
HCBE: Achieving Fine-Grained Access Control

in Cloud-Based PHR Systems

Xuhui Liu1, Qin Liu1(�), Tao Peng2, and Jie Wu3

1College of Computer Science and Electronic Engineering,
Hunan University, P. R. China, 410082

2School of Information Science and Engineering,
Central South University, P. R. China, 410083

3Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA

Correspondence to: gracelq628@hnu.edu.cn

Abstract. With the development of cloud computing, more and more
users employ cloud-based personal health record (PHR) systems. The
PHR is correlated with patient privacy, and thus research suggested to
encrypt PHRs before outsourcing. Comparison-based encryption (CBE)
was the first to realize time comparison in attribute-based access policy
by means of the forward/backward derivation functions. However, the
cost for encryption is linearly with the number of attributes in the ac-
cess policy. To efficiently realize a fine-grained access control for PHRs in
clouds, we propose a hierarchical comparison-based encryption (HCBE)
scheme by incorporating an attribute hierarchy into CBE. Specifically,
we construct an attribute tree, where the ancestor node is the generaliza-
tion of the descendant nodes. The HCBE scheme encrypts a ciphertext
with a small amount of generalized attributes at a higher level, other
than lots of specific attributes at a lower level, largely improving the
encryption performance. Furthermore, we encode each attribute node
with the positive-negative depth-first (PNDF) coding. By virtue of the
backward derivation function of the CBE scheme, the users associated
with the specific attributes can decrypt the ciphertext encrypted with
the generalized attributes, within the specified time. The experiment re-
sults show that the HCBE scheme has better performance in terms of
the encryption cost, compared with the CBE scheme.

Keywords: Personal Health Record; Cloud Computing; Comparison-
Based Encryption; Fine-Grained Access Control; Attribute Hierarchy.

1 Introduction

In recent years, personal health record (PHR) [1] as a patient-centric model of
health information exchange has become popular with more and more users due
to its convenience to access a patient’s centralized profile by merging a wide
range of health information sources. PHR allows medical practitioners to online



Fig. 1. Application scenario.

access a complete and accurate summary of a patient’s medical history, thereby
making the healthcare processes much more efficient and accurate [2].

Cloud computing is a model for enabling ubiquitous and convenient network
access to data resources [3]. Due to its overwhelming advantages, e.g., rapid ela-
sicity, high availability, and low cost, more and more patients decide to outsource
their PHRs to the cloud for flexibility and convenience. The most popular cloud-
basd PHR systems include Google Health [4] and Microsoft HealthVault [5],
which promise the users to access the PHR services anytime and anywhere us-
ing any devices connected to the Internet.

However, a PHR which includes patient-centric health data, such as allergies
and adverse drug reactions, family history, imaging reports (e.g. X-ray) and so
on, is closely related to patient privacy. Allowing a cloud service provider (CSP),
like Amazon, Google, and Microsoft, to take care of sensitive medical data, may
raise potential issues. For instance, an untrustworthy CSP may intentionally
leak PHRs to medical companies or medical instrument companies for making
a profit. To preserve the patients’s privacy while using the cloud-based PHR
systems, research suggested to encrypt PHR before outsourcing [6].

Let us consider the following application scenario: Alice was hospitalized in
Hospital A, requiring heart surgery. Unfortunately, the surgery may face high
risk, since Alice also suffered from hypertension and asthma. The related at-
tending doctors in Hospital A needed to hold a consultation to decide surgery
program after carefully studying Alice’s PHR. For convenience and flexibility,
Alice uploaded her encrypted PHR to Google Health, specifying an access control
policy, as shown in Fig. 1-(a).

The access policy can be viewed as a description of attributes and time
condition, specifying that only the users whose attributes satisfying the access
policy can decrypt the ciphertext within the specified time. For instance, Fig. 1-
(a) stipulates that the cardiologists and the respiratory physicians, can view
Alice’s PHR during the consultation (April 1, 2015 ∼ April 30, 2015), as well as
the cardiac surgeons and the cardiothoracic surgeons can view it anytime.

To ensure fine-grained access control in above application scenario, the adopt-
ed encryption scheme needs meeting the following requirements: (1) Supporting
attribute-based access policy. For example, for a given ciphertext associated with
access policy [(A1∧A2)∨A3], only the users who possess both attributes A1 and
A2 or those who possess attribute A3 can recover it using their own decryption
keys. (2) Supporting time-based comparison. For example, the time condition of



the ciphertext is tx ≤ Ak ≤ ty, which means that the users possess attribute Ak

can access the data during time [tx, ty].
Comparison-based encryption (CBE) [7] as a promising tool facilitating a

fine-grained access control in cloud computing was proposed by Zhu et. al. in
2012. CBE utilizes the forward and backward derivation functions to achieve
time comparison in attribute-based encryption. For example, suppose that the
access policy of the ciphertext is At ∧ [tx, ty], and the authorization time of
the user with attribute At is [ta, tb]. Then, the user can decrypt the ciphertext
only when the current time (tc ∈ [tx, ty]) ∧ (tc ∈ [ta, tb]). Meanwhile, the key
delegation mechanism was applied to assign a majority of decryption cost to the
cloud, so as to take full advantage of cloud resources.

