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Abstract

This paper presents a low-communication overhead and high-performance data parallelism

implementation of the Everglades Landscape Fire Model (ELFM) in a network of worksta-

tions (NOWs). ELFM is parallelized under Message Passing Interface (MPI). Checkpointing

and rollback technologies are used to handle the spread of �re which is a dynamic and ir-

regular component of the model. A parallel application model with the mixture of a variety

of asynchronous and synchronous computation is developed. In this model, the asynchronous

computation is dominant and synchronous computation is intermittent. The length of each syn-

chronous computation also varies. Based on the developed model, a synchronous checkpointing

mechanism is used in the parallel ELFM code under MPI. A simulation is conducted and results

show that the performance of the ELFM under MPI is signi�cantly enhanced by the application

of checkpointing and rollback.
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1 Introduction

With the advance of the network technology, network computing has entered into the main
stream of solving scienti�c problems. Network computing is a process whereby a set of work-
stations connected by a network work collectively to solve a single large problem. As more and
more organizations have already had high-speed networks/switches interconnecting many general-
purpose workstations, the combined computational resources may exceed the power of a single
high-performance computer. This trend has gained su�cient popularity to establish a new paral-
lel processing paradigm: Network of Workstations (NOWs) [5]. A local area network (LAN) is a
widely used network structure in a NOWs. Since LAN technology was not initially developed for
parallel processing, communication overheads among workstations are still quite high [5]. This has
placed severe constraints on obtaining high performance in a NOWs. The unacceptable perfor-
mance of parallel Everglades Landscape Fire Model (ELFM) program using the network parallel
programming environment Express is such an example [7].

The Everglades landscape is a vast freshwater marsh in South Florida and is one of the largest
subtropical wetlands in the world. Fire has been an important ecological process in the Everglades
and a primary factor shaping the Everglades vegetation patterns [9]. We cannot fully understand
the Everglades without understanding the function of �re. Unfortunately, �re is a di�cult process
to experimentally manipulate, especially at a landscape level. This is because that the spread of
�re is dynamic and probabilistic in nature. Computer simulation can reduce the time it takes
to evaluate impacts and understand ecosystem dynamics. An Everglades Landscape Fire Model
(ELFM) was developed to understand �re behavior in Water Conservation Area 2A (WCA 2A) in
the Everglades. Figure 1 shows the geographical location of WCA 2A in the Everglades landscape.

Computer simulation can be applied to evaluate impacts and understand ecosystem dynamics.
In order to speedup the simulation process, ELFM has been parallelized using Express [7] under
several platforms such as UNIX workstations, CM-5 supercomputers, and Macintosh transputers.
The parallel ELFM code has also been ported from Express to Message Passing Interface (MPI) [3].
The study in [1] shows that the major reason for the poor performance of the parallel ELFM code
is the interprocessor communication overhead. It is also shown that the process synchronization
consumes a huge portion of CPU time. In parallel ELFM simulation, when a �re occurs in land-
scape, it spreads. If a �re occurs near a boundary area of a subdomain simulated by a processor, it
will spread to an adjacent subdomain that is simulated by a di�erent processor. In this situation,
data exchange is needed to simulate the process of �re spreading that acrosses the boundary of one
subdomain to another. It is required that this data exchange be performed at the same simulation
time step through process synchronization.

According to the �re behavior in landscape, the probability of �re occurrence is relatively small.
Even when a �re occurs in a subdomain which is simulated by a processor, it may not be necessary
to synchronize all the processors unless the �re spreads to other subdomains simulated by other
processors. The main purpose of this study is to provide an e�cient mechanism to support this
type of parallel applications. Speci�cally, we try to enhance the performance of the parallel ELFM
code, with MPI as its parallel programming environment, by using the checkpointing and rollback
technique. The traditional checkpointing and rollback are generally used to address fault tolerance
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Figure 1: The geographical location of WCA 2A in the Everglades landscape.

issues [2]; however, we use them solely for the performance enhancement purpose in this study.
The interval between two adjacent checkpoints (also called checkpoint interval) is adjustable. The
heavy interprocessor communication can be reduced by a proper selection of the frequency of process
synchronization among processors.

