
SEA: Stable Resource Allocation in Geographically
Distributed Clouds

Sheng Zhang†, Zhuzhong Qian†, Jie Wu§, and Sanglu Lu†
†State Key Lab. for Novel Software Technology, Nanjing University, China
§Department of Computer and Information Sciences, Temple University, USA
†zhangsheng@dislab.nju.edu.cn, {qzz,sanglu}@nju.edu.cn, §jiewu@temple.edu

Abstract—Today’s public cloud providers typically deploy
their small sized data centers in multiple geographically different
locations, so as to improve data center power usage effectiveness
and locate resources closer to users. A major challenge is resource
allocation. Many results have been reported regarding this issue
from the perspectives of virtual machine consolidation, network-
aware virtual machine placement, traffic engineering, dynamic
capacity provisioning, and so on. However, there has not been any
focus on stable resource allocations, where no resource request
or data center has any migration incentives. To the best of our
knowledge, this paper is the first attempt at gaining a better
understanding of the structure of the Stable rEsource Allocation
(SEA) problem. We introduce a formal problem statement and
develop two algorithms for the 1-dimensional (1-D) and 2-D cases,
respectively. Simulation results show that the proposed algorithms
have good scalability and convergence.

I. Introduction

Over the past few years, cloud computing has been gaining
more and more traction in both academia and industry. It
is changing the way we access and retrieve information [1].
In traditional business applications, not only are the amount
and variety of hardware and software required to run them
daunting, but a large team of experts is also employed to install,
configure, update, and secure them. Cloud computing helps us
get rid of those headaches by shifting them to cloud providers.

In this paper, we consider resource allocation in distributed
clouds. Most of today’s public cloud providers deploy their
computing resources in a number of geographically different
locations in a wide-area network. Such a distribution has
several desirable properties. First, it helps cloud providers
utilize heterogeneities of both carbon footprints and electricity
costs to achieve energy-efficient request routing and traffic
engineering [2]. Second, it can locate resources closer to users
and increase availability of cloud-computing resources [3].

There has been extensive research on allocating resources
in cloud computing environments [2–6]. For example, Wang
et al. [4] consolidate virtual machines based on bin pack-
ing; Zhang et al. [6] characterize workload and machine
heterogeneities for dynamic capacity provisioning; and so
on. However, most of prior work focuses on energy saving,
and seldom consider the stability issue in geographically-
distributed clouds.

When there are multiple distributed small sized data centers
and multiple resource requests, it cannot be avoided that each
one has a preference list over the opposite entities. That is,
for a particular data center, it may prefer one resource request
over another. For example, a data center with ample bandwidth

favors communication-intensive requests; a high-performance
data center prefers computation-intensive requests. A resource
request may prefer data centers with small latencies. If we
allocate resources without respecting these preferences, the
allocation would be not stable, in the sense that a pair of
data center and resource request may be appealing to each
other. Then, such a data center may want to release one or
more resource requests that are placed in it, as to admit the
attractive request; such a resource request may want to migrate
to or be reallocated in the attractive data center. Furthermore, a
single release or migration may have a cascading effect: more
releases and migrations arise. Such instability not only wastes
(and crowds) the precious infrastructure resources, but also
elongates the completion times of tenants’ applications.

In this paper, we study the stable resource allocation prob-
lem between multiple geographically distributed clouds and
multiple resource requests from tenants. To better understand
the structure of the SEA problem, we first consider 1-D SEA
in which only the CPU resource requirement is taken into
account, and we design a polynomial-time solution based
on the famous proposal algorithm for the stable marriage
problem. We further incorporate virtual network embedding
techniques into our solution to deal with 2-D SEA. Experi-
mental results confirm the scalability and convergence of the
proposed solutions. We believe it is important to explore how
we can deal with resource allocation to best meet realistic
needs. The contributions of this paper are twofold.

