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Introduction

Online social network:
* Fundamental medium for information spreading

« Share startling news, creative
Ideas, and Interesting stories

Information cascade:

« |f Alice shares a photo, Bob may scan this photo
and then further share i1t with his/her followers later

* [terative information propagations



Introduction

Cascade predictions are important:

* Control of online rumors 2
* Forecast of marketing strategies 5@*5@%
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Challenges:
« When will a user further propagate the information?

 How should we process the social topological and
time information?
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Dataset observations

Flickr dataset:

* An online social network site
sharing photos among users

* Photos can be labeled by “favorite-mark” (cascade)

Time period [1/02/2006 to 12/03/2006
(two periods) 02/03/2006 to 05/18/2007
# Links 17,034,807 to 33,140,018
# Users 1,487,058 to 2,302,925
# Photos 11,267,320
# Favorite marks 34,734,221
# Popular photos 14,002
Most popular photo Marked by 2,998 times
Largest in / out-degree 21,001 / 26,367




Dataset observations

Dataset observations:

« Alarge amount of data!
« Social topological information
« Time information (cascade time)
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(a) User degree distribution. (b) Favorite mark distribution.



|deas

Objective — predict the number of propagated
users at a future time slot

|ldea — decompose the spatiotemporal cascade

Information to user characteristics
« Conduct predictions based on user characteristics
* Reduce the time complexity of the algorithm

Detail — convert matrix to vectors

« (Cascade information — a matrix . —
 User characteristics — two vectors




Ildeas: Spatiotemporal Information

Spatiotemporal cascade information

« Atime matrix also includes the space information:
1 Nodes that are closer within the social topology are more
likely to be propagated at closer times.

« Let tij be the time when user j starts to propagate
Information after having been influenced by user I.
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(a) A spatiotemporal cascade. (b) The time matrix for (a).



|ldeas: User Characteristics

User characteristics (two vectors)

» Persuasiveness (information sender)
1 Followees’ abilities to propagate information

* Receptiveness (information receiver)
1 Followers’ willingness to accept information.

High persuasiveness 1’:
and receptiveness

Low persuasiveness
and receptiveness




Decomposition

Step 1: map the time matrix to a weighted matrix

* Mapping objective
1 Tune the weights of space and time information
 Earlier cascades are more important (larger value)

« Use exponential functions (memoryless function)
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(a) The time matrix at 71 = 4.  (b) The corresponding mapping result.



Decomposition

Step 2: singular value decomposition (SVD)

« Approximately reconstruct the weighted matrix (the
tuned time matrix) by two vectors

« Two vectors represent persuasiveness and
receptiveness, respectively

» Larger value in the matrix (earlier cascades)
d Result in larger persuasiveness and receptiveness
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Decomposition

Information loss in the decomposition
« Can be revealed by the largest singular values
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Cascade prediction

The pattern of persuasiveness

« |f a node with a high out-degree is spatially far away
from the information source, it may not be
propagated, and thus it cannot positively propagate
the information further (i.e., low persuasiveness).

* In the case of a temporal remote node, it also has low
persuasiveness, since its followers may have been
propagated by other nodes.

A similar rule works for the receptiveness.



Cascade prediction

The pattern of the cascade

Known characteristics

, Predicted characteristics
From vectors «; and v,
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Persuasiveness and receptiveness should decay with
respect to their spatiotemporal distances to the source



Cascade prediction

Non-historical predictions
« Predict persuasiveness and receptiveness hop by hop

* Along the shortest path tree from the source to the
other nodes

Historical predictions
« Use historical data as predictions

Assemble predicted persuasiveness/receptiveness
* Recover the time matrix as the final prediction



Evaluations

We focus on cascades of popular photos that are
marked “favorite” more than 100 times

* Photos of different levels of popularity stand for
cascades of different types

Each photo may be involved in multiple cascades
that are independent of each other

* Only the largest cascade Is selected

Define 771 as the current time, and 72 as the
future time for the cascade prediction



Evaluations

Baseline algorithms:

Largest in-degree: the largest in-degree node (in
social topology) would be the next propagated node

Most influenced: the node that has the largest
number of incoming propagated neighbors would be
the next propagated node

Most active: the node that Is the most active
(propagated by former cascades for the most times),
would be the next propagated node

User personality: incorporate extra user personality



Evaluations

Non-historical v.s. historical (detection rate):
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Evaluations

Non-historical v.s. historical (false positive rate):
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Evaluations

Non-historical v.s. historical (accuracy):
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Evaluations

Evaluation summary:

For non-historical predictions, our algorithm gets
about 20% higher accuracy than the two baselines
(for 71 /70 > 0.1)

For historical predictions, our algorithm gets about
15% higher accuracy than the baseline, and 10%
higher accuracy than the non-historical algorithm

The future of the cascade 1s very “predictable”. A
small amount of existing information can provide
very accurate future predictions



Conclusions

Conclusions:

« Decompose the space and time cascade information
Into user characteristics

« The information loss in the decomposition is limited

* Use the shortest path tree to infer the trace of the
Information propagation

Future work
« Parallel and distributed computing



End

Thank you!

Questions?