This paper is organized as follows: Section 2 discusses the current status of ELFM. Section
3 overviews several checkpointing and rollback techniques in NOWs. An approach which aims to
reduce the heavy interprocessor communication overhead is discussed in Section 4. This approach
is based on the checkpointing and rollback techniques. Section 5 presents the results of this study
and shows on the improved performance of the parallel ELFM code using MPI. Section 6 concludes
this paper.

2 The Current Status of ELFM

The ELFM code was used to simulate �re in WCA 2A of the north Everglades shown in Figure 1.
The WCA 2A landscape, with area of 43,281 ha, is a mosaic of sawgrass marshes, sloughs, shrub
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while(time in year not reaching the end of year) f
while(time in day not reaching the end of day in a year) f

while(time in hour not reaching the end of a day) f
update fuel moisture hourly between rains;
daily rainfall and lightning simulation;
wind speed and directions simulation;
if(�re ignites a cell) f
change the simulation time step from hours to minutes;
check adjacent cells to see if there is enough heat to ignite the fuel

and time needed to spread to the adjacent cells;
while(�re is burning) f

check the adjacent cells to see if �re is going to
spread to the adjacent cells;

add newly ignited �res;
possible �re spotting simulation;

g
g

g
g

g

Figure 2: Algorithm 1: Fire spreading and spotting simulation in serial ELFM code.

and tree islands, and invasive cattail communities. The ELFM code simulates �re on a large spatial
scale with a �ne resolution of 20m � 20m which, in terms of grid cell, comes to 1755 � 1634. A basic
assumption in the ELFM is that it is a spatial model with mostly nearest neighbor interactions
except �re spotting, that is, a �re jumps from one area to another. Fire spreading is a special
case in which a �re jumps (spreads) to its adjacent areas. Each cell is homogeneous, i.e., the same
computation and communication structure is used. The model is designed as a parallel program
with the ability to compile and run on UNIX workstations, the CM-5 supercomputers, and Mac
Transputers without any change in code.

In the ELFM code, the time step of �re spreading and spotting simulation is in minutes and the
fuel level is updated every hour. Process synchronization is performed on a daily base. Therefore,
�re spreading and spotting simulation is computational intensive. The basic algorithm of the �re
spread and spotting simulation in the serial ELFM code is shown in Figure 2

Because �re spreading and spotting is dynamic and probabilistic in nature, a good distribution
(also called load balancing) of workload is di�cult. The parallel ELFM code was initially ported
directly from Express to MPI without any signi�cant changes. However, the performance of the
parallel ELFM code is unsatisfactory due to the interprocessor communication overhead [1]. The
purpose of process synchronization is to make data consistent in simulation time space when data
exchange between adjacent processors is needed. In Everglades landscape, the probability of �re
occurrence is small. Even a �re occurs and spreads in the landscape, it usually a�ects a small part
of the landscape rather than the entire landscape. If a �re does not spread to another subdomain
which is simulated by another processor, there is no need to exchange data among processors in
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Figure 3: Examples of �re spread in landscape in ELFM.

this case. The �re spot A in Figure 3 shows such an example. The shadowed region is the e�ective
computational domain and region is divided into four subdomains. Data exchange is only needed
when a �re spreads across the boundary of a subdomain to another subdomain. In this case, �re
spot A does not across to the neighbor subdomains. The �re spot B in Figure 3 shows an example
in which a �re spot goes across to one of its neighbor subdomains.

The early version of the parallel implementation of the ELFM code uses a pessimistic approach.
Process synchronization through collective communication is performed at each simulation step
(either in minutes or in hour) even when there is no �re in the landscape. Since interprocessor
communication overhead is still quite high in NOWs architecture, poor performance of the parallel
ELFM code using this pessimistic approach can be expected. By analyzing the ELFM code, we
have found that the occurrence of �re spreading is rare. We can use checkpointing combined with
rollback techniques to enhance the performance of the parallel ELFM code. Data exchange is
treated as message passing among processors in the speci�c NOWs. No message passing among
processors are needed in regular simulation steps. Checkpoint (a set of local states) is made at
a regular interval. Process rolling back to its checkpoint is needed when a �re spreads to its
neighboring subdomains to keep simulation data consistent. This kind of approach is optimistic in
nature.