1) To the best of our knowledge, this is the first attempt
that considers stability in allocating resources between
multiple tenants and data centers. We provide a detailed
and proper (from our perspectives) problem definition.

2) We develop two solutions for 1-D and 2-D SEA, respec-
tively. Simulation results demonstrate the scalability and
good convergence of the proposed algorithms.

The remainder of this paper is organized as follows. We go
over existing related work in Section II. Section III introduces
the notations and problem formulation. Then, in Sections IV
and V, we present our solutions for 1-D and 2-D SEA,
respectively. Simulation results are presented in Section VI.
Section VII concludes the paper.

II. RelatedWork

The research in this paper builds on prior work related to
resource allocation in clouds, virtual network embedding, and
the stable marriage problem.

Resource allocation in clouds. The ability to provide
efficient resource allocation is central to cloud computing.
A large body of resource allocating algorithms have been
proposed in the past [2–6]. Bin packing-based virtual machine
consolidation with dynamic bandwidth demand was investi-
gated in [4]. Network-aware virtual machine placement was
considered in [5] and [3], where the authors leveraged graph
partition and cluster techniques to minimize average traffic
latency caused by network infrastructure. HARMONY [6] is a
heterogeneity-aware resource management system for dynamic
capacity provisioning in cloud environments. FORTE [2] fo-
cuses on traffic engineering to maximize data center power
usage effectiveness; it dynamically controls the fraction of
user-generated traffic directed to each data center in response
to changes in carbon footprint and electricity price, which are
location specific. Different from prior work, we try to explore
the stability issue in resource allocation in clouds.

Virtual network embedding. Virtual network embed-
ding [7] is to embed virtual networks with resource constraints
in substrate networks, so as to efficiently utilize substrate re-
sources. To cope with its NP-completeness [8], meta-heuristic-
based algorithms were designed in [9, 10]. The study of
embedding with unlimited substrate resources was conducted
in [11], in which load balancing and reconfiguration are
also considered. Substrate supports for path splitting were
envisioned in [12]. A subgraph isomorphism detection-based
embedding algorithm was proposed in [13]. Linear program-
ming and deterministic/randomized rounding-based algorithms
were developed in [14] to deal with virtual networks with lo-
cation constraints. Topology-awareness was incorporated into
embedding in [15, 16]. Opportunistic resource sharing-based
embedding was investigated in [17]. Some other works [18, 19]
have designed several excellent virtual network models which
allow tenants to explicitly specify networking requirements,
along with CPU needs, to achieve predictable application
performance in clouds. Existing virtual network embedding
algorithms can serve as basic sub-procedures in the 2-D
version of our problem.

Stable marriage problem. In the classic stable marriage
(SM) problem [20] with n men and n women, each person
is associated with a strictly ordered preference list containing
all the members of the opposite sex. A matching is stable if
and only if there is no man-woman pair, both of whom have
the incentive to elope. In its extensions, the preference list
could be incomplete or contain ties. Two major variants of
SM are the stable roommates problem and hospitals/residents
problem [21]. For more details about SM, see [22].

III. Problem Statement

In this section, we first present the distributed cloud archi-
tecture and resource requests, then we introduce an important
notation—preference list; finally, we formulate the Stable
rEsource Allocation (SEA) problem.

A. Distributed Cloud Architecture

As we mentioned earlier, today’s public cloud providers
typically deploy their small sized data centers in multiple
geographically different locations. Compared with centralized
cloud architectures, such a distribution is appealing to both
cloud providers and tenants.

Data center DC1
A

D C

12

1010

s

B
10

12

1212

r

q

10
G F

66

E

10

1010
6

Data center DC2

s r

55

q

10

1010
5

v u

33

t

6

66

h k
33

2

Request R1 Request R2 Request R3

t

h
uv

k

Fig. 1. An example of distributed clouds, resource requests, and an allocation
plan. The resource capacity/demand is written next to the respective node or
link that represents it. The dashed brown lines indicate a stable allocation
plan. The dashed red lines represent the details of placing resource requests
in data centers.

