from a time range [0.1, 4] minutes, and the sensing cycle
τ is set as one day.
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Fig. 7. Performance comparisons on the synthetic traces with the different costs of users, and different probabilities of users performing tasks.

C. Evaluation Metrics, Methods and Results

The major metrics in our simulations include the total cost
and the successful processing ratio. The total cost is the total
cost that the requester needs to pay to all recruited users. The
successful processing ratio is the ratio of the number of suc-
cessfully processed crowdsensing jobs and all crowdsensing
jobs. Here, a successfully processed crowdsensing job means
that the completion time is no larger than the deadline, and
the total sensing duration is no less than the given threshold.

To evaluate the performances of gDUR, dDUR, MCUR, and
MCURP, we first conduct two groups of simulations by using
the Infocom2006 trace. In the first group of simulations, we set
the deadlines as 10, 15, 20, 25 hours, respectively, and ignore
the constraint of sensing duration by setting D = 0. In the
second group of simulations, we let D=4 minutes. The total
costs and successful processing ratios are depicted in Figs.
5(a)-5(d). When D=0, the dDUR algorithm will be degraded
to gDUR, and thus, they achieve the same results. When D=4
minutes, dDUR has larger successful processing ratios than
gDUR, while gDUR has smaller total costs than dDUR, since
dDUR takes the sensing duration into consideration, so that
it recruits more users than gDUR, resulting in larger total
costs as well as higher successful processing ratios. Moreover,
the results show that gDUR and dDUR have about 96.7%
and 92.4% smaller total costs than MCURP, and also have
about 166% and 227% larger successful processing ratios than
MCUR, respectively. This is because our algorithms take into
consideration both the cost performance and the successful
processing ratio metric.

In addition, we also find that the MCUR algorithm has
achieved even fewer costs than our algorithms. This is because
MCUR does not consider the deadline constraint, so that it
recruits many fewer users than our algorithms. Although it
produces fewer total costs, it also results in very low successful
processing ratios, as shown in Figs. 5(a) and 5(c). Most
crowdsensing jobs cannot be completed before the deadlines.
On the other hand, we also find that the MCURP algorithm
has achieved even larger successful processing ratios than our
algorithms in some simulations. This is due to the reason that,
in order to ensure the additive sum of probabilities of each task
being covered to be larger than 1, MCURP recruits many more
users than our algorithms. Although recruiting more users can
achieve larger successful processing ratios, it also leads to very
large total costs, as shown in Figs. 5(b) and 5(d). Actually, in
some simulations, MCURP even recruits all users, resulting in

low efficiency. In summary, our algorithms demonstrate much
better integrative performances than the compared algorithms.

Second, we also evaluate the performances of the four
algorithms by using synthetic traces. In the first group of
simulations, we set the deadlines as 2, 4, 6, 8 days, respec-
tively, and let D = 0. In the second group of simulations,
we set D = 4 minutes. In these simulations, each ci ∈ C
is randomly selected from [10, 40], and each pij ∈ P is
randomly selected from [0, 0.2]. The total costs and successful
processing ratios are depicted in Figs. 6(a)-6(d). Like the
evaluation over the Infocom2006 trace, the results of both
groups’ simulations show that gDUR and dDUR have about
67.6% and 59.0% smaller total costs than MCURP, and also
have about 12.2 and 17.0 times larger successful processing
ratios than MCUR, respectively, demonstrating much better
integrative performances.

Third, we also conduct two additional groups of simulations
on the synthetic traces by changing P and C. In the first
group of simulations, we let each ci ∈ C be randomly
selected from [10, 20], [10, 40], [10, 60], [10, 80], and pij ∈ P
be randomly selected from [0, 0.1]. In the second group of
simulations, we let each pij ∈ P be randomly selected
from [0, 0.1], [0, 0.2], [0, 0.3], [0, 0.4]. Each ci∈C is randomly
selected from [10, 80]. Moreover, in these simulations, we set
T =6 days and D=10 minutes. The results are shown in Figs.
7(a)-7(d), from which we can derive that gDUR and dDUR
have about 75.0% and 46.2% smaller total costs than MCURP,
and also have about 4.33 and 10.9 times larger successful
processing ratios than MCUR, respectively. Both gDUR and
dDUR demonstrate much better integrative performances than
the two compared algorithms.