One issue we need to address is process synchronization. In parallel/distributed computing,
a barrier [10, 4] is used to perform this type of task. A barrier is a synchronization point in a
parallel program at which all processes participating in the synchronization must arrive before any
of them can proceed further. It is usually implemented as a function which may or may not take
an argument. Once a process has called this function, it will not return until every other process
has called it. Another type of process synchronization is one-sided communication. One-sided
communication is extremely useful in the parallel ELFM code. Using one-sided communication,
process synchronization is performed only when data exchange is needed and such synchroniza-
tion is called conditional process synchronization. Unfortunately, the implementation of one-sided
communication is still unavailable, we have to �nd another way to implement conditional process
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Figure 4: (a) Processes rollback in a 4-processor group. (b) Synchronize processes before message
exchange.

synchronization. This issue will be discussed in Section 4.

3 Checkpointing and Rollback

In distributed systems such as NOWs, a global state is de�ned as a collection of local states,
one from each processor in the NOWs. The checkpointing method [8, 6] is used to determine the
global state. During the process execution, each processor periodically checkpoints its state by
storing its execution state information into a stable storage such as a hard disk. Checkpointing
is generally used in reliability study. In such an application, system states are stored regularly as
checkpoints. When a failure causes an inconsistent state in the distributed system, it can rollback to
a previous consistent state by simply restoring a prior checkpointing state. This rollback process is
also known as rollback recovery. In ELFM, rollback recovery is needed when a global state becomes
inconsistent, as in the case when a �re acrosses boundary of a subdomain, all the processors need
to restore a previous state which is stored in the latest checkpoint.

A strongly consistent set of checkpoints consists of a set of local checkpoints such that no
information 
ow takes place between any pair of processors during the interval spanned by the
checkpoints. Checkpointing can be either synchronous, asynchronous, or a combination of both.
Another choice is whether or not to log messages that a processor sends or receives. For parallel
applications such as ELFM, synchronous checkpointing is the best choice since message exchange
must be performed at the same physical process evolution time. Clearly, checkpoints produced by
synchronous checkpointing form a strongly consistent set.

In the parallel ELFM code, we use checkpointing combined with rollback to enhance the per-
formance of the program. To simplify our discussion, we consider an example of a NOWs consists
of four workstations and the problem domain of the ELFM is partitioned into four subdomains
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Figure 5: (a) Rollback with multiple message exchanges between a checkpoint interval. (b) Syn-
chronous and asynchronous computations of an application in a NOWs with 4 workstations.

with each subdomain assigned to one distinct workstation. It can be easily extended to a gener-
alized case with n workstations in a NOWs. Figure 4(a) shows a typical rollback process. The
horizontal parallel lines represent the simulation time space (rather than the physical time space)
in each processor. The vertical dotted lines represent synchronous checkpoints. d is the checkpoint
interval, which is a constant in our simulation. The black dot on each horizontal line represents
the simulation time step of the corresponding subdomain at the current physical time. Since each
processor may have di�erent workloads and di�erent processing speed, if there is no process syn-
chronization, the actual simulation time step at di�erent processors may also be di�erent. This
means that processors run asynchronously. The cross sign (�) in Figure 4(a) means that a �re
occurs in processor P2 and it is going to spread across the boundary of the subdomain (referred to
as message exchange). All the processors rollback to their most recent checkpoints. After that, pro-
cessors resume simulation from that checkpoint but still in the asynchronous mode. When reaching
the time that message exchange is needed (the start of �re spreading and spotting simulation),
all processors are synchronized and then perform message exchanges. This point is known as the
synchronization point. Since a checkpoint is also a synchronization point, if a processor reaches a
checkpoint while other processors are still behind this checkpoint, this processor is blocked for other
processors to catch up. There exist several optimization methods, like lazy rollback (i.e. rolling
back just the subdomains involved). However, they would not improve speedup, since it is based
on the completion time of the last processor that �nishes its simulation.