For cloud providers, instead of storing and running all
tenants’ applications in one large data center, they can place
different kinds of resource demands in different small data
centers to achieve energy-efficiency. For example, given a re-
source demand that is computation-intensive, a cloud provider
may want to allocate the corresponding amount of resources in
a data center which has the smallest carbon/computation ratio.

For tenants, the access latency is the main factor that
influences their experiences. Through allocating resources in
a data center that is closest to a tenant, distributed cloud
architecture indeed reduces the tenant-perceived access latency.

In this paper, we assume that there are N small sized data
centers, say DC1, DC2, and DCN . Each small data center
DCi is modeled as a weighted undirected graph, DCi =
(N p

i , E
p
i ,C

p
i , B

p
i), where N p

i and Ep
i are the sets of physical

machines (PMs) and communication links, respectively; Cp
i is

the set of CPU capacities, and Bp
i is the set of bandwidth

capacities. We would regret not mentioning that our model
can be translated into several novel intra-data-center architec-
tures, e.g., fat-tree [23], VL2 [24], and BCube [25].

In Fig. 1, there are 2 small data centers: DC1 is composed
of 4 physical machines and 4 links, while DC2 contains 3
physical machines and 2 links. The CPU (resp. bandwidth)
capacity of each machine (resp. link) is written next to the
respective node (resp. edge) that represents it. For example,
the CPU capacity of physical machine B is 12.

B. Resource Requests

Following prior work in predictable data center network-
ing [18, 19] and network virtualization [12, 14], we allow
tenants to specify not only their CPU demands but also
networking demands. In other words, the resource demands
from a tenant form a virtual network.

We assume that there are M resource requests, say R1, R2,
and RM . Each resource request R j is represented as a weighted

undirected graph, R j = (N j, E j,C j, B j), where N j and E j are
the sets of virtual machines (VMs) and virtual communication
links, respectively; C j is the set of computational resource
demands, and B j is the set of networking resource demands.

Take R1 in Fig. 1 for example, it consists of 2 virtual ma-
chines interconnected by a virtual link. The resource demand
of each virtual machine (resp. link) is also written next to the
respective node (resp. edge) that represents it.

C. Preference List

A high-performance data center prefers computation-
intensive requests; a data center with ample bandwidth favors
communication-intensive requests. A resource request prefers
data centers with small latencies. In this paper, we capture
such a kind of preference in the notation of preference list.

Each resource request R j is associated with a strictly
ordered preference list PR j containing all the N data centers.
The rank of DCi in the preference list of R j is denoted as
PR j (DCi). If R j prefers DCh to DCk, we write DCh ≻R j DCk.
For example, in Fig. 1, if PDC1 = {R2,R1,R3}, then we have
PDC1 (R2) = 1, and R1 ≻DC1 R3. A similar notation is used for
data centers’ preferences.

D. The Stable rEsource Allocation (SEA) Problem

Before presenting the SEA problem, we first give two
formal definitions: allocation plan and blocking pair.

Definition 1: (Allocation Plan). Let DC be the set of N
data centers and R be the set of M requests; an allocation
plan is a many-to-one correspondence φ : R → DC. When
φ(R j) = DCi, we say R j is placed in DCi.

Fig. 1 shows an allocation plan, where φ(R1) = DC2,
φ(R2) = DC1, and φ(R3) = DC2.

Definition 2: (Blocking Pair). A pair (R j,DCi) of resource
request and data center is a blocking pair in an allocation plan
φ if (i) R j is not placed in DCi, (ii) R j is either unplaced or
prefers DCi to φ(R j), and (iii) DCi is either under-utilized or
prefers R j to the worst request placed in it.

Then, SEA can be formulated as follows: given N data
centers and M resource requests, find an allocation plan
without any blocking pairs.