However, the main drawback of CBE is that the encryption cost grows lin-
early with the number of attributes in the access policy. For a system of a
large number of attributes, the cost for encryption may be extensive. To solve
this problem, we propose a hierarchical comparison-based encryption (HCBE)
scheme for efficiently achieving a fine-grained access control in cloud-based PHR
systems. The main idea of the HCBE scheme is building a hierarchical structure
for attributes, where the attribute at a higher level is a generalization of the
attributes at lower levels. Specifically, we encrypt the ciphertext with a small
amount of generalized attributes at the higher level, other than lots of specific
attributes at the lower level. For example, if we construct an attribute tree as
shown in Fig. 1-(b), the access policy can be simplified as shown in Fig. 1-(c),
with which the computation cost for encryption may be largely reduced com-
pared to that in Fig. 1-(a).

To realize the attribute hierarchy, we encode each node in an attribute tree
with the positive-negative depth-first (PNDF) coding. Then, we apply the back-
ward derivation function of CBE to allow the descendant attribute node to d-
educe the secrets associating with its ancestor attribute nodes. Therefore, the
users with the specific attributes can decrypt the ciphertext encrypted with the
generalized attributes. For example, when the ciphertext is encrypted with ac-
cess policy (medicine) ∧ [2015− 4− 1, 2015− 4− 30], only the cardiologists and
the respiratory physicians can decrypt it during April 1, 2015 ∼ April 30, 2015.
Our main contributions in this work are summarized as follows:

1. We proposed a hierarchical comparison-based encryption (HCBE) scheme,
by incorporating attribute hierarchy into CBE, so as to efficiently achieve a
fine-grained access control in cloud-based PHR systems.

2. We constructed an attribute hierarchy tree, and encode each attribute node
with the PNDF coding. By applying the backward derivation function, the
users with the specific attributes can decrypt the ciphertext encrypted with
the generalized attributes.

3. We analyze the security of the proposed scheme, and conduct experiments
to validate its effectiveness and efficiency.

The rest of this paper is organized as follows. In Section 2, we introduce our
models, design goals, and technical preliminaries. Then, we overview our HCBE



scheme in Section 3 and provide its construction in Section 4. We analyze the
security of our scheme in Section 5 and conduct experiments in Section 6. Finally,
we introduce the related work in Section 7, and conclude this paper in Section 8.

2 Preliminaries

2.1 System Model

The system consists of the following parties: the cloud service provider (CSP),
the data owner, and the data users. The CSP operates the cloud-based PHR
system, which locates on a large number of interconnected cloud servers with
abundant hardware resources. The data owner is the individual patient who
employs the cloud-based PHR system to manage her PHR. The data users are
the entities who is authorized by the data owner to access the cloud-based PHR
system. Take the scenario in Fig. 1 as an example, Alice is the data owner,
Google is the CSP, and Alice’s lead doctors in Hospital A are the data users.
Specially, when all the data users located in the same trusted domain, a proxy
server responsible for part of the decryption operation can be deployed inside.

Suppose that the universal attribute set A = {A1, . . . , Am}, from which an

attribute hierarchy Â of L levels is built. In the tree structure, each attribute Ak

contains two hierarchy codes, {Pcodek, Ncodek}, s.t. the descendant node’s codes
are larger than those of its ancestors. To efficiently achieve a fine-grained access
control while using the cloud-based PHR services, our HCBE scheme will be em-
ployed as follows. We describe each user with an attribute-based access privilege
L̂, where each attribute Ak ∈ L̂, denoted as Ak(ta, tb, P codek, Ncodek), is associ-
ated with the authorization time [ta, tb] and hierarchy codes {Pcodek, Ncodek}.

The PHR is encrypted with an attribute-based access policy, ÂP , where each
attribute Al ∈ ÂP , denoted as Al(ti, tj , P codel, Ncodel), is also associated with
the time condition [ti, tj ] and hierarchy codes {Pcodel, Ncodel}. The data user
can decrypt the PHR only when the following conditions are simultaneously
satisfied: (1) user attributes satisfy the access policy, denoted L̂ ⊆ ÂP ; (2) the

current time (tc ∈ [tx, ty]) ∧ (tc ∈ [ta, tb]); (3) the attributes in L̂ are either the

same as or more specific than those in ÂP , denoted as Pcodek ≥ Pcodel and
Ncodek ≥ Ncodel.

2.2 Adversary Model

Our design goal is to preserve privacy for the data owner while using the cloud-
based PHR services. There are two main attacks under such a circumstance,
i.e., external attacks initiated by unauthorized outsiders, and internal attacks

initiated by an honest but curious CSP and the untrusted data users. The com-
munication channels are assumed to be secured under existing security protocols
such as SSL and SSH, thus we only consider the internal attacks. We assume
that the honest but curious CSP will always correctly execute a given protocol,
but may try to learn some additional information about the stored data. The
untrusted data users may collude to access the PHRs outside their permissions.

The HCBE scheme is considered fail if the following cases happens:



– CASE 1. The data user uk of access privilege L̂ can access the PHR of access
policy ÂP while (1) L̂ 6⊆ ÂP ; or for attribute Ak[ta, tb, P codek, Ncodek] ∈ L̂

and Al[ti, tj, P codel, Ncodel] ∈ ÂP (2) the intersection of the authoriza-

tion time [ta, tb] in L̂ and the time condition [ti, tj ] in ÂP is empty; or (3)
Pcodek < Pcodel ∨Ncodek < Ncodel.