The shaded area in Figure 4(b) represents the period that the processors simulate �re spread-
ing and spotting concurrently in the synchronous mode. After the completion of simulation on �re
spreading and spotting, all the processors switch back to the asynchronous mode. The completion
point of synchronous computation is logged as an new checkpoint. The checkpoint based on the
checkpoint interval d is referred to as the regular checkpoint. Checkpoints 1, 2, and 4 in Figure 4(b)
are regular checkpoints. The checkpoint immediately after the completion of synchronous compu-
tation is referred to as the dynamic checkpoint. Checkpoint 3 in Figure 4(b) is such an example.

6



Figure 5(a) shows the di�erence between regular and dynamic checkpoints. When multiple
message exchanges are needed (because of multiple �res) in a regular checkpoint interval, all the
processors rollback to their most recent dynamic checkpoints, restore their consistent states there,
and resume simulation similar to those shown in Figures 4(a) and 4(b). If processors rollback to
their most recent regular checkpoints, all the processors will enter into an in�nite loop between
the regular checkpoint1 and the point of the current �re in Figure 5(a). By applying dynamic
checkpointing, we avoid such in�nite loops. Clearly, if there is no �re spreading and spotting during
the simulation, only regular checkpoints are used. In the next section, we propose an algorithm
based on the checkpointing and rollback mechanisms and show its application in parallelizing the
ELFM code using MPI.

4 The Proposed Approach

This section introduces a low-communication overhead model based on checkpointing and rollback
mechanisms. We begin with an analysis of the simulation time, discuss several relevant collective
communication functions provided by MPI, and use checkpointing and rollback to parallelize the
ELFM code.

Basic idea. The goal of developing a parallel version of a model is to allow a simulation to
run in much less time than an equivalent serial version with the same numerical accuracy. By
distributing workload over several processors, the amount of time taken to perform computation
on an individual processor will be reduced. However, additional interprocessor communication and
synchronization overheads make the program spend more time on simulation. Whether a parallel
algorithm is successful or not depends on an appropriate balance between these two factors.

For parallel simulation in a NOWs, each workstation is assigned certain portion of the workload
and works independently. We can name this kind of computation as asynchronous computation.
However, when a neighbor interaction (such as �re spreading and spotting) occurs near the bound-
ary of the subdomain simulated by a workstation, data exchange between workstations must be
performed in order to make the result consistent. The corresponding workstations exchange data
using the message passing mechanism, and data exchanges always occur at the same simulation
time. Therefore, process synchronization is needed. This type of computation can be viewed as
synchronous computation. The length of synchronous computation varies with time based on the
duration of �re spreading and spotting. Figure 5(b) illustrates this type of application in a NOWs
with four workstations.

When the computational load on each processor is low, if process synchronization is performed
at every simulation step, it is obvious that interprocessor communication overhead will be large.
The longer the checkpoint interval, the less the simulation time. However, if a �re spreads to
adjacent subdomains simulated by other processors during the interval, the simulation time will
increase. This is because the rollback process will force the system to return to an early state
that has already been simulated. Therefore, more simulation time is needed. If we reduce the
process synchronization interval, synchronization time will be wasted if there is no �re spreading
and spotting to other subdomains at each checkpoint interval. The purpose of this study is to
choose the checkpoint interval in order to gain a maximum possible speedup.
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In order to keep consistent data, each processor needs to know the maximum number of simula-
tion steps for each burning �re in the entire landscape, not just in the subdomain simulated by the
local processor. MPI collective communication functions such as MPI Allgather and MPI Allreduce

are used to collect the maximum number of simulation steps in the NOWs. Since the interprocessor
communication in the current MPI implementation is sender/receiver based, the above mentioned
collective communication functions synchronize the processors while collecting information. There
is no need to use MPI Barrier, a synchronization function in MPI, to perform the process synchro-
nization.