The reader could check that the allocation plan in Fig. 1
is stable, as there is no blocking pair. Let us look at another
allocation plan φ′: φ′(R1) = DC1, φ′(R2) = DC2, and φ′(R3) =
DC1. In φ′, (R2,DC1) forms a blocking pair, because (i) R2 is
not placed in DC1 in φ′, (ii) R2 prefers DC1 to DC2, and (iii)
DC1 prefers R2 to the worst request placed in it, i.e., R3.

We make three remarks. First, following the existing
work [12, 14], we assume that one VM maps to one PM.
When a tenant wants to deploy multiple VMs in one PM,
we can treat all these VMs as one large VM by summing up
their requirements. Second, the resource capacity should not
be violated when placing resource requests in data centers.
For example, after we placed R2 in DC1 (i.e., s is placed
in A, q is placed in B, and r is placed in C), there is no
way to place either R1 or R3 in DC1 unless violating resource

Data center DC1 Data center DC2

Request R1 Request R2 Request R3
6 units of CPU 30 units of CPU 18 units of CPU

48 units of CPU 30 units of CPU

Fig. 2. An illustration of 1-D SEA. The dashed brown lines indicate a stable
allocation plan. Note that this plan is different from that in Fig. 1.

capacities. Third, if there is not sufficient physical resources,
some requests may end up with no placement.

In order to have a better understanding of SEA, we
first study the 1-dimensional (1-D) case, where only CPU
resource/demand is considered, then we study the 2-D case
with the experience obtained from 1-D SEA.

IV. 1-D SEA

A. The Intuition

The 1-D SEA only considers the computing re-
source/demand, therefore, we further define residuali as the
amount of residual computing resource in DCi, that is,
residuali =

∑
n∈N p

i
Cp

i (n); similarly, denote by demand j the
amount of computing resource demand from R j, that is,
demand j =

∑
n∈N j

C j(n). Fig. 2 shows the 1-D version of
the example in Fig. 1. For instance, residual2 = 30, and
demand3 = 30.

Different from the classical stable marriage problem [20]
and its variant hospital/resident (HR) problem [21], 1-D SEA
has an additional resource constraint. In this sense, the HR
problem can be seen as a special (homogeneous) case of 1-D
SEA where all requests have the same resource demand.

For the SM problem with n men and n women, Gale and
Shapley designed the famous proposal algorithm [20], which
can be briefly stated as follows. All men and women are
initialized to be unmarried. In each step, an arbitrary unmarried
man m proposes to his highest ranked woman w to whom he
has not yet proposed. If w is also unmarried or w prefers m
to her current partner m′, then they become engaged (and m′
becomes unmarried). Since each man proposed to each woman
at most once, the algorithm terminates in n2 proposals, at most,
in the worst case.

However, the proposal algorithm does not apply to our
1-D SEA. This is due to heterogeneity—different resource
requests have different amounts of resource demands. For a
data center, the release of a low-priority resource request may
allow the data center to admit not only the current request but
also the previously rejected requests. We illustrate this using
an example. Suppose that the preference list of a data center
DC with a capacity of 10 is Rc ≻DC Ra ≻DC Rb; the resource
demands of three requests Ra, Rb, and Rc are 9, 5, and 2,
respectively. After Ra is placed in DC, we find that Rb cannot
be placed at DC, because (i) the residual resource in DC is not
sufficient for Rb, and (ii) DC prefers Ra to Rb. Then, we try to
place Rc in DC. Since Rc ≻DC Ra, we should release Ra and
place Rc in DC. If we directly apply the proposal algorithm to

Algorithm 1 Allocation algorithm for 1-D SEA
1: Input: PDCi and residuali for i = 1, ...,N;

PR j and demand j for j = 1, ...,M
2: Output: φ that is stable
3: let φ(R j)← 0 for each R j
4: let api ← ∅ store the placed requests in each DCi
5: let changed ← true
6: while changed do
7: changed ← f alse
8: for j = 1 to M do
9: if φ(R j) , 0 then continue