– CASE 2. The CSP can access the PHR without permission.

2.3 Composite Order Bilinear Map

Let p, q be two large primes, and N = pq be the RSA-modulus. Following the
work in [8], we define a bilinear map group system SN = (N,G,GT, e), where G
and GT are cyclic groups of prime order n = sp′q′ 1, and e : G × G → GT is a
bilinear map with the following properties:

– Bilinearity: for a, b ∈ Zn and g1, g2 ∈ G, it holds that e(ga1 , g
b
2) = e(g1, g2)

ab;
– Non-degeneracy: e(g1, g2) 6= 1, where g1, g2 are the generators of group G;
– Computability: e(g1, g2) is efficiently computable.

As the work in [7], we make N public and keep n, s, p′, q′ secret in this system.
Let Gs and Gn′ denote the subgroups of order s and n′ = p′q′ in G, respectively.
We have e(g, h) = 1, when g ∈ Gs and h ∈ Gn′ .

2.4 Comparison-Based Encryption (CBE)

In CBE, time is denoted as a set of discrete values U = {t1, t2, . . . , tT }, with total
ordering 0 ≤ t1 ≤ t2 ≤ . . . ,≤ tT ≤ Z, where Z is the maximal integer. Let ϕ, ϕ
be two random generators in Gn′ , where n′ = p′q′ and p′ and q′ are two large
primes. The functions (ψ(·), ψ(·)) mapping from integer set U = {t1, t2, . . . , tT }
to V = {vt1 , . . . , vtT } ∈ Gn′ and V = {vt1 , . . . , vtT } ∈ Gn′ are defined as follows:

vti ← ψ(ti) = ϕλti
, vti ← ψ(ti) = ϕµZ−ti (1)

where λ, µ are randomly chosen from Z∗
n′ .

Based on Eq. 1, the forward derivation function (FDF), f(·), and the back-
ward derivation function (BDF), f , are defined as follows:

vtj ← f(vti) = (vti)
λtj−ti

, ti ≤ tj

vtj ← f(vti) = (vti)
µti−tj

, ti ≥ tj
(2)

FDF and BDF have the one-way property, under the RSA assumption that
λ−1 and ϕ−1 cannot be efficiently computed based on the secrecy of n′. That is,
Eq. 2 is efficiently computable; However, it is intractable to obtain vtj from vti
while ti > tj , and obtain vtj from vti while ti < tj .

For a given set of attributes A = {A1, . . . , Am}, CBE consists of the following
algorithms: Setup, GenKey, Encrypt, Delegate, Decrypt1, and Decrypt2. For im-
proving the efficiency, the output of the Encrypt algorithm is a random session
key ek, which can be used to encrypt files using symmetrical-key cryptosystem.

1 Let s1, s2 be two secret large primes. We have n = sn′ = s1s2p
′q′|lcm(p+ 1, q + 1),

where n′ = p′q′|n, s = s1s2, p = 2p′s1 − 1, and q = 2q′s2 − 1.



(a) Positive depth-first coding (b) Negative depth-first coding

Fig. 2. Sample PNDF coding.

3 Overview of the HCBE scheme
3.1 Positive-Negative Depth-First Coding

From the attribute set A = {A1, . . . , Am}, we build an attribute hierarchy Â
of L levels. In attribute tree, the attribute at a higher level is a generalization
of the attributes at lower levels. We associate each node with two hierarchical
codes, i.e., the positive depth-first code (Pcode) and the negative depth-first code
(Ncode). Suppose that each node has four fields: Pcode, Ncode, rchild describing
the right subtree, and lchild describing the left subtree. First, we push the root
node R to two stacks, PStack and NStack. For the PStack, the right subtree
of each node will be first pushed in, thus the left subtree’s Pcodes will be larger
than those of right subtree. In contrast, the left subtree of each node will be first
pushed in the NStack, thus the right subtree’s Ncodes will be larger than those
of left subtree. Take the attribute tree shown in Fig. 1-(b) as an example. The
PNDF coding is shown in Fig. 2.

Let Pcodei and Ncodei denote the Pcode and Ncode of node i, respective-
ly. The PNDF coding has the property that Pcodei > Pcodej and Ncodei >
Ncodej , if i is the descendant node of j. For example, the Pcode and Ncode of
attribute Surgery are 2 and 5, respectively; the Pcode and Ncode of attribute
Cardiac Surgery are 3 and 7, respectively; the Pcode andNcode of attribute Res-

piratory Medicine are 6 and 4, respectively. Cardiac Surgery as the descendant
of Surgery, with both Pcode and Ncode larger than those of Surgery. Respira-

tory Medicine is not the descendant of Surgery, and its Ncode is smaller than
that of Surgery.

3.2 The Definition of the HCBE Scheme

Suppose that the number of nodes in the attribute hierarchy is m. In HCBE, the
hierarchical codes are denoted as a set of discrete values Um = {(Pcode1, Ncode1),
(Pcode2, Ncode2), . . . , (Pcodek, Ncodek), . . . , (Pcodem, Ncodem)}, with total or-
dering 0 ≤ Pcode1 ≤ Pcode2 ≤ . . . ,≤ Pcodem ≤ Zm and 0 ≤ Ncode1 ≤
Ncode2 ≤ . . . ,≤ Ncodem ≤ Zm, where Zm is the maximal integer.