The performance of a parallelized program can be referred to as speedup, which is the ratio
of the computation time for a sequential computation to that of a parallelized version of the
same computation. The theoretical speedup of a computation is proportional to the number of
processors used in the computation. Since UNIX is a multiuser/multitask operating system, the
elapsed physical execution time varies between individual runs. However, the CPU time dose not
change. We use the CPU time to measure the performance of the parallel ELFM program.

Proposed approach. The ELFM is a program that involves a small amount of computation,
but with huge amount of interprocessor communication if all the processes are synchronized at
each simulation iterative step (in minutes). The most common approach for the parallelization
of a spatial model like ELFM is data parallelism. This method decomposes the two-dimensional
data domain of the ELFM into several subdomains, and each subdomain is stored on a separate
processor. Each processor is only responsible for the speci�c subdomain that is assigned on it. A
major issue arises in the data parallelism approach is how to maintain consistent data among the
processors in the NOWs. The ELFM is a generic ecosystem \unit" model. Each element in the
map needs the information on the adjacent elements to determine the state of the next iterative
step during the process of simulation. Thus, unit elements lie on the borders of a processor must be
able to communicate with unit elements on the borders of the adjacent processors at each iterative
time step. In the present parallel implementation of the ELFM, each two-dimensional data domain
is divided into n subdomains, and each subdomain is assigned to one processor. In order to handle
the interprocessor communication among the adjacent processors, each subdomain is equipped with
four additional cell edge strips with one from each of the four neighboring subdomains. Figure 6(a)
shows the data con�guration in the parallel ELFM. When a �re spreads across boundaries of
subdomains simulated by processors in the NOWs, the adjacent processors exchange the adjacent
cell edge strips by interprocessor communication to maintain consistent data set in the parallel
ELFM.

The previous study [1] of the parallel ELFM code indicated that the synchronous computation is
needed only when there are data exchanges between adjacent processors, which is needed only when
a �re acrosses the boundary to another subdomain simulated by a di�erent processor. Checkpoint-
ing is an ideal choice to improve the performance of the parallel ELFM code. Since data exchange
among processors is performed at the same simulation time step, synchronous checkpointing will
be the best choice. In our simulation, the synchronous checkpointing interval is measured by days.

The interprocessor communication in the current version of MPI is a two-sided communica-
tion. It is invoked at both sender and receiver sides. Regular send-receive communication requires
matching operations by sender and receiver. This message-passing communication achieves two
e�ects: communication of data from sender to receiver and synchronization of sender with receiver.
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Figure 6: (a) Submap with edge cell strips. (b) Rollback information stored in �les in a 4-processor
NOWs.

However, in the parallel ELFM code, when a �re spreads across the boundary of a subdomain,
only the processor that holds that subdomain has the information needs to be sent. This means
that data to be transferred to other processors are available only on one side. It would be better
if we could transfer data to other processors asynchronously. That is, sending data whenever it is
ready and reading data when needed. The current MPI interprocessor communication functions
always include send/receive pairs. Even the MPI nonblocking operations cannot meet our require-
ments. We have to use another way to realize this type of asynchronous one-sided interprocessor
communication.

SunMicrosystems' Network File System (NFS) is a convenient choice. NFS is a remote �le access
mechanism de�ned in the UNIX operating system. NFS allows applications on one computer to
access �les on a remote computer as if it is a local �le. In the parallel ELFM code, data need
to send out can be stored into �les in a hard disk. Processors read these �les when needed. By
doing so, unnecessary interprocessor communications can be avoided, and therefore, it provides an
e�ective means to implement process synchronization.

During the process of simulation, each processor keeps a set of 
ags which are referred to as
rollback 
ags. This 
ag set stores the status information of all the processors in a NOWs. Each

ag set is stored as a data �le in the hard disk and the size of the 
ag set is equal to the number
of processors in the NOWs. These �les are referred to as the rollback �les. The number of �les
is also equal to the number of processors. The position of a rollback 
ag for a speci�c processor
in the �le matches the processor id of that processor. Reading and writing operations on �les are
performed based on rules described in Figure 6(b): Each processor reads the complete rollback 
ag
set from the �le assigned to it. However, processor Pi only updates rollback 
ags which store the
rollback information of this particular processor. That is, the ith position of all the data �les in
Figure 6(b). This kind of operations can be expressed as \reads in row and writes in column". The
rollback 
ag set is checked by a processor on a daily base.
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while(time in year not reaching the end of year) f
while(time in day not reaching the end of day in a year) f