10: for k = 1 to N do
11: let DCidx be PR j [k]
12: if residualidx > demand j then
13: insert R j into the ordered apidx
14: residualidx ← (residualidx − demand j)
15: φ(R j)← idx, changed ← true
16: break
17: else
18: h← findASubset(apidx,R j)
19: if h ≤ 0 then continue
20: let S ← { apidx[h], apidx[h +

1], ..., apidx[apidx.length]}
21: apidx ← apidx \ S
22: insert R j into the ordered apidx
23: residualidx ← (residualidx−demand j+∑

Rx∈S demandx)
24: φ(Rx)← 0 for all Rx ∈ S
25: φ(R j)← idx, changed ← true
26: break
27: end if
28: end for
29: end for
30: end while

31: Sub-procedure: findASubset(apidx,R j)
32: let release← 0
33: for h = apidx.length to 1 do
34: released ← released+ (demand o f apidx[h])
35: if DCidx prefers apidx[h] to R j then return 0
36: if released + residualidx ≥ demand j then return h
37: end for
38: return 0

our case, this is the final result, because the algorithm tries to
place each request in each data center at most once. However,
we notice that the previously rejected request, namely, Rb,
could be also placed together with Rc in DC.

B. The Solution

Based on the aforementioned argument, we design the allo-
cation algorithm for 1-D SEA, as shown in Alg. 1. Generally
speaking, Alg. 1 runs in multiple rounds; the flag variable
changed indicates whether there is any change in the allocation
plan, and the algorithm terminates when there are no changes
between the allocation plans of two consecutive rounds.

Specifically, in the initialization phase (lines 3-5), all
requests are set to be unplaced; the ordered set api stores the
requests that are placed in DCi; we denote by api[h] and PR j [i]
the h-th element (i.e., resource request) in the ordered set api

and the i-th element (i.e., data center) in the preference list
of R j, respectively. During the main loop (in each round), for
each unplaced request, we check whether it could be placed
in each data center in its preference list. For R j and DCidx,
if the residual resource in DCidx is more than the demand of
R j (line 12), we insert R j into the ordered DCidx, and make
some necessary updates (lines 13-15). Otherwise, we check
whether R j could be placed in DCidx through releasing a subset
of placed requests, which are less favorable than R j to DCidx
(lines 18-25). The sub-procedure findASubset returns such a
subset, if it exists (lines 31-38). As apidx is ordered, findA-
Subset first checks (i) whether DCi prefers apidx[apidx.length]
to R j, and (ii) whether the remove of apidx[apidx.length]
releases sufficient resources; then, findASubset incrementally
adds apidx[apidx.length−1], apidx[apidx.length−2], ..., apidx[1]
into the subset for checking. After such a subset is identified,
we remove this subset of requests from apidx (lines 20-21),
insert R j into the ordered DCidx, and make some necessary
updates (lines 22-25).

Correctness. We can briefly prove the correctness of Alg. 1
by contradiction. Suppose that (R j,DCidx) is a blocking pair in
the resulting φ. According to our algorithm, we check whether
R j can be placed in DCidx before checking whether R j can be
placed in φ(R j) (lines 10-11), but DCidx cannot admit R j, which
implies that, DCidx prefers the worst request placed in it to R j,
contradicting the definition of blocking pair.

Complexity. The algorithm terminates when there are
no changes between the allocation plans of two consecutive
rounds, which implies that the number of unplaced resource
requests decreases by at least one in a round. So the total
number of rounds is at most M. In each round, for each request,
the algorithm checks whether each data center in its ordered
preference list could admit the request: the insertion (line 13 or
21) takes O(M) time, and the sub-procedure takes also O(M)
time. Putting them together, the total time complexity of Alg. 1
is O(M · M · N · (max(M, 2M))) = O(M3N).

