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1. Introduction

• We are interested in designing a secure routing 
protocol in ad hoc networks

• Cryptographic operations can protect end-to-end 
communications

• Two issues

• Computing power are more and more accessible and 
inexpensive, i.e., encryption is no longer a perfect solution

• Software implementations of cryptographic protocols may be 
seriously flawed (e.g., generating prime numbers)

• Avoidance routing

• Avoiding insecure areas is the primary countermeasure against 
potential adversaries
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Avoidance and Multi-Path

• What is “avoidance” in ad hoc routing?

• Motivations for non-shortest path routing

• Load balancing, energy-aware, congested links, etc.

• How to utilize “multi-path”?

• Improving throughput by parallelizing message transmissions 

• Fault tolerance, e.g., backup paths

• Our definition

• A routing path physically avoids insecure areas

• e.g., malicious countries, compromised nodes, etc.

• We utilize the idea of multi-path with the XOR coding in a very 
different way
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Avoidance Routing

• The avoidance routing problem

• Avoid insecure area that adversaries can eavesdrop on 
communications
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Fig. An insecure area in a graph

An insecure area
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The Adversary Model

• Adversaries are assumed to have unbounded 
computational power

• A nation may spend a large amount of computing and human 
resources in a critical environment, e.g., a battlefield

• Traffic analysis is also of concern

• Perfect secrecy and polynomial secrecy

• An encryption scheme with perfect secrecy is secure against 
adversaries with unbounded computational power

• e.g., the one-time pad, i.e., 𝑐 = 𝑚⊕ 𝑘, where 𝑚 = |𝑘| and the 
key can be used only once

• An encryption scheme with polynomial secrecy is secure 
against adversaries with polynomial amount of compt. power

7



The Adversary Model

• Attack 1: eavesdropping

• Polynomial secure encryptions are assumed not to be safe

• Attack 2: denying message forwarding

• Intermediate nodes can compromise encrypted data and drop 
packets

• The protocol design goals

• A routing path should never contain adversaries

• A routing path should avoid insecure area
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Our Assumptions

1. Known adversaries’ location

• Each node knows binary 
information (if malicious nodes 
are in its transmission range

2. Collusion attacks

• The adversaries in a connected 
component can collude
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Unknown location Known location

Independent likely unlikely

Collusions unlikely likely

Table. Realistic scenario

Fig. Connected components of adversaries



The Performance Bound

• Condition 1: The bounded condition

• A set of adversaries does not consist of a graph cut

• This tells us the upper bound of performance

• No routing protocol can securely deliver messages if there exists a 
graph cut by a set of adversaries

10

Fig. 1. A graph cut

Fig. 2. A path w/o adversaries

An ideal protocol w/ a perfectly 
secure encryption protects 
messages from eavesdropping



The Existing Solutions

• The existing solutions

• Avoidance routing for the internet

• Distance vector-based or beacon vector-based routing

• Condition 2: The safe path condition

• There exists a path s.t. no node on the path has any adversary 
in its neighbors

11Fig. 1. A safe path

All the existing solutions are 

single-path-based, and thus the 

safe path condition dominates 

the upper bound



The Gap

• There is a big gap between the bounded condition and 
the safe path condition

• Any single-path routing with a polynomial encryption scheme 
requires the safe path condition 
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• There is no graph cut by 
a set of adversaries

• There is no safe path 
between 𝑛𝑠 and 𝑛𝑑

Fig. A graph with no safe path
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The Overview of MPAR

• We propose multi-path avoidance routing (MPAR)

• An on-demand protocol
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• The XOR coding

• No common secret

• Perfect secrecy by a one-time pad 
like scheme

• Multi-path

• An adversary cannot recover a 
message unless she wiretaps all 
the paths 𝑚 ∶= 𝑚1⊕𝑚2

𝑚1 ←𝑟𝑎𝑛𝑑 𝐺𝑒𝑛 𝑚
𝑚2 ← 𝑚⊕𝑚1

Fig. The idea of MPAR



Adversary Disjoint Paths

• Definition: adversary disjoint paths

• A set of paths that have no common adversary is said to be 
adversary disjoint paths
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Fig. 1. Adversary disjoint paths Fig. 2. Not adversary disjoint



Adversary disjoint paths 
with collusion attacks

• Adversary disjoint paths with collusion attacks
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Fig. 1. Not adversary disjoint Fig. 2. Adversary disjoint



The Performance Bound of 
MPAR

• Condition 3 : the MPAR condition

• There exists at least one set of adversary disjoint paths 
between the source and destination

• MPAR requires condition 2 or 3
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All the network graphs

Condition 1
The bounded condition

Condition 3
Adversary disjoint paths exist

Condition 2
A safe path exists



The MPAR Framework

1. MPAR (𝑛𝑠, 𝑛𝑑 , 𝑚, 𝑘𝑚𝑎𝑥)

2. Route_Discovery(𝑛𝑠, 𝑛𝑑 , 𝑘𝑚𝑎𝑥)

3. if a safe path 𝑝 is found

4. 𝑛𝑠 sends 𝑚 via 𝑝

5. else if there is adversary disjoint paths P = {𝑝1, 𝑝2, … , 𝑝𝑘}

6. computes 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑘 − 1) by 𝐺𝑒𝑛𝑢( 𝑚 )