if(time in day reaches checkpoint) f
log the day of checkpoint as idayck;

g
while(time in hour not reaching the end of a day) f

update fuel moisture hourly between rains;
daily rainfall and lightning simulation;
wind speed and directions simulation;
if(�re ignites a cell) f
change the simulation time step from hours to minutes;
check adjacent cells to see if there is enough heat to ignite the fuel

and time needed to spread to the adjacent cells;
if(�re spread across boundary) f
set rollback control 
ag to y and save it to �le;
log the current day as idayst and save it to a �le;
set data exchange 
ag to true;
rollback to the previous checkpoint;
restore global state at checkpoint;

g
else f

after current day simulation, each processor reads
rollback information from �les;

if(rollback 
ag is set to y) f
read the minimum idayst from starting time �les;
rollback to the most recent checkpoint and restore states; g

if(time in day reaching the day of checkpoint) f
store a copy of state as a checkpoint;
log the regular checkpoint as idayck; g

g

Figure 7: Algorithm 2: Parallel ELFM code with checkpointing and rollback.

Just before a �re spreads across the boundary to another subdomain simulated by a di�erent
processor, the processor executing the current simulation sets its rollback 
ag to true and updates
the data �les which store the rollback 
ag set. This processor also creates a starting time �le that
stores the time at which the �re begins to spread across the boundary to other subdomains simulated
by other processors. Then this processor rollbacks to its most recent checkpoint. It restores the
saved state of that processor at the checkpoint and resumes simulation from the checkpoint in the
asynchronous mode. However, it switches to the synchronous mode once it reaches the starting
time.

The operations for those processors which do not initiate the rollback process are described
as follows: These processors read the rollback 
ags from the rollback 
ag �les. If they �nd that
some of these 
ags are set to true, these processors reset them back to false. They also select the
minimum starting time from the corresponding starting time �les. These processors then rollback
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while(�re is burning) f
if(process synchronization 
ag is set)
synchronize processes each time step in minutes;
if(data exchange 
ag is set and time in day is idayst)
exchange data on the boundary of subdomain;
check the adjacent cells to see if �re is going to

spread to the adjacent cells;
add newly ignited �res into consideration;
possible �re spotting simulation;
update simulation time in minutes;

g
g
if(synchronous computation completed) log current day as idaybk;

g
if(process synchronization 
ag is set) synchronize processes each day;
if(time in day reaches idayck or idaybk) log the global states in main memory;
g

g

Figure 8: Algorithm 2: Parallel ELFM code with checkpointing and rollback (continued).

to their most recent checkpoints, restore their states at the checkpoints, and resume the simulation
in the asynchronous mode. However, these processors will switch to the synchronous mode once
their simulation time reaches the minimum starting time they read from starting time �les. All
processors will change back to the asynchronous mode once the current �re stops. The mechanism
that resets rollback 
ags back to false avoids the in�nite loop that may occur in the parallel ELFM.
If the 
ag is not set to false, after the synchronous computation, the processors read the rollback

ag set again and get an incorrect conclusion that message exchange is needed. In order to keep the
stored data up-to-date, the fsync function in UNIX should be called each time when data writing
is performed. fsync forces the UNIX operating system to 
ush data in memory bu�er to a hard
disk.

The algorithm for �re spreading and spotting simulation used in the parallel ELFM code with
checkpointing and rollback mechanisms is shown in Figures 7 and 8, where regular checkpoint is
represented by idayck and the dynamic checkpoint is represented by idaybk. idayst is the starting
time where processors enter into synchronous mode. In the proposed approach, the states of
the most recent checkpoint are stored in the processor's main memory. The size of the data is
3� 1755 � 1634=n, where n is the number of processors in the NOWs.