V. 2-D SEA

In 2-D SEA, we denote by RCp(n) and RBp(e) the residual
resource of a physical machine n and a physical link e,
respectively. For example, in Fig. 1, after placing R2 in DC1,
we have RCp(A) = RCp(B) = RCp(C) = 2, RCp(D) = 12, and
RBp(AB) = RBp(BC) = RBp(CD) = RBp(DA) = 5.

2-D SEA allows tenants to specify their networking re-
quirements along with CPU demands. The resources require-
ments from a tenant then form a virtual network. We are no
longer able to place or release a resource request by addition or
subtraction. The key challenge is how to place a 2-D resource
request (in the form of a virtual network) into a data center.
This is similar to virtual network embedding problem [7],
which is proven to be NP-Complete [8].

Following our previous work [16, 17], we propose a simple
greedy approach for placing a 2-D resource request in a data
center, shown in Alg. 2. The basic idea is to first deploy
virtual machines, then use the shortest paths between phys-
ical machines to embed virtual links. In the virtual machine
embedding phase (lines 3-12), we first sort virtual and physical
machines in Q and T , respectively; then, we try to place each
virtual machine from the head to the end of Q in the first

Algorithm 2 Placing a 2-D request in a data center
1: Input: a 2-D request R j = (N j, E j,C j, B j), and the current

state of a data center DCi = (N p
i , E

p
i ,RCp

i ,RBp
i)

2: Output: a successful placement or a rejection
3: for all np ∈ N p

i do unused(np)← 1 end for
4: let Q← sorted N j with increasing C(n)
5: let T ← sorted N p

i with increasing RCp(np)
6: for k = 1 to Q.length do
7: let h← 1
8: while RCp(T [h]) · unused(T [h]) < R(Q[h]) do h++

end while
9: if h > T.length do return a rejection

10: place Q[i] in T [i]
11: unused(T [i])← 0
12: end for
13: for all e ∈ E j do
14: place e in the shortest path between the respective

physical hosts with a sufficient bandwidth
15: end for
16: return a successful placement

physical machine that has a sufficient amount of resource. In
the virtual link embedding phase (lines 13-15), we place each
virtual link in the shortest path between the respective physical
hosts with a sufficient bandwidth.

The allocation algorithm for 2-D SEA is similar to Alg. 1;
we only have to replace lines 12 and 17 in Alg. 1 with Alg. 2-
based codes. We briefly summarize Sections IV and V by
providing a few remarks.

Tenant-optimality. Based on the research results about
SM [20], our algorithms are actually tenant-optimal, since
we can see the algorithms as sequences of proposals from
tenants to cloud providers. By ‘tenant-optimal’ we mean that,
every tenant gets the best possible data center among all stable
allocation plans. Reversing the directions of proposals, we can
get provider-optimal algorithms.

Provider-tenant-equalness. Given a SEA instance, the
number of stable allocation plans could be exponentially
many [26]. A natural question arises: how to evaluate a
plan? There are several criteria, including regret, egalitarian,
and equalness. We are interested in provider-tenant-equalness,
where we want to find an allocation plan that fairly treats
providers and tenants. The provider-tenant-equalness problem
minimizes the following objective:

equalness(φ) =
∑

(R,φ(R)∈φ)

PR(φ(R)) −
∑

(R,φ(R)∈φ)

Pφ(R)(R)

And this optimization problem is NP-hard [27].