We apply the BDF to accomplish the attribute hierarchy. Let Gn′ be a
multiplicative group of RSA-type composite order n′ = p′q′, where p′, q′ are
two large primes. First, we choose random generators ϕ1, ϕ2 in Gn′ and ran-
dom numbers θ1, θ2 in Z∗

n′ , where the order of θ1, θ2 are sufficiently large in
Z∗
n′ . Next, we define mapping functions ψ1(.), ψ2(.) from an integer set Um =



{(Pcode1, Ncode1), . . . , (Pcodek, Ncodek), . . . , (Pcodem, Ncodem)} into Vm =
{(vPcode1 , vNcode1), . . . , (vPcodek , vNcodek), . . . , (vPcodem , vNcodem)} as follows:

vPcodek = ϕ
θ
Zm−Pcodek
1

1 , vNcodek = ϕ
θ
Zm−Ncodek
2

2
(3)

According to the definitions of ψ1(.), ψ2(.), it is easy to define BDFs f1(.), f2(.)
as follows:

vPcodej ← f1(vPcodek) = (vPcodek)
θ1

Pcodek−Pcodej
, P codek ≥ Pcodej

vNcodej ← f2(vNcodek) = (vNcodek)
θ2

Ncodek−Ncodej
, Ncodek ≥ Ncodej

(4)

The definition of the HCBE scheme consists of the following algorithms:

– Setup(1κ, Â) → (MK,PK
Â
) : The data owner takes a security parameter

κ and the attribute hierarchy Â as inputs, and outputs the master key MK
and the system public key PK

Â
;

– GenKey(MK,uk, L̂)→ SK
L̂
: The data owner utilizes her master key MK

to generate a private key SK
L̂
on an access privilege L̂ for user uk, where

each attribute Ak ∈ L̂, denoted as Ak(ta, tb, P codek, Ncodek), is associated
with the authorization time [ta, tb] and hierarchy codes {Pcodek, Ncodek}.

– Encrypt(PK
Â
, ÂP )→ (ĤP , ek): The data owner takes the public key PK

Â

and an access policy ÂP as inputs to generate a session key ek and a cipher-
text header ĤP , where each attribute Al ∈ ÂP , denoted as Al(ti, tj , P codel,
Ncodel), is associated with the time condition [ti, tj ] and hierarchy codes
{Pcodel, Ncodel}.

– Delegate(SK
L̂
, L̂′)→ SK

L̂′
: The data user takes the private key SK

L̂
and

an access privilege L̂′ as inputs to generate a derived private key SK
L̂′ for

the proxy server if L̂′ � L̂ 2.

– Decrypt1(SK
L̂′
, ĤP)→ Ĥ′

P
: The proxy server takes the derived private key

SK
L̂′ and a ciphertext header ĤP as inputs, and outputs a new ciphertext

header Ĥ′
P

if L̂′ satisfies ÂP .

– Decrypt2(SK
L̂
, Ĥ′

P
) → ek : The data user takes the private key SK

L̂
and

the new ciphertext header Ĥ′
P
as inputs, and outputs a session key ek, which

can be used to decrypt the stored data.

4 Our Construction

Setup(1κ, Â)→ (MK,PK
Â
): Given a bilinear map system SN = (N = pq,G,GT,

e), where G,GT are cyclic groups of composite order n = sn′, and e : G× G→
GT, this algorithm first chooses the random generators ω ∈ G, g ∈ Gs, and

2 Let S and S′ denote the set of attributes in L̂ and L̂′, respectively. L̂′ � L̂ iff S′ ⊆ S,
and for each attribute Ak[ta, tb, P codek, Ncodek] ∈ L̂ and Al[ti, tj , P codel, Ncodel] ∈

L̂′, ta ≤ ti, tb ≥ tj , Pcodek ≥ Pcodel, and Ncodek ≥ Ncodel.



ϕ, ϕ, ϕ1, ϕ2 ∈ Gn′ , where Gs and Gn′ are two subgroups of G. Thus, we have
e(g, ϕ) = e(g, ϕ) = e(g, ϕ1, ) = e(g, ϕ2) = 1, but e(g, ω) 6= 1.

Then, it chooses four random numbers λ, µ, θ1, θ2 ∈ Z∗
n, and employs a hash

function H : {0, 1}∗ → G, mapping the root attribute, R, described as a binary
string to a random group element. Next, it chooses two random exponents α, β ∈
Z∗
n and sets h = ωβ, η = g1/β , ζ = e(g, ω)α. The master key is set as MK =

(gα, β, p, q, n′), and the public key is set as:
PK

Â
= (SN , ω, g, ϕ, ϕ, ϕ1, ϕ2, h, η, ζ, λ, µ, θ1, θ2, H). (5)

GenKey(MK,uk, L̂) → SK
L̂
: Given a user uk with license L̂, this algo-

rithm chooses two random numbers τuk, r ∈ Z, and then for each attribute
Ak[ta, tb, P codek, Ncodek] ∈ L̂, it calculates:

DAk
= (Dt, D

′
ta , D

′
tb , D

′′
t , DK1 , DK2)

= (gτukHAk

r, (vta)
r
, (vtb)

r
, ωr, (vPcodek)

r
, (vNcodek)

r
).