5 Results and Discussion

The parallel ELFM using the proposed approach is implemented using MPICH, which is an MPI
implementation provided by Argonne National Laboratory. The computing environment is a Sun
Sparc V workstation NOWs running Solaris. These workstations are interconnected by a 10 Mbits
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Figure 9: (a) Speedup of the parallel ELFM using MPI without checkpointing. (b) Landscape
patterns of the WCA 2A in the Everglades after a 1-year period simulation by the parallel ELFM
code.

Ethernet.

We use speedup to measure the computational performance of the parallel ELFM using MPI. In
order to show the improvements achieved by the proposed approach, we �rst look at the speedup of
the parallel ELFM using Express. The performance analysis in [7] indicated that the four processor
version of the parallel ELFM was slower than the one processor code by a factor of four; the four
processor version took roughly 10 minutes to simulate one day, and the one processor version
clocked in at about 2.6 minutes. There is a light variation in these values between individual runs
of these models, however, due to network tra�c and other factors. The true serial version of the
code runs at a rate of roughly 11 years simulation in 90 minutes, or 0.02 minutes per day. Thus
the performance of the parallel ELFM code using Express is unacceptable.

In an early study [1], the parallel ELFM code using MPI has been run on a NOWs with
four Sun Sparc V workstations. Figure 9(a) shows the speedup of the parallel ELFM using MPI
without the checkpointing technique. The simulated simulation times are from 1-year to 12-year
periods. This version of the parallel ELFM code uses a pessimistic approach. That is, process
synchronization is conducted at every simulation time step. The serial ELFM code also runs on each
individual workstation in the NOWs. Compared to the results using Express [7], the computational
performance of the parallel ELFM code is improved; however, it is still unsatisfactory.

In the present study, the serial and parallel executions are both run on the four workstations.
All the results are based on a 1-year period simulation. First, we executed the parallel ELFM code
without checkpointing and rollback, the program execution time on each of the processor in the
4-workstation NOWs are shown in Table 1.

Since the workstations are usually used as multitask and multi-user systems, the workload varies
from processor to processor and the elapsed time of the each parallel execution also varies with
di�erent workloads. In order to analysis the computational performance of the parallel ELFM, we
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Table 1: Parallel program execution time in a 4-workstation NOWs

Process Id Real Time User Time System Time

0 4447.61 837.92 920.38

1 4447.52 580.34 460.66

2 4447.49 767.69 941.38

3 4447.38 605.42 478.52

Table 2: Parallel program execution CPU time in a 4-workstation NOWs using checkpointing but
without rollback

Interval Average Longest Shortest Interval Average Longest Shortest

5 509.95 603.04 438.25 10 401.44 469.38 358.81

15 380.84 440.97 342.43 20 353.35 404.46 319.43

25 341.12 389.31 303.34 30 337.14 385.24 298.21

35 329.64 374.52 289.73 40 327.52 370.00 287.55

45 323.90 367.11 280.89 50 321.56 362.84 277.39

55 318.25 361.86 275.11 60 319.49 359.57 274.94

focus on CPU time, rather than the elapsed time. A processor's CPU time is composed of two
parts. One is known as user time, and the other is system time. User time is the CPU time used
while executing instructions in the user space of the calling process, and system time is the CPU
time used by the system on behalf of the calling process.

The computational performance of the parallel ELFM without using checkpointing and rollback
[1] indicated that most of the numerical computation is related to the user time, almost all the
system time and part of the user time are related to interprocessor communication. The processor
idle time is the real elapsed time minus user time and the system time. This is the time that
processors wait for the operating system to process jobs submitted by other users. Since there are
no dedicated workstations can be used to parallel computing in our computing environment, the
idle time on each processor is much larger than the user time and the system time.

To study the in
uence of the checkpoint interval and rollback to the computational perfor-
mance of the parallel ELFM code, we �rst perform a simulation of the parallel ELFM using only
checkpointing but without rollback. In this model, processors only synchronize at a certain given
checkpoints. The parallel ELFM with checkpointing only synchronize processors at each check-
point. This is the ideal case of our checkpointing and rollback algorithm. However, if a �re spreads
to the adjacent subdomains simulated by other processors in the checkpoint interval, the result will
be inaccurate. The numerical accuracy can be enhanced by reducing the checkpoint interval, but
it can never reach the level as the one with a rollback process. The program execution times of
this parallel ELFM code for di�erent checkpoint intervals are shown in Table 2.

