DABKS: Dynamic Attribute—based
Keyword Search
in GCloud Computing

Baishuang Hu I, Qin Liu 1, Xuhui Liu 11, Tao Peng [2I, Guojun Wang [,
and Jie Wu [

[1] Hunan University, China

[2] Central South University, China
[3] Guangzhou University, China
[4] Temple University, USA




Outline

m_ Scheme description

m_ Experimental results

E_ Conclusion




Introduction




m to its fast deployment and scalability, cloud computing has become a
significant technology trend. Organizations with |imited budgets can achieve great
flexibility at a low price by outsourcing their data and query services to the
cloud. Since the cloud is outside the organization's trusted domain, existing

research suggests encrypting data before outsourcing to preserve user privacy.

Two main problems that the cloud user faces while searching over encrypted data are
how to achieve a fine—grained search authorization and how to efficiently update
the search permission. The existing attribute-based keyword search (ABKS) scheme
addresses the first problem, which allows a data owner to control the search of the
outsourced encrypted data according to an access policy. However, the research on how
toefficiently update the search permission is relatively little. J



I Scheme description:

* The attribute-based keyword search (ABKS) scheme utilized attribute-based encryption (ABE)
to achieve fine-grained search authorization for public-key settings.

* In ABKS, each keyword w;, is associated with an access policy 4P, and each search token 1s associated
with a keyword w; and a set of attributes S. The data user can search the file only when her attributes
satisfy the access policy, denoted as § <4P, and w; = w;.

I Drawback of ABKS:

e ABKS never considered the problem of a dynamic access policy for keywords.

e If AP is changed to AP’, the data owner needs to re-encrypt the relevant keywords with AP’ so that

only the users whose attributes satisfy AP"' have search permission. For frequent updates on a large
number of files, the workload on the data owner is heavy.




I In this paper, we focus on solving the policy updating problem in the ABKS
scheme, and propose a dynamic attribute—based keyword search
(DABKS) scheme by incorporating proxy re—encryption (PRE) and a
secret sharing scheme (SSS) into ABKS.

Instead of retrieving and re—encrypting the data, data owners
only send a policy updating query to the cloud server, and the
cloud server can update the policy of the encrypted data without
decrypting it. Our scheme can can largely reduce the workload on
the data owner by delegating the policy updating operations to

the cloud.



I 1. To the best of our knowledge, this is the first attempt made
to devise a dynamic access policy for fine—grained search

authorization in a cloud environment.

2. The proposed DABKS scheme can largely reduce the workload on
the data owner by delegating the policy updating operations
to the cloud.

3. We conduct experiments on real data sets to validate the

effectiveness and efficiency of our proposed scheme.






The system is composed of the following parties: the cloud users, the cloud
service provider (CSP), and a trusted third party (TTP).

* The cloud users, who pay the services
residing on the cloud or deploy their own
applications/systems in the cloud, can be — p&;wupdme_
further classified into data owner and
data user. The data owner outsources the c E_
encrypted data and keywords to the cloud 7 pado“nﬂﬁnuymedmesas
and authorizes multiple data users to
access them. The data user will retrieve
data of interest according to a keyword-
based search.

~. & CSP
e The CSP operates the cloud platforms, (issuing credentials \Aa*""
which provide not only the storage and for cloud users) Data user
search services, but also perform policy
updating operations on behalf of the data
owner.

e The TTP is responsible for issuing
credentials to all cloud users.



The access policy AP can be depicted as an access tree T where each interior node
denotes a gate and each leave node is depicted as an attribute. In T, each node x is

associated with a threshold value k. For the interior node x with N children, k = 1
when x is an OR gate, and k, = N,  when x is an AND gate. For all l|eave nodes, the
threshold value is 1. Let lev(T) denote leave nodes in T. If x lev(T), att(x) is

used to denote the attribute associated with node x. Furthermore, T defines an ordering
between the children of each node, and parent (x) and index(x) return the parent and the
order number of diddeessmliCy; (Aesphdtihely.

Gr=3x+0C

c=g;(0)=0
qpa’srx (a) ( [ ndex ( a))

=g;()=3+0
9 parens( »(Index(D))
=¢,(2)=6+0

(a) Sample access tree (b) Sample tree implementation




Secret Sharing Scheme(sss)

-

*To share the secret Oin T, the SSS generates A = {q.(0)} . <, as follows:

SSS( O, T') —A. A random polynomial g, of degree k, — 1 1s chosen for gr(0) = 0. The
rest of the points in g, are randomly chosen. For each node x € T, a random polynomial g,
of degree k, — 1 is chosen for ¢,(0) = g, (index(x)). The rest of points in g, are chosen
randomly. To recover the secret , the@sers with sufficient secret shares can perform

_

Lagrange interpolation recursively.



Scheme description




Working process of DABKS scheme

* Figure on the right shows the working

process of the DABKS scheme, where Cloud user PK 1xe PK CSP
“ Init >
algorithms GenKey, EncFile, and Decrypt SK GeIK
I " 14 nKe
related to ABE are used to preserve file i === }: _________________
privacy. g L EncW
: , e | EncFile
e Since our workfocuses on preservin Z ‘ ~ ULl }yewiiCrirea
p g 2
keyword privacy and query privacy, we omit T [ GenUpd
the construction of the following algorithms L ___________________________________________ Exelpd
: . \ Ky
in this paper : Init, KeyGen, EncKW, . : KeyGen
S | TokenGen Tok, >
TokenGen, Search, GenUpd, ExeUpd. 2 h
) Hep w}weWi’CIﬁ}Search(Tokw,cph,,)ﬂ Search
v' GenUpd algorithm generates an update g -
key UK for policy updating. || Decrypt
v ExeUpd algorithm updates the original R et SEEEEEREEREER TR

ciphertext cph,, to new ciphertext cph’,, .