(6)

where HAk
= H(R) · vPcodek · vNcodek , vta = ϕλta

, vtb = ϕµZ−tb , vPcodek =

ϕ
θ
Zm−Pcodek
1

1 and vNcodek = ϕ
θ
Zm−Ncodek
2

2 . Then, uk’s private key is set as:
SK

L̂
= (D = g(α+τuk)/β, {DAk

}Ak∈L̂
). (7)

Encrypt(PK
Â
, ÂP ) → (ĤP , ek): Given an access policy tree T over access

policy ÂP , the ciphertext header ĤP can be calculated with:
ĤP = (T , C = hσ, {(Ēti , E

′
ti), (Etj , E

′
tj ),

(EPcodel , E
′
Pcodel), (ENcodel , E

′
Ncodel)}Al[ti,tj,Pcodel,Ncodel]∈T ).

(8)

Here, each component is set as follows:

(Ēti , E
′
ti) = (v̄tiω)

x, Hx
Al
), (Etj , E

′
tj ) = ((vtjω)

y, Hy
Al
),

(EPcodel , E
′
Pcodel) = ((vPcodel · ω)

z1 , Hz1
Al
),

(ENcodel , E
′
Ncodel)) = ((vNcodel · ω)

z2 , Hz2
Al
).

(9)

where HAl
= H(R) · vPcodel · vNcodel . The session key ek is set as ζσ = e(gα, ω)σ

where σ is a main secret in Zn for tree T , and △σ(Al) = x+ y + z1 + z2 is the
secret share of σ in the tree T for an attribute Al (see Ref. [9]).

Delegate(SK
L̂
, L̂′) → SK

L̂′
: Given a specified access privilege L̂′, and the

private key SK
L̂
= (D, {(Dt, D

′
ta , D

′
tb , D

′′
t , DK1 , DK1)}Ak[ta,tb,Pcodek,Ncodek]∈L̂

),

this algorithm checks for each attribute Al[ti, tj , P codel, Ncodel] ∈ L̂
′ whether

Al is a generalized attribute of Ak, ta ≤ tj and tb ≥ ti. If so, this algorithm uses
Eq. 2 and Eq. 4 to compute:

D′
t ← gτukHAk

r ·
f1(DK1 )·f2(DK2 )

(vPcodek
)r·(vPcodek

)r

= gτuk(H(R) · vPcodek · vNcodek)
r
·
f1((vPcodek

)r)·f2(f1((vNcodek
)r))

(vPcodek
)r·(vPcodek

)r

= gτukH(R)r · vPcodel
r · vNcodel

r = gτukHr
Al

D′
tj ← f(D′

ta) ·D
′′
t = f((vta)

r) · ωr = (vtj )
r · ωr,

D
′

ti ←
−

f (D
′

tb
) ·D′′

t = f((vtb)
r) · ωr = (vti)

r · ωr,
D′

Pcodel
← f1(DK1) ·D

′′
t = f1((vPcodek)

r) · ωr = (vPcodel)
r · ωr,

D′
Ncodel

← f2(DK2) ·D
′′
t = f2((vNcodek)

r) · ωr = (vNcodel)
r · ωr,

(10)



where

f((vta)
r) = (ϕrλta

)λ
tj−ta

= ϕrλtj
= (vtj )

r,

f((vtb)
r) = (ϕrµZ−tb

)µ
tb−ti

= ϕrµZ−ti
= (vti)

r,

f1((vPcodek)
r) = (ϕ

rθ
Zm−Pcodek
1

1 )θ
Pcodek−Pcodel
1 = ϕ

rθ
Zm−Pcodel
1

1 = (vPcodel)
r,

f2((vNcodek)
r) = (ϕ

rθ
Zm−Ncodek
2

2 )θ
Ncodek−Ncodel
2 = ϕ

rθ
Zm−Ncodel
2

2 = (vNcodel)
r.
(11)

Next, it chooses a random δ ∈ Z and computes:

D̃t = D′
t · (gHAl

)δ = gτukHAl

r · (gHAl
)δ = gτuk+δHr+δ

Al
= gτ

′

kHr′

Al
,

D̃′
tj = D′

tj · (vtjω)
δ = (vtjω)

r+δ = (vtjω)
r′ ,

˜
D

′

ti = D
′

ti · (vtiω)
δ = (vtiω)

r+δ = (vtiω)
r′ ,

D̃′
Pcodel

= D′
Pcodel

· (vPcodelω)
δ = (vPcodelω)

r+δ = (vPcodelω)
r′ ,

D̃′
Ncodel

= D′
Ncodel

· (vNcodelω)
δ = (vNcodelω)

r+δ = (vNcodelω)
r′ ,

(12)

where HAl
= H(R) ·vPcodel ·vNcodel , and τ

′
k = τuk + δ, r

′ = r+ δ. Finally, the

derivation privacy key is set as SK
L̂′ = {D̃t, D̃

′
tj ,

˜
D

′

ti , D̃
′
Pcodel

, D̃′
Ncodel

}Al∈L′ .