The application of checkpointing and rollback in the parallel ELFM signi�cantly reduces the
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Table 3: Parallel program execution times in a 4-workstation NOWs.

(a) Processor 0

Checkpoint Interval Real Time User Time System Time

20 1019.61 401.10 92.78

40 791.60 431.52 55.66

60 822.01 320.73 44.52

80 662.88 387.18 26.83

120 779.84 497.70 27.15

(b) Processor 1

Checkpoint Interval Real Time User Time System Time

20 1004.98 380.04 69.46

40 776.16 394.44 38.29

60 808.17 414.05 32.61

80 649.54 355.56 19.53

120 766.03 414.20 19.80

(c) Processor 2

Checkpoint Interval Real Time User Time System Time

20 1007.11 321.68 100.27

40 779.25 320.73 54.54

60 810.36 380.16 46.16

80 651.52 304.88 26.59

120 768.15 354.65 26.64

(d) Processor 3

Checkpoint Interval Real Time User Time System Time

20 1009.27 393.01 66.98

40 781.29 405.51 38.08

60 812.71 446.09 32.72

80 653.56 396.22 19.30

120 770.45 443.09 19.36
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Figure 10: (a) Program execution CPU time of the parallel ELFM code vs. synchronization
frequency in a 4-workstation NOWs. (b) Speedup of the parallel ELFM code vs. synchronization
frequency in a 4-workstation NOWs.

interprocessor communication overhead of the parallel ELFM program. The program execution
times of the parallel ELFM code with checkpointing and rollback running in a 4-workstation NOWs
with di�erent checkpoint interval are shown in Table 3.

Compared with the execution time of the parallel ELFM without using the checkpointing mech-
anism, the program execution time is signi�cantly reduced. Figure 10(a) compares the program
execution CPU time of the parallel ELFM program with only checkpointing to that with check-
pointing and rollback techniques.

Figure 10(b) shows the comparison in terms of speedup. A superlinear speedup is obtained for
execution only with process synchronization. Compared with the serial ELFM code, the parallel
ELFM code uses only a quarter of the memory that the serial version uses. This may be the reason
for this superlinear speedup. We can see that the program execution CPU time with checkpointing
and rollback takes a little longer than the one with only checkpointing (process synchronization).
This is because that rollback process takes some extra time. Since the probability of �re spreading in
landscape is small, the probability of a rollback process to be invoked is also small. When there is no
�re spreading and spotting during the process of simulation, the parallel ELFM with checkpointing
and rollback reduces to the parallel ELFM with only checkpointing. When the checkpoint interval
varies from 20 to 120 days, the speedup of the parallel ELFM program 
uctuates in the range of
2.6 to 3.7. The average speedup is above 3. The computational performance of the parallel ELFM
code is signi�cantly enhanced with the checkpointing and rollback techniques. Figure 9(b) shows
the landscape patterns after a 1-year period simulation. The grey area in the landscape indicates
that �res occurred at that area.
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6 Conclusion

We have reported a study of parallelization of Everglades Landscape Fire Model (ELFM) using
Message Passing Interface (MPI). The ELFM code has been successfully ported to MPI. We have
studied the checkpointing and rollback techniques and have applied the synchronous checkpointing
mechanism combined with the rollback technique to parallelize the ELFM code using MPI. The
performance analysis shows that a better speedup is obtained compared to the parallel ELFM code
without the checkpointing and rollback techniques. This study indicates that for certain type of
parallel applications such as ELFM, if the probability of interprocessor communication is small,
the checkpointing and rollback techniques are useful to reduce the simulation time.

The future work will focus on generalization of the parallel computation model with the mix-
ture of a variety of asynchronous and synchronous computations. Parameters which a�ect the
performance of the parallel applications, such as the synchronization cost, the asynchronous and
synchronous computation ratio, load balancing, etc., will be studied both theoretically and numer-
ically.
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