Incomplete preference list. In a distributed clouds envi-
ronment, a single entity cannot obtain all the global informa-
tion. Thus, a tenant’s preference list may contain only a part
of all small sized data centers. In this case, we can slightly
modify our definitions of block pair and stable allocation plan
without major changes. The proposed solutions, with a slight
modification, can be applied to find a stable allocation.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

 3

 5

 7

 9

 11

 13

 15

 17

 19

 21

 23

 25

 27

R
u

n
n

in
g

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
 x

1
0

0
)

N
u

m
b

e
r

o
f

ro
u

n
d

s

The number of resource requests (x1000)

Running time
Number of rounds

(a) Running time and number of
running rounds

 8000

 8100

 8200

 8300

 8400

 8500

 80 82 84 86 88 90 92 94 96
 0.87
 0.88
 0.89
 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99
 1

#
 o

f
p

la
c
e

d
 r

e
q

u
e

s
ts

It
s
 p

e
rc

e
n

ta
g

e

of resource requests (x1000)

of placed requests
Its percentage

(b) Number of successfully placed
requests and its percentage

Fig. 3. Scalability evaluation

VI. Numerical Results

In this section, we evaluate the performance of the pro-
posed algorithms and make some remarks.

A. Simulation Setup

We assume that there are N = 100 small sized data centers.
We vary the number of resource requests (i.e., M) from 1,000
to 10,000, and see the impact of M on the running time and
number of running rounds. The preference list of each data
center and each resource requests is a random permutation
of the opposite entities. In 1-D SEA, the capacity of each
data center is uniformly generated between 400 and 500, and
the demand of each resource request is uniformly generated
between 2 and 10.

In 2-D SEA, we construct the topology of each data center
as follows: the number of physical machines is determined
by a uniform distribution between 50 and 100, and each
pair of physical machines is connected with a probability of
0.6; after we generate such a topology, we check whether
it is connected; if it is not, we just regenerate it until we
get a connected topology. The topology of each resource
request is obtained in a similar way, except that the number
of virtual machines is between 2 and 10, and each pair of
virtual machines is connected with a probability of 0.5. Both
CPU and bandwidth capacities in data centers are generated
uniformly from the interval between 50 and 100. Both CPU
and bandwidth demands in resource requests are generated
uniformly from the range between 2 and 10.

B. Simulation Results

We provide the results from 1-D SEA. The results of 2-D
SEA are similar, and are omitted due to space limitations.

Running time and number of rounds. Fig. 3(a) shows how
the running time and the number of running rounds changes
by varying the number of resource requests. We note that, the
running time increases slowly when M is relatively small, and
fast when M is larger than 7,000. There are two main reasons
behind this phenomenon. One is that, the time complexity
of Alg. 1 is upper bounded by O(M3N), and the other is
that, since N is fixed, when the number of requests increases,
the number of running rounds also increases, as shown by
the green line in the same figure. These results demonstrate
the good scalability and quick convergence of the proposed
algorithm. This property provides us with a randomized Monte
Carlo algorithm for 1-D SEA: we just truncate Alg. 1 after a
fixed amount of running time, then return the allocation plan.

 0

 500

 1000

 1500

 2000

1-
10

11-
20

21-
30

31-
40

41-
50

51-
60

61-
70

71-
80

81-
90

91-
100

#
 o

f
ra

n
k
s
 i
n

 t
h
a
t
ra

n
g
e

The rank

Fig. 4. Quality of allocation from the perspective of requests

Number of successfully placed requests and its percentage.
In Fig. 3(b), we see that the number of resource requests
goes up from 8,400 to 9,600, and the number of successfully
placed requests stays almost unchanged. We also find that, the
percentage of successfully placed requests decreases when the
number of requests increases from 8,000 to 9,600, because the
fixed amount of physical resources can only admit about 8,400
resource requests.

Quality of allocation. We evaluate the quality of allocation
from two perspectives. From the viewpoint of requests, we
want to see how many requests are finally placed at their
most favorable data centers, respectively? How many requests
are finally placed at their second most favorable data centers,
respectively? and so on. Fig. 4 shows the simulation results
where there are 9,000 requests. We notice that, about 2,000
requests are placed at their top-10 most favorable data centers;
about one-third of all requests are placed at their top-30 most
favorable data centers. Similarly, Fig. 5 shows the results from
the viewpoint of data centers. We see that, about 20%/80%
of requests are placed at data centers which consider these
requests as their respective top-50/top-200 most favorable re-
quests. These results confirm the high quality of the allocation
plans generated by the proposed algorithms.