Decrypt1(SK
L̂′
, ĤP) → Ĥ′

P
: Given the private key SK

L̂′
and a ciphertext

header ĤP , we check whether each attribute Al[ti, tj , P codel, Ncodel] ∈ L̂
′ is

consistent with Al[ti, tj , P codel, Ncodel] ∈ ÂP . If true, the secret share △σ(Al)
of σ over GT is reconstructed by using

F1 ←
e(D̃t,Etj

)

e(D̃′

tj
,E′

tj
)
=

e(gτ′

kHr′

Al
,(vtjω)x)

e((vtjω)r′ ,Hx
Al

)

= e(gτ
′

k , vxtj ) · e(g
τ ′

k , ωx) = e(gτ
′

k , ω)x
(13)

F2 ←
e(D̃t,Eti

)

e(
˜
D

′

ti
,E′

tj
)
=

e(gτ′

kHr′

Al
,(vti

ω)y)

e((vti
ω)r′ ,Hy

Al
)

= e(gτ
′

k , vyti) · e(g
τ ′

k , ωy) = e(gτ
′

k , ω)y
(14)

F3 ←
e(D̃t,EPcodel

)

e(D̃′

Pcodel
,E′

tj
)
=

e(gτ′

kHr′

Al
,(vPcodel

ω)z1)

e((vPcodel
ω)r′ ,H

z1
Al

)

= e(gτ
′

k , vz1Pcodel
) · e(gτ

′

k , ωz1) = e(gτ
′

k , ω)z1
(15)

F4 ←
e(D̃t,ENcodel

)

e(D̃′

Ncodel
,E′

tj
)
=

e(gτ′

kHr′

Al
,(vNcodel

ω)z2)

e((vNcodel
ω)r′ ,H

z2
Al

)

= e(gτ
′

k , vz2Ncodel
) · e(gτ

′

k , ωz2) = e(gτ
′

k , ω)z2
(16)

Ft = F1 · F2 · F3 · F4 = e(gτ
′

k , ω)△σ(Al) (17)

where HAl
= H(R) · vPcodel · vNcodel . We have e(gτ

′

k , vxtj ) = e(gτ
′

k , vyti) =

e(gτ
′

k , vz1Pcodel
) = e(gτ

′

k , vz2Ncodel
) = 1 due to gτ

′

k ∈ Gs and v
x
tj , v

y
ti , v

z1
Pcodel

, vz2Ncodel
∈

Gn′ . Next, the value C2 = e(gτ
′

k , ω)σ is computed from {e(gτ
′

k , ω)△σ(Al)}Al∈T



by using the aggregation algorithm (see Ref. [9]). Finally, the new ciphertext

header Ĥ′
P
= (C = hσ, C2) is returned.

Decrypt2(SK
L̂
, Ĥ′

P
)→ ek : After receiving Ĥ′

P
= (C,C2) = (ωβσ, e(gτ

′

k , ω)σ),
the data user uses the secret δ to compute

D′ = D · ηδ = g(α+τuk)/βgδ/β = g(α+τuk+δ)/β = g(α+τ ′

k)/β . (18)

Next, the session key is computed by

ek = e(C,D′)
C2

= e(g(α+τ′

k
)/β ,(ωβ)σ)

e(gτ′

k ,ω)σ
= e(gα, ω)σ. (19)

5 Security Analysis

As described in Section 2, the HCBE scheme is considered failed if either CASE
1 or CASE 2 happens. In this section, we will sketch the security of our scheme
as follows:

The data file stored in the cloud is in the encrypted with a session key
ek = e(gα, ω)σ. For ease of illustration, we assume that ek is encrypted with the

access policy ÂP = Al[ti, tj , P codel, Ncodel] ∧ Ax[ti, tj , P codex, Ncodex]. We
consider the first condition in CASE 1 is true, if user uk1, whose access privilege
L̂1 = Al[ti, tj , P codel, Ncodel], can recover ek, by colluding with uk2, whose

access privilege L̂2 = Ax[ti, tj , P codex, Ncodex]. The construction of the HCBE

scheme allows them to recover Ft1 = e(gτ
′

k1 , ω)△σ(Al) and Ft2 = e(gτ
′

k2 , ω)△σ(Ax),
with private keys SK

L̂1
and SK

L̂2
, respectively. However, τ ′k1, τ

′
k2 are uniquely

chosen to distinguish different users. Therefore, with Ft1, Ft2, they cannot obtain
either T 1 = e(gτ

′

k1 , ω)σ or T 2 = e(gτ
′

k2 , ω)σ, to recover ek, and the first condition
in CASE 1 is false.

Next, we assume that ek is simply encrypted with the access policy ÂP =
Al[ti, tj , P codel, Ncodel]. We consider the second condition in CASE 1 is true,

if user uk1, whose access privilege L̂1 = Al[ta, tb, P codel, Ncodel] can recover
ek while tj < ta (or ti > tb). Note that, due to the one-way property of the

FDF and BDF in CBE, uk1 cannot derive D′
tj and D

′

ti from D′
ta and D

′

tb while
tj < ta (or ti > tb). Therefore, uk1 cannot obtain F1 and F2 to recover ek, and
the second condition in CASE 1 is false.