VII. CONCLUSION

We study the DUR problem in the probabilistically collab-
orative mobile crowdsensing. First, we formalize this prob-
lem as a set cover problem with non-linear programming
constraints, and prove its NP-hardness. Then, we design a
submodular utility function, based on which we propose
the greedy approximation algorithm gDUR, and derive the
corresponding approximation ratio. Moreover, we extend the
DUR problem to the case, where sensing duration is taken into
consideration, and we propose another approximation algo-
rithm dDUR, followed by the analysis of approximation ratio.
Extensive simulations based on a real trace and a synthetic
trace also verify the performances of the two algorithms.
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Appendix
A. Proof of Theorem 4

We first prove that when |Φ2|−|Φ1|=1, f(Φ1 ∪ {uk}) −
f(Φ1) ≥ f(Φ2 ∪ {uk}) − f(Φ2). Then, we extend it to the
general case where |Φ2|−|Φ1|=w>1.

First, without loss of generality, we let Φ2\Φ1 = {uh}
according to the assumption Φ1 ⊆ Φ2 and |Φ2|− |Φ1| = 1.
To prove the submodular property of f(Φ), we consider the
joint successful processing probability of ∀sj ∈S , which can
be divided into the following three cases:

Case 1: uk cannot process task sj , i.e., uk ̸∈ Uj . For this
case, pkj =0. Then, we have ρ

Φ1∪{uk}
j =ρΦ1

j and ρ
Φ2∪{uk}
j =

ρΦ2
j , according to Eq. 1. As a result, min{ρΦ1∪{uk}

j , τ
T }−

min{ρΦ1
j , τ

T }=min{ρΦ2∪{uk}
j , τ

T }−min{ρΦ2
j , τ

T }=0.
Case 2: uk can process task sj , but uh cannot process this

task, i.e., uk∈Uj and uh̸∈Uj . For this case, phj=0. According
to Eq. 1, ρΦ2

j =ρ
Φ1∪{uh}
j =ρΦ1

j , and ρ
Φ2∪{uk}
j =ρ

Φ1∪{uh,uk}
j =

ρ
Φ1∪{uk}
j . Consequently, we can get min{ρΦ1∪{uk}

j , τ
T }−

min{ρΦ1
j , τ

T }=min{ρΦ2∪{uk}
j , τ

T }−min{ρΦ2
j , τ

T }.
Case 3: Both uk and uh can process task sj , i.e., uk, uh∈

Uj . We divide this case into two sub-cases: pkj ≥ phj and
pkj <phj . According to Eq. 1, pkj ≥ phj means ρ

Φ1∪{uk}
j ≥

ρ
Φ1∪{uh}
j ; otherwise, pkj<phj means ρ

Φ1∪{uk}
j <ρ

Φ1∪{uh}
j .

For the first sub-case, we have ρ
Φ1∪{uk,uh}
j ≥ ρ

Φ1∪{uk}
j ≥

ρ
Φ1∪{uh}
j ≥ρΦ1

j . Then, we can get:

min{ρΦ1∪{uk}
j ,

τ

T
}−min{ρΦ1

j ,
τ

T
}

=



pkj(1− ρΦ1
j ) , τ

T ≥ρ
Φ1∪{uk,uh}
j ;

pkj(1− ρΦ1
j ) , ρ

Φ1∪{uk,uh}
j > τ

T ≥ρ
Φ1∪{uk}
j ;

τ
T − ρΦ1

j , ρ
Φ1∪{uk}
j > τ

T ≥ρ
Φ1∪{uh}
j ;

τ
T − ρΦ1

j , ρ
Φ1∪{uh}
j > τ

T ≥ρΦ1
j ;

0 , τ
T <ρΦ1

j .

(15)

min{ρΦ2∪{uk}
j ,

τ

T
}−min{ρΦ2

j ,
τ

T
}

=min{ρΦ1∪{uk,uh}
j ,

τ

T
}−min{ρΦ1∪{uh}

j ,
τ

T
}

=



pkj(1− ρ
Φ1∪{uh}
j ) , τ

T ≥ρ
Φ1∪{uk,uh}
j ;

τ
T − ρ

Φ1∪{uh}
j , ρ

Φ1∪{uk,uh}
j > τ

T ≥ρ
Φ1∪{uk}
j ;

τ
T − ρ

Φ1∪{uh}
j , ρ

Φ1∪{uk}
j > τ

T ≥ρ
Φ1∪{uh}
j ;

0 , ρ
Φ1∪{uh}
j > τ

T ≥ρΦ1
j ;

0 , τ
T <ρΦ1

j .

