

Utility-based Uploading Strategy in Cloud Scenarios

Ziqi Wan, Jie Wu, and Huanyang Zheng

Temple University, Philadelphia, PA, USA

- 1. Introduction
- 2. Problem Formulation
- 3. Models
- 4. Analysis
- 5. Simulation Results
- 6. Conclusions and Future Work

Introduction

- Why do we need to upload tasks to Cloud?
 - Limitation of our own devices

- Powerful Cloud

User's view

- What really matters for users?
 - Time
 - Money

- What does a good scheduler need to do?
 - Balance Time and Money

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

6. Conclusions and Future Work

Problems

- How to save money for users?
 - We rent devices in the Cloud together!
 - However, we need to wait and find enough people to share
- With a limited budget
 - If you want to go quickly, go alone
 - If you want to go far, go together
- Key issue
 - Should I wait for others?
 - How long should I wait?

Simplification

- Balance customers' satisfaction and data center cost
- Simplification (time vs cost):
 - Task Finishing Time → Customers' Satisfaction
 - Running Machines Cost → Data Center Cost

- 1. Introduction
- 2. Problem Formulation
- 3. Models
- 4. Analysis
- 5. Simulation Results
- 6. Conclusions and Future Work

Utility-based VM Model

Utility Cost Model

- Our objective for users:
 - minimize the utility cost.

T

Utility-based VM Model

Utility Cost Model

$$U = f(t) - C$$

- f(t) is the time cost, i.e., f(t) = b at
- C denotes the money cost
- Utility decreases with respect to time

Utility-based VM Model (Cont'd)

- More VMs -> run jobs faster.
- However, the processing speed does not linearly increase with the number of machines.

Figure 5.5: Pentomino

1. Introduction

2. Problem Formulation

3. Models

4. Analysis

5. Simulation Results

6. Conclusions and Future Work

T

Analysis

- Arrival rate estimation
 - Learn the pattern
- Fixed Arrival Rate
 - Easy to solve.
 - No one comes, go alone
 - Crowded users, go together
- Decision under dynamic Arrival
 - Set an observation window
 - Then apply the former idea

Analysis

- In some cases, users only care about the time,
 and pay little attention to the rent price.
 - minimize the time cost first, then consider minimizing the machine rent price.
- In some cases, users only care about the Price
- In general, we want to maximize the utility.
 - We provide a greedy algorithm to make a balance between performance and time complexity.

- 1. Introduction
- 2. Problem Formulation
- 3. Models
- 4. Analysis
- 5. Simulation Results
- 6. Conclusions and Future Work

Simulations

Simulation results of 3 algorithms under hybrid speedup pattern.

Simulations (cont'd)

Trace-based results of 3 algorithms under hybrid speedup pattern.

- 1. Introduction
- 2. Problem Formulation
- 3. Models
- 4. Analysis
- 5. Simulation Results
- **6. Conclusions and Future Work**

Conclusions

- We consider the design and analysis of utility-based scheduler in the cloud environment. Unlike all existing works, we propose the notion of utility for the Virtual Machine management.
- The model presented here opens the door for an indepth study of how to schedule in the presence of phase overlapping. There are a wide variety of open questions remaining with respect to the design of algorithms that minimize response time.

Thank you!

Questions?

huanyang.zheng@temple.edu