Finally, we consider the third condition in CASE 1 is true, if user uk1, whose
access privilege L̂1 = Al[ta, tb, P codel, Ncodel] can recover ek while access policy

ÂP = Ax[ta, tb, P codex, Ncodex], while Pcodex > Pcodel or Ncodex > Ncodel.
Note that, due to the one-way property of the BDF in CBE, uk1 cannot derive
D′

Pcodex
from D′

Pcodel
while Pcodex > Pcodel. The same situation holds for

Ncodex > Ncodel. Therefore, the thrid condition in CASE 1 is false, and CASE
1 will not happen. �

The proof of CASE 2 is similar with that of CASE 1. To obtain ek, the CSP
needs to calculate F1 ·F2 ·F3 ·F4 to obtain e(gτ

′

k , ω)△σ(Al) for sufficient attributes
Al ∈ T . Since the CSP is not allowed to access the PHR system, it cannot obtain
sufficient private keys. As proved in CASE 1, the entities that do not meet the
access policy cannot recover ek. Therefore, CASE 2 will not happen. �



0 10 100 1,000 10,000 100,000
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

T
im

e 
(s

)

Z

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 3. Computation cost of Setup.

0 10 100 1000 10000 100,000
6

7

8

9

10

11

12

Z

T
im

e 
(s

)

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 4. Computation cost of Genkey.

6 Experimental Results

In this section, we will compare our proposed scheme with the CBE scheme in
terms of computation cost. Our experiments are conducted with Java program-
ming language. We implement our scheme on an stand-alone mode, on a PC
with Intel Core i3 CPU running at 2.3GHz and 2G memory. The practical com-
putational costs of algorithms Setup, Genkey, Encrypt, Delegate, Decrypt1,
and Decrypt2 in both schemes are shown in Fig 3∼Fig. 8.

The parameter settings in the experiments are as follows :NA is the number of
specific attributes in the access policy,m indicates the number of attribute nodes
in an attribute hierarchy tree. Here, we take m = 50, NA = 10 and m = 100,
respectively. In our experiments, we generate a private key with privilege [t1, t2],
where t1 ∈R [1, Z/4] and t2 ∈R [3Z/4, Z], for a certain comparison range [1, Z].
Furthermore, the message is encrypted by the time condition t ∈R [Z/4, 3Z/4]
to ensure that max(t− t1, t2 − t) ≥ Z/4.

Our experimental results are shown in Fig 3∼Fig. 8. We observe that the
growth of time overhead is not significant as the value of Z increases in terms of
the HCBE scheme and the CBE scheme. Meanwhile, in our scheme, the growth
of time overhead is not significant while m grows from 50 to 100. Due to the
introduction of attribute hierarchy in our scheme, the computational overhead
of Setup and GenKey algorithms in our scheme is larger than that of the CBE
scheme. However, the difference is minor. For example, as shown in Fig. 3, the
computation time of our Setup algorithm grows from 5.43s to 5.46s under the
setting of m = 50, and the computation time of the Setup algorithm of the CBE
scheme grows from 4.94s to 4.95s, while Z ranges from 7 to 70, 000; as shown
in Fig. 4, the computation time of our Genkey algorithm grows from 9.62s to
9.85s under the setting of m = 100, and the computation time of the Genkey
algorithm of the CBE scheme grows from 6.20s to 6.36s, while Z ranges from 7
to 70, 000.

In the experiment, in order to get better comparison results between our
scheme and CBE scheme, we useNA = 10 specific attributes for CBE encryption.
As shown in Fig. 5, the encryption time of our scheme is much smaller than that
of the CBE scheme. For example, the computation time of our Encrypt algorithm



0 10 100 1000 10000 100000
25

30

35

40

45

Z

T
im

e 
(s

)

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 5. Computation cost of Encrypt.

0 10 100 1000 10000 100,000
4

5

6

7

8

9

10

Z

T
im

e(
s)

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 6. Computation cost of Delegate.

0 10 100 1000 10000 100,000
7

8

9

10

11

12

13

14

Z

T
im

e 
(s

)

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 7. Computation cost of Decrypt1.

0 10 100 1000 10000 100000
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Z

T
im

e 
(s

)

 

 

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Fig. 8. Computation cost of Decrypt2.

grows from 25.75s to 25.98s under the setting of m = 50, and the computation
time of the Encrypt algorithm of the CBE scheme grows from 38.95s to 40.00s,
while Z ranges from 7 to 70, 000; Furthermore, with the decrease of the number
of attribute, m, in access policy, our scheme has better performance. Therefore,
in our scheme, the data owner’s time overhead will be reduced, thereby getting
better service experience.

The algorithms run by the data user include Delegate and Decrypt2. The
comparisons of time overhead are shown in Fig. 6 and Fig. 8. The comparison
of time overhead of Decrypt1 algorithm is shown in Fig. 7, which is executed
by the proxy server. Therefore, for the data users in our scheme, they have the
same experience as those in the CBE scheme. The above experimental results
verify our theoretical analysis in Section 5.

7 Related Work

Today, many CSP, like Amazon, Google, and Microsoft, provide PHR services.
PHR contains a significant amount of sensitive information, thus how to pre-
serve individual privacy while using cloud-based PHR system becomes a key
problem [2]. To prevent the exposure of health information to unauthorized in-
dividuals, cryptographic tools and access control mechanism are proposed as
promising solutions. For example, Jin et. al [10] proposed a multi-level access
control scheme to support patient-centric health information sharing. Benaloh



et. al [11] designed a Patient Controlled Encryption (PCE) system to secure the
storage of patients’ medical records. With the PCE system, patients can share
partial access rights with others, and to perform searches over their records in
a secure way. Li et. al [12] proposed a novel framework for scalable and efficient
access control to PHRs in cloud computing environment. Yao et. al [13] utilized
order preserving symmetric encryption (OPSE) [14] for preserving data priva-
cy in multi-source personal health record clouds. Li et.al [15] utilized predicate
encryption [16] to achieve authorized search on PHRs in cloud computing.