I Description of problem:

The policy updating is a difficult issue in attribute-based access control systems, because once the data owner
outsourced the data into the cloud, it would not keep a copy in local systems. When the data owner wants to
change the access policy, it has to transfer the data back to the local site from the cloud, re-encrypt the data
under the new access policy, and then move it back to the cloud server. By doing so, it incurs a high

communication overhead and heavy computation burden on data owners.

I Our work:

developing a new method to outsource the policy updating to the cloud server.



Four basic operations involved in

policy updating

Att20R Att2AND

adding an attribute adding an attribute

to an OR gate. to an AND gate.

removing an attribute removing an attribute

from an OR gate. from an AND gate.

AttRmOR AttRmAND



(b)Att2AND and AttRmAND

Our scheme expresses the access policy AP as
an access tree and transforms the problem of
updating an AND/OR gate in AP to that of
updating a threshold gate.

For example, the AND gate is transformed to
(t,t) gate, and the OR gate is transformed to
(1,t) gate. Therefore, the updating of the
AND gate can be treated as updating (¢ t)
gate to (t’ ,t’ ) gate, and the updating of
the OR gate can be treated as updating (7,t)
gate to (I,t” ) gate, where t' =t + 1 for
adding an attribute to the AND/OR gate and t

I4 —_

= t — 1 for removing an attributes from
the AND/OR gate.



Att20R:

v'Given ¢x(0) and the new access policy AP
” . the data owner runs SSS to generate

new shares {g” ,(0),q” ,(0),q” ,(0)} for
attributes A, A, A;.

a’ ,0=q" ,©)=q" ,(0)=¢x0)
v'The ciphertexts for the original attributes will
not be changed.i.e., C',=C,, C',=C,.

v'For the newly added attribute A,, the data owner
needs to generate a new ciphertext C'; based on g

”.(0).

v'The CSP will add the new ciphertext C'; to the
cph,, , and update the access tree by adding A,
under node R.

acess policy: (A; VvV A»)

E ()

\4

4 parenga) (Index(a))
=gy()=0
9 parengs) (Index(b))
=qz(2)=0

9 pwenta) (Index(a))
=g:()=0
9 parengs) (Index(b))
=g(2=0
q pam(c)(lndex(c))
=q;3)=0




Att2AND:

»Given qi(0) and the new access policy
AP’ , the data owner runs SSS to
generate new shares {q’ ,(0),q” ,(0),q
7 .(0)} for attributes A, A, A,.

GenUpd algorithm to
update key UK for

»Executing the
generate the
attributes A, A,.

» For the newly added attribute A,, the data

owner needs to generate a new ciphertext C';
based on g~ _(0).

»The CSP will execute the ExeUpd algorithm
to update the ciphertext C, to C', C, to C',,
add the new ciphertext C';5 to the cph,, , and
update the access tree by adding A; under node

R.

acess policy: (A; /\ Ay)

B (A
(&)

3+0

\Y
acess policy: (A; /\ Ay/\NA3)

5+0

& ® ® O

Gy =3x+0
0=¢3(0)=0

Dparensa)(INdex(a))
=q()=3+0

=¢,(2)=6+0

gp=3x"+2x+0

e °'=43(0)=‘7

q parenfa) (I ndex(a))

6+0| FC =g;()=3+2+0=5+0
o @ qnm(b)(l"d“(b))

=gz =12+4+0=16+0
4 sarengc) (Index(c))
=g;(3)=27+6+0=33+0







I In this section, we will analyze the performance of our DABKS scheme. Our
experiments are conducted with Java programming language. We implement our scheme on a local

machine with an Inter Core 15 CPU running at 3.2GHz and 8 GB memory.

I » The parameter setting in the experiments is as fol lows:

the number of attributes under a updating gate node m ranges from 1 to 50

» For the Att2AND and AttRmAND operations, the access policy is set as AP =
(A, ANAAN AR

> For the Att20R and AttRmOR operations, the access policy is set as AP
(A, VA,V..VA_)



In ABKS, once the access policy is changed, the data owner needs to re—encrypt the relevant
keywords with the new access policy and to send the new ciphertexts to the cloud.

The basel ine denotes the re—encryption cost on the data owner in ABKS.

The execution time of the GenlUpd algorithm is shown in Figure 5. For the four basic operations involved in
policy updating, the execution time in our scheme are smaller than those in basel ine.

The experiment results prove that the cloud user should outsource the keyword search and policy
update operations to the CSP in order to take full advantage of the CSP's vast computation

capabilities. Therefore, the workload of the data user will be largely reduced.
3 : - 25 :
—+—Baseline(Att2AND) —+Baseline(Att20R)
2 5| ~v-Baseline(AtRmAND) i -v-Baseline(AttRmOR)
|-=-Our scheme(Att2AND) o 2|-a-Our scheme(Att20R) i
2{~*~Our scheme(AttRMAND)| - ! -%-Qur scheme(AttRmOR)
O - ¥ 15}
215 1 £
[ F o1t
1 L
0.5l 05
o : - : = 2 x ¢
0 10 20 30 40 50 % 10 20 30 40 50
m m

(a) Att2AND and AttRmAND (b) Att20R and AttRmOR
Fig. 5. Execution time (in seconds) for GenUpd.






-

»In this paper, we propose a DABKS scheme to simultaneously achieve fine—
grained search authorization and efficient update of access policy. Our scheme
takes full advantage of cloud resources by delegating policy update operations
to the CSP.

»Experiment results verify its feasibility and effectiveness. However, the

DABKS scheme supports only the single-keyword search.

» As part of our future work, we will try to extend our scheme to a multi-keyword search scenario,
which supports conjunctive, subset, and range queries on encrypted outsourced data. I