7. let 𝑚𝑘 = 𝑚⊕𝑚1⊕𝑚2⊕⋯⊕𝑚𝑘−1

8. 𝑛𝑠 sends 𝑚𝑖 via 𝑝𝑖

9. else

10. routing fails
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# Condition 2 is met
# The single-path mode

# Condition 3 is met
# The k-path mode

# Neither Condition 2 nor 3 are met



The Route Discovery

• The k-path route discovery : (𝑛𝑠, 𝑛𝑑 , 𝑘𝑚𝑎𝑥)

• It consists of the route request and reply phases

• 𝑅𝑅𝐸𝑄𝑘 and 𝑅𝑅𝐸𝑃𝑘, where 𝑘 is path ID

• A set of adversary's IDs are kept in RREQ and RREP

• A path is set up in the reverse order
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The path ID

The source ID

The destination ID

The predecessor ID

The descendant ID

Table. An entry of routing table

Fig. The route discovery



The Route Discovery (Cont.)

• Flooding is repeated until a safe path or a set of 
adversary disjoint paths are found, or the number of 
flooding exceeds 𝑘𝑚𝑎𝑥
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Fig 1. The first RREQ Fig 2. The second RREQ

RREP:  𝐴2

RREP:  𝐴1

RREP:  𝐴2

RREP:  𝐴2



Limitations

• MPAR does not work if an adversary is located in 
proximity of the source and destination

• Probably only the ideal routing protocol with a perfectly secure 
encryption scheme can handle this case

• Or cooperative jamming is required
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• We have not optimized the k-
path discovery yet

• The optimal set is {𝑝1, 𝑝3 }

• The worst case is {𝑝1, 𝑝2, 𝑝3}

Fig. Three paths



The Key Properties

• The cost of the k-path discovery

• MPAR introduces additional flooding cost only when a safe path 
is not found

• The cost of the message transmission cost

• MPAR switches to the k-path routing mode, which requires k 
number of message transmissions, only when a safe path is 
not found
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The Security Property

• The security property of MPAR

• MPAR achieves the perfect secrecy unless a set of adversaries 
obtain all the XORed messages

• The proof is by Shannon’s Theorem

• The encryption scheme over the message space 𝑀 is perfectly 
secure for which 𝑀 = 𝐾 = 𝐶 is perfectly secure if and only if

• Every 𝑘 ∈ 𝐾 is chosen with equal probability 1/ 𝐾 by a random 
generator

• For every 𝑚 ∈ 𝑀 and every 𝑐 ∈ 𝐶, there exists 𝑘 ∈ 𝐾 s.t. the 
encryption scheme outputs 𝑐
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The Security Property (Cont.)

• The proof overview

• Assume that 𝑚 ≔ 𝑚1⊕𝑚2⊕ …⊕𝑚𝑘 are sent out, and MPAR 
achieves the perfect secrecy as long as a set of adversaries do 
not have 𝑚𝑖 for some 𝑖

• 𝑚𝑖 ≔ 𝑚1⊕𝑚2⊕ …⊕𝑚𝑖−1⊕𝑚𝑖+1⊕⋯ ⊕𝑚𝑘 works as a cipher

• The missing part 𝑚𝑖 works as a key

• 𝑚1, 𝑚2, … ,𝑚𝑘−1 are randomly generated, and thus 𝑚𝑘 is random

• => Pr 𝑘𝑒𝑦 = 𝑚𝑖 = 1/ 𝐾

• For every 𝑚 ∈ 𝑀 and 𝑚𝑖 ∈ 𝐶, there exits a unique 𝑚𝑖 s.t.
𝑚 = 𝑚𝑖⊕𝑚

𝑖
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4. Performance Evaluation
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Simulation Configurations

• We compared MPAR with two protocols

• The ideal protocol w/ a perfectly secure encryption scheme 
(The upper bound of avoidance routing performance)

• Greedy-AA (a distance vector-based protocol)
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Parameters Values

Simulation area 800 by 800

Communication range 100

Number of nodes 100 to 400
(4.9 ~ 19.6 neighbors / node)

Percentage of 
adversaries

0 to 10 %
(Adversaries are randomly deployed)

Table. Simulation parameters
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Collusion Attacks
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5. Conclusions

• In this work,

• We study avoidance routing in ad hoc networks

• We derive the bounded condition and the safe path condition

• We propose multi-path avoidance routing (MPAR)

• The XOR cording and k-path route discovery

• The perfect secrecy

• A weaker condition than that required by the existing protocols

• We demonstrate the performance of the proposed scheme by 
simulations

• Future works

• The optimization of a set of adversary disjoint paths and the 
cost of finding k-path
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