Most existing work adopted Attribute Based Encryption (ABE) [17, 9] as the
cryptographic tool to achieve fine-grained access control in cloud-based PHR
systems. The original ABE systems only support monotone access policy and
assume the existence of a single private key generator (PKG). A lot of research
has been done to achieve more expressive access policy [18], and distributed
key management [19]. To achieve dynamic access control in cloud computing,
Yu et. al [20] applied the proxy re-encryption (PRE) technique [21] to ABE.
Wang et. al [6] proposed a hierarchical ABE scheme to achieve key delegation
in cloud environment. On the basis of ABE scheme, Zhu et. al [7] proposed
the CBE scheme by making use of the forward/backward derivation functions,
and applied CBE to the cloud environment. However, the encryption cost of
the CBE scheme will grow linearly with the number of attributes in the access
policy. To solve this problem, we proposed the HCBE scheme by incorporating
the attribute hierarchy to the CBE scheme.

8 Conclusion and Future Work

In this paper, we proposed a HCBE scheme for achieving a fine-grained access
control in cloud-based PHR systems. Our scheme supports time comparison in
attribute-based encryption in an efficient way, by incorporating attribute hierar-
chy into CBE. However, due to the the limited space, we only sketch the security
of the proposed scheme. In our future work, we will try to prove that the HCBE
scheme has key security under chosen derivation-key attacks (KS-CDA) and se-
mantical security under chosen derivation-key attacks (SS-CDA).

Acknowledgments

This work was supported in part by NSFC grants 61402161, 6147213161272546;
NSF grants CNS 149860, CNS 1461932, CNS 1460971, CNS 1439672,CNS 1301774,
ECCS 1231461, ECCS 1128209, and CNS 1138963.

References

1. P. Tang, J. Ash, D. Bates, et al, “Personal health records: definitions, benefits, and
strategies for overcoming barriers to adoption”, Journal of the American Medical

Informatics Association, 2006, vol. 13, No. 2, pp. 121-126.
2. L. Guo, C. Zhang, J. Sun, et al, “PAAS: A privacy-preserving attribute-based au-

thentication system for ehealth networks”, in Proceedings of IEEE ICDCS, 2012,
pp. 224-233.



3. M. Armbrust, A. Fox, R. Griffith, et al, “A view of cloud computing”, Communi-

cations of the ACM, 2010, 53(4): 50-58.
4. Googlehealth. https://www.google.com/health/.
5. Healthvault. http://www.healthvault.com/.
6. G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-

grained access control in cloud storage services”, in Proceedings of ACM CCS, 2010,
pp. 735-737.

7. Y. Zhu, H. Hu, G. Ahn, et al, “Comparison-based encryption for fine-grained access
control in clouds”, in Proceedings of ACM CODASPY, 2012, pp. 105-116.

8. D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing”, Ad-
vances in Cryptology–CRYPTO, 2001, vol. 2139, pp.213-229.

9. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute based en-
cryption”, in Proceedings of IEEE S&P, 2007, pp.321-349.

10. J. Jin, G.-J. Ahn, H. Hu, “Patient-centric authorization framework for sharing
electronic health records”, in Proceedings of ACM SACMAT, 2009, pp.125-134.

11. J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient controlled encryption:
ensuring privacy of electronic medical records”, in Proceedings of ACM CCSW, 2009,
pp. 103-114.

12. M. Li, S. Yu, et al, “Securing personal health records in cloud computing: Patient-
centric and fine-grained data access control in multi-owner setting”, in Security and

Privacy in Communication Networks, 2010, vol. 50, pp. 89-106.
13. X. Yao, Y. Lin, Q. Liu, et al, “Efficient and privacy-preserving search in multi-

source personal health record clouds”, accepted to appear in Proceedings of IEEE

ISCC, 2015.
14. A. Boldyreva, N. Chenette, and A. O. Neill, Order-preserving encryption revisit-

ed: Improved security analysis and alternative solutions, Advances in CryptologyC-

CRYPTO, 2011, vol. 6841, pp. 578-595.
15. M. Li, S. Yu, N. Cao, et al, “Authorized private keyword search over encrypted

data in cloud computing”, in Proceedings of IEEE ICDCS, 2011, pp. 383-392.
16. T. Okamoto and K. Takashima, “Hierarchical predicate encryption for inner-

products”, Advances in Cryptology–ASIACRYPT, 2009, vol. 5912, pp. 214-231.
17. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for

fine-grained access control of encrypted data”, in Proceedings of ACM CCS, 2006,
pp.89-98.

18. B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization”, in Public Key Cryptography–PKC, 2011, vol. 6571,
pp. 53-70.

19. A. Lewko and B. Waters, “Decentralizing attribute-based encryption”, in Advances

in Cryptology–EUROCRYPT, 2011, vol. 6632, pp. 568-588.
20. S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,scalable, and fine-grained

data access control in cloud computing”, in Proceedings of IEEE INFOCOM, 2010,
pp. 534-542.

21. B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure proxy re-
encryption”, in Public Key Cryptography–PKC, 2008, vol. 4939, pp. 360–379.