(16)

Note that, when τ
T ≥ρ

Φ1∪{uk,uh}
j , we have pkj(1− ρΦ1

j )−
pkj(1−ρ

Φ1∪{uh}
j )=pkjphj(1−ρΦ1

j )>0; when ρ
Φ1∪{uk,uh}
j >

τ
T ≥ρ

Φ1∪{uk}
j , we can get pkj(1− ρΦ1

j )− (τT − ρ
Φ1∪{uh}
j ) =

pkjphj(1−ρΦ1
j )+ρ

Φ1∪{uk,uh}
j − τ

T >0; and when ρ
Φ1∪{uk}
j >



τ
T ≥ ρ

Φ1∪{uh}
j , we can obtain τ

T − ρΦ1
j − ( τ

T − ρ
Φ1∪{uh}
j )=

phj(1− ρΦ1
j )>0, according to Definition 1. Then, comparing

Eqs. 15 and 16, we have: min{ρΦ1∪{uk}
j , τ

T }−min{ρΦ1
j , τ

T }≥
min{ρΦ2∪{uk}

j , τ
T }−min{ρΦ2

j , τ
T }.

For the second sub-case, we have ρΦ1∪{uk,uh}
j ≥ρ

Φ1∪{uh}
j >

ρ
Φ1∪{uk}
j ≥ρΦ1

j . Then, according to Definition 1, we can get:

min{ρΦ1∪{uk}
j ,

τ

T
}−min{ρΦ1

j ,
τ

T
}

=



pkj(1− ρΦ1
j ) , τ

T ≥ρ
Φ1∪{uk,uh}
j ;

pkj(1− ρΦ1
j ) , ρ

Φ1∪{uk,uh}
j > τ

T ≥ρ
Φ1∪{uh}
j ;

pkj(1− ρΦ1
j ) , ρ

Φ1∪{uh}
j > τ

T ≥ρ
Φ1∪{uk}
j ;

τ
T − ρΦ1

j , ρ
Φ1∪{uk}
j > τ

T ≥ρΦ1
j ;

0 , τ
T <ρΦ1

j .

(17)

min{ρΦ2∪{uk}
j ,

τ

T
}−min{ρΦ2

j ,
τ

T
}

=min{ρΦ1∪{uk,uh}
j ,

τ

T
}−min{ρΦ1∪{uh}

j ,
τ

T
}

=



pkj(1− ρ
Φ1∪{uh}
j ) , τ

T ≥ρ
Φ1∪{uk,uh}
j ;

τ
T − ρ

Φ1∪{uh}
j , ρ

Φ1∪{uk,uh}
j > τ

T ≥ρ
Φ1∪{uh}
j ;

0 , ρ
Φ1∪{uh}
j > τ

T ≥ρ
Φ1∪{uk}
j ;

0 , ρ
Φ1∪{uk}
j > τ

T ≥ρΦ1
j ;

0 , τ
T <ρΦ1

j .

(18)

Note that, when τ
T ≥ ρ

Φ1∪{uk,uh}
j , we still have pkj(1 −

ρΦ1
j )−pkj(1 − ρ

Φ1∪{uh}
j ) = pkjphj(1 − ρΦ1

j )> 0; and when
ρ
Φ1∪{uk,uh}
j > τ

T ≥ ρ
Φ1∪{uh}
j , we can get pkj(1 − ρΦ1

j ) −
(τT − ρ

Φ1∪{uh}
j ) = pkjphj(1 − ρΦ1

j ) + ρ
Φ1∪{uk,uh}
j − τ

T >
0, still according to Definition 1. Then, comparing Eqs. 17
and 18, we also have: min{ρΦ1∪{uk}

j , τ
T }−min{ρΦ1

j , τ
T } ≥

min{ρΦ2∪{uk}
j , τ

T }−min{ρΦ2
j , τ

T }.
In summary, min{ρΦ1∪{uk}

j , τ
T } − min{ρΦ1

j , τ
T } ≥

min{ρΦ2∪{uk}
j , τ

T }−min{ρΦ2
j , τ

T } holds for ∀sj ∈S in all cas-
es. Therefore, f(Φ1∪{uk})−f(Φ1)≥f(Φ2∪{uk})−f(Φ2).

Now, we consider the case of |Φ2| − |Φ1| = w >
1. Without loss of generality, we assume that Φ2\Φ1 =
{uh, uh+1, · · · , uh+w−1}. Then, we have f(Φ1 ∪ {uk}) −
f(Φ1) ≥ f(Φ1 ∪ {uk, uh}) − f(Φ1 ∪ {uh}) ≥ f(Φ1 ∪
{uk, uh, uh+1}) − f(Φ1 ∪ {uh, uh+1}) ≥ · · · ≥ f(Φ1 ∪
{uk, uh, · · · , uh+w−1})−f(Φ1∪{uh, · · · , uh+w−1})=f(Φ2∪
{uk})− f(Φ2).