Overall, we admit that comparing our solutions to alterna-
tives is necessary, and a more precise definition of quality of
allocation is required. We leave them as future work.

VII. Conclusions

In this paper, we give a formal problem statement and
propose scalable solutions for 1-D and 2-D SEA. Numerical
results show that our algorithms converges quickly. In future
work, we intend to take the quality of stability (e.g., egali-
tarian, equalness, etc.) into account, and will also attempt to
incorporate incomplete preference lists into our scenario.

Acknowledgements

We thank the ICC reviewers for feedback on earlier drafts of the paper.
This work was supported in part by NSFC Grants (61073028, 61202113,
61321491, and 91218302), Key Project of Jiangsu Research Program Grant
(BE2013116), Jiangsu NSF Grant (BK2011510), Research and Innovation
Program for Jiangsu Graduates Grant (CXZZ12 0055), Program A for
Outstanding PhD candidate of Nanjing University (201301A08), US NSF
grants (ECCS 1128209, CNS 1065444, CCF 1028167, CNS 0948184, and
CCF 0830289), and EU FP7 IRSES MobileCloud Project Grant (612212).

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” ACM CACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being
green,” in ACM SIGCOMM 2012.

 0

 500

 1000

 1500

 2000

1-
50

51-
100

101-
150

151-
200

201-
250

251-
300

301-
350

351-
400

401-
450

451-
500

#
 o

f
ra

n
k
s
 i
n

 t
h
a
t
ra

n
g
e

The rank

Fig. 5. Quality of allocation from the perspective of data centers

[3] M. Alicherry and T. Lakshman, “Network aware resource allocation in
distributed clouds,” in IEEE INFOCOM 2012.

[4] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in IEEE INFOCOM 2011.

[5] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM 2010.

[6] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony:
Dynamic heterogeneity-aware resource provisioning in the cloud,” in
IEEE ICDCS 2013.

[7] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[8] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, Computer Science Department, Carnegie Mellon University.

[9] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM CCR, vol. 33, no. 2, pp. 65–81,
2003.

[10] S. Zhang, Z. Qian, S. Guo, and S. Lu, “FELL: A flexible virtual network
embedding algorithm with guaranteed load balancing,” in IEEE ICC
2011.

[11] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in IEEE INFOCOM 2006.

[12] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM CCR, vol. 38, no. 2, pp. 17–29.

[13] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in ACM VISA 2009.

[14] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM TON, vol. 20, no. 1, pp. 206–219, 2012.

[15] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM CCR, vol. 41, pp. 38–47, April 2011.

[16] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An opportunistic resource sharing
and topology-aware mapping framework for virtual networks,” in IEEE
INFOCOM 2012.

[17] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” in IEEE TPDS, DOI:
10.1109/TPDS.2013.64.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in ACM SIGCOMM 2011.

[19] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is
change: incorporating time-varying network reservations in data centers,”
in ACM SIGCOMM 2012.

[20] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[21] K. Iwama and S. Miyazaki, “A survey of the stable marriage problem
and its variants,” in IEEE ICKS 2008.

[22] D. Gusfield and R. W. Irving, The stable marriage problem: structure
and algorithms. MIT press Cambridge, 1989.

[23] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM 2008.

[24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in ACM SIGCOMM 2009.

[25] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: a high performance, server-centric network architecture
for modular data centers,” in ACM SIGCOMM 2009.

[26] R. W. Irving and P. Leather, “The complexity of counting stable
marriages,” SICOMP, vol. 15, no. 3, pp. 655–667, 1986.

[27] A. Kato, “Complexity of the sex-equal stable marriage problem,” Japan
Journal of Industrial and Applied Mathematics, vol. 10, no. 1, pp. 1–19,
1993.

