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My Research on Network Connections

Interconnection Networks (1988-1998)
> Direct networks (no switch)
o Multistage networks (with 2X2 switches)

MANETSs (1999-2005)
> Topology control (to control density of neighbors)
> Maintaining “long-distance” links based on small world

DTNs (2005-now)
> Mobility control (for contact distribution and location)

DCNSs (2010-now)
> Unifying connection models using servers/switches



Introduction

Three types of connections:
o Server-switch connection (a) Switch

o Switch-switch connection (b) (2) Server-switch connection

o Server-server connection (c)

Two classes of DCNs :
o Switch-centric

> Only server-switch and switch-switch
connections (a and b), no server-server. (b) Switch-switch connection

° E.g., Fat-Tree, Flattened Butterfly

o Server-centric
o Mostly only server-switch and server-server
connections (a and c), no switch-switch. Server Server
> E.g.: BCube, FiConn, DCell (c) Server-server connection

Switch Switch




Introduction

Switch-centric vs. Server-centric

o Server-centric architectures

> Enjoy the high programmability of servers, but servers usually have
larger processing delays than do switches.

o Switch-centric architectures

o Enjoy the fast switching capability of switches, but switches are less
programmable than servers.

> Can we combine the advantages of both categories?



Introduction

Performance vs. Power Consumption

o To provide low end-to-end delays and high bisection
bandwidth

o Large numbers of networking devices are usually used in DCNs.

o E.g., Fat-Tree: three levels of switches; BCube: three or more levels &
extra Network Interface Card (NIC) ports.

> To achieve a low DCN power consumption
o Other architectures use significantly fewer networking devices.
> E.g., FiConn, Dpillar, etc.

> Can we achieve high performances and low power
consumption at the same time?



Introduction

Scalability vs. Flexibility

o Scalability : networking devices, typically the switches, rely on
a small amount of info., which does not increase significantly
over the network size, to make efficient routing decisions.

° Flexibility: expanding the network in a fine-grained fashion
should not destroy the current architecture

o Can we design both scalable and flexible DCN architectures?



Introduction

Contributions

> Unified performance model
> Path length (and hence, diameter)
> Power consumption

> A range of DCN architectures
> Based on different trade-offs

> A new DCN architecture: Fcell
o Situated in the middle of the trade-off spectrum: dual-centric



Unified Performance Model

> Unified Path Length Definition:
dp = 'n'P,wdw + (nP,fU + 1)d'u:

N pqw :# of switches in a path

N p v :# of serversin a path (excluding s and d)
d,, : processing delay on a switch
d, :processing delay on a server

o Unified Diameter in a DCN:

d — dp.
pepy T



Unified Performance Model

> DCN power consumption per server:
pPv = pdcn/N’U — prw/Nv + NnicPnic + D fwd-

Pw

. power consumption of a switch

. # of switches in a DCN

. # of servers in a DCN

: average # of NIC ports each server uses

: power consumption of a NIC port
: whether the server is involved in packet relaying

. power consumption of a server’s packet forwarding




FCell: A Novel DCN Architecture

° Intra-cluster

| ] | ]
° The switches and servers form a simple ODOODO GO
instance of the folded Clos topology (a) The interconnections in one cluster.

o Inter-cluster ;

o Each of the servers in a cluster is
directly connected to another server in
each of the other clusters

> 2 NIC ports and switches with n ports
> n/2 level-2 switches and n |-1 switches
° (n/2)n servers in each cluster s
> Total (n/2)n+1 clusters

(b) Final interconnections of FCell(4).



FCell: A Novel DCN Architecture

> FCell basic properties:

Property 1. In an FCell(n), the number of switches is N,, =
3n(n?+2)/4, and the number of servers is N,, = n*(n*+2)/4.
Proof. There are n*/2 + 1 clusters, each with 3n/2 switches
and n?/2 servers. ]

Property 2. The diameter of an FCell(n) is d = Gdy, + 3d,.

Property 3. The bisection bandwidth of an FCell(n) is B~
N, /4.

Property 4. The DCN power consumption per server of an
FCell(n) is py=3pw/n + 2ppic + Pfwd-



FCell: A Novel DCN Architecture
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FCell: A Novel DCN Architecture

o Detour Routing:

> Randomly select a relay cluster

> Conduct shortest path routing from the source cluster
to the relay cluster

> Then, from a relay cluster to the destination cluster



FCell: A Novel DCN Architecture
> FCell Scalability and Flexibility

> FCell has good scalability due to its high degree of
regularity.

> Switches in FCell only need local information for
packet forwarding.

o Servers only need basic configuration parameters of
FCell for packet forwarding.



FCell: A Novel DCN Architecture

> FCell supports flexibility well, i.e., it allows fine-grained
and incremental growth of its network size.
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(a) Adding one rack of n/2 servers in each cluster.
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(b) Adding the first expanded cluster. (c) Adding the second expanded cluster.
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Comparisons of DCN Architectures

Some existing architectures:
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Comparisons of DCN Architectures

TABLE I
COMPARISON OF VARIOUS DCN ARCHITECTURES
Ny(n=24) | Np(n=48) | Nu /Ny d B v
FDCL(n. 3) 3.456 27.648 5/n 5dwide N./2 5pw/n + Pnic
FDCL(n.4) 11472 663,552 7/n Tdwtde N./2 TPw/T + Pric
FBFLY(4, 7, 3) 19,125 — 8/24 Rdutdy N./3 8pw /24 T Pric
FBFLY(S, 6,6) — 1572.864 8/18 Tduwtdy N./3 8pw /48 T Pnic
FCell(12) 83.232 1.328.256 3/n | 6dutady N, /1 3w /n + 2Pnic + Prud
BCube(n, 3) 331,776 5.308.416 I/n | ddytid, N./2 Tpw/m T Apnic T Pfuwd
SWCube(r, 1) 78812 685,464 2/n | 5dwtody | (No/8) X r/(r —1) 20w/ T 2Pnic T Pluwd
DPillar(n, 4) 82.044 1.327.104 2/n | 6dutbd, N, /4 2w /7 + 2Pric + Pfuwd
DCell(n, 2) 360,600 5,534,256 1/n | 4dutidy | > No/(dlog, Ny) Pw/n + 3pnic + Pfuwd
FiConn(n, 2) 24,648 361,200 1/n | ddwtidy > Ny /16 Pw/n + Tpnic/d + 3p fuwa /A
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Comparisons of DCN Architectures
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Simulation

We conduct simulations on FCell for both random traffic and bursty traffic.
o Average Path Length (APL)

> Average Delivery Time (ADT)

Simulations for random traffic:
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Fig. 4. Aggregate throughput, APL and ADT vs. No. of flows (random traffic).



Simulation

Simulations for bursty traffic:
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Fig. 5. Aggregate throughput, APL and ADT vs. No. of flows (bursty traffic).



Conclusions

o A unified path length definition and a unified power consumption
model for general DCNs

o Enabling fair and meaningful comparisons

o A novel DCN architecture, FCell, which serves as a good example of
a tradeoff design in three aspects

o Performance and power, switch-centric and server-centric designs, and
scalability and flexibility

o A new class of DCNs, that can be regarded as dual-centric, with
FCell as an example

o Two basic routing schemes
o Performance under different traffic conditions



Future Work

o More in-depth simulation
o Different flows
o Different bursty modes

o Simulation of some real applications

o Support for overlay networks

Questions can be sent to:

dawei.li@temple.edu

jiewu@temple.edu
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