Therefore, f(Φ) is a submodular function.

B. Proof of Theorem 7
1) Note that U is a feasible solution. Hence, we have f(U)=

mτθ
T . Consequently, f(U)≥ mτθ1

T =
∑n

i=1 ci≥opt, where opt
is the cost of the optimal solution of the DUR problem.

2) Without loss of generality, let uh be the user recruited in
the last round of iteration, and the recruited user set (except
uh) of this round be Φ′. Then, we have Φ ⊆ Φ′. Moreover,
there must be at least a task, whose joint successful processing
probability becomes no less than τ

T in the last round of iter-
ation; otherwise, the algorithm would have terminated before.

Let sj be such a task. Then, ρΦ
′

j < τ
T , while ρ

Φ′∪{uh}
j ≥ τ

T .
Moreover, we have:

f(Φ ∪ {ui})− f(Φ)

ci

≥ f(Φ ∪ {uh})− f(Φ)

ch
\\ui is the optimal selection for Φ

≥ f(Φ′ ∪ {uh})− f(Φ′)

ch
\\the submodular property of f(Φ)

≥
θ
(
min{ρΦ

′∪{uh}
j , τ

T } −min{ρΦ′

j , τ
T }

)
ch

≥
θ
(
τ
T − ρΦ

′

j

)
ch

≥
θ2
(
τ
T − ρΦ

′

j

)
ch

≥1. (19)

Therefore, the theorem is correct.

C. Proof of Theorem 10
To prove the submodular property of g(Φ), we compare

min{σΦ1∪{uk}
j ,D}−min{σΦ1

j ,D} and min{σΦ2∪{uk}
j ,D}−

min{σΦ2
j ,D} for ∀sj ∈S .

We first consider the case uk ̸∈ Uj . According to Eq. 7,
we have σ

Φ1∪{uk}
j = σΦ1

j and σ
Φ2∪{uk}
j = σΦ2

j . Thus,
min{σΦ1∪{uk}

j ,D} −min{σΦ1
j ,D} = min{σΦ2∪{uk}

j ,D} −
min{σΦ2

j ,D}=0.
Then, we consider the case uk∈Uj . It is simple to verify that

σΦ
j is an increasing function about Φ. Thus, this case can be

divided into two sub-cases: σΦ1
j ≤σ

Φ1∪{uk}
j ≤σΦ2

j ≤σ
Φ2∪{uk}
j

and σΦ1
j ≤σΦ2

j ≤σ
Φ1∪{uk}
j ≤σ

Φ2∪{uk}
j .

For the first sub-case σΦ1
j ≤ σ

Φ1∪{uk}
j ≤ σΦ2

j ≤ σ
Φ2∪{uk}
j ,

we have:

min{σΦ1∪{uk}
j ,D}−min{σΦ1

j ,D}

=



dkjpkj
T
τ ,D≥σ

Φ2∪{uk}
j ;

dkjpkj
T
τ , σ

Φ2∪{uk}
j >D≥σΦ2

j ;

dkjpkj
T
τ , σΦ2

j >D≥σ
Φ1∪{uk}
j ;

D−σΦ1
j , σ

Φ1∪{uk}
j >D≥σΦ1

j ;

0 ,D<σΦ1
j .

(20)

min{σΦ2∪{uk}
j ,D}−min{σΦ2

j ,D}

=



dkjpkj
T
τ ,D≥σ

Φ2∪{uk}
j ;

D−σΦ2
j , σ

Φ2∪{uk}
j >D≥σΦ2

j ;

0 , σΦ2
j >D≥σ

Φ1∪{uk}
j ;

0 , σ
Φ1∪{uk}
j >D≥σΦ1

j ;

0 ,D<σΦ1
j .

(21)

Comparing Eqs. 20 and 21, we can get min{σΦ1∪{uk}
j ,D}−

min{σΦ1
j ,D} ≥ min{σΦ2∪{uk}

j ,D} − min{σΦ2
j ,D}. Like-

wise, we also have min{σΦ1∪{uk}
j ,D} − min{σΦ1

j ,D} ≥
min{σΦ2∪{uk}

j ,D} − min{σΦ2
j ,D} for the second sub-

case. This means that min{σΦ1∪{uk}
j ,D}−min{σΦ1

j ,D} ≥
min{σΦ2∪{uk}

j ,D}−min{σΦ2
j ,D} holds for ∀sj ∈ S in all

cases. Therefore, g(Φ1∪{uk})−g(Φ1)≥g(Φ2∪{uk})−g(Φ2).
The theorem is